Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Recent progress in unraveling cardiovascular complications associated with primary aldosteronism: a succinct review

Abstract

This comprehensive review offers a thorough exploration of recent advancements in our understanding of the intricate cardiovascular complications associated with Primary Aldosteronism (PA). PA encompasses a spectrum of conditions characterized by hypertension and excessive production of aldosterone operating independently of the renin-angiotensin system. Given its association with an elevated risk of cardiovascular and cerebrovascular complications, as well as a higher incidence of metabolic syndrome in comparison to individuals with essential hypertension (EH), an accurate diagnosis of PA is of paramount importance. This review delves into the intricate interplay between PA and cardiovascular health and focuses on the key pathophysiological mechanisms contributing to adverse cardiac outcomes. The impact of different treatment modalities on cardiovascular health is also examined, offering insights into potential therapeutic approaches. By highlighting the significance of recognizing PA as a significant contributor to cardiovascular morbidity, this review emphasizes the need for improved screening, early diagnosis, and tailored management strategies to both enhance patient care and mitigate the burden of cardiovascular diseases. The findings presented herein underscore the growing importance of PA in the context of cardiovascular medicine and emphasize the potential for translating these insights into targeted interventions to improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Mulatero P, Monticone S, Bertello C, Viola A, Tizzani D, Iannaccone A, et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab. 2013;98:4826–33.

    Article  CAS  PubMed  Google Scholar 

  2. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kayser SC, Dekkers T, Groenewoud HJ, van der Wilt GJ, Carel Bakx J, van der Wel MC, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101:2826–35.

    Article  CAS  PubMed  Google Scholar 

  4. Mosso L, Carvajal C, González A, Barraza A, Avila F, Montero J, et al. Primary aldosteronism and hypertensive disease. Hypertension. 2003;42:161–5.

    Article  CAS  PubMed  Google Scholar 

  5. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension. 2002;40:892–6.

    Article  CAS  PubMed  Google Scholar 

  6. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–20.

    Article  PubMed  Google Scholar 

  7. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: a multicenter study in Japan. Hypertension. 2018;71:530–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hung CS, Sung SH, Liao CW, Pan CT, Chang CC, Chen ZW, et al. Aldosterone induces vascular damage. Hypertension. 2019;74:623–9.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Luo F, Fan P, Meng X, Yang K, Zhou X. Is primary aldosteronism a potential risk factor for aortic dissection? A case report and literature review. BMC Endocr Disord. 2020;20:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang YH, Chung SD, Wu CH, Chueh JS, Chen L, Lin PC, et al. Surgery decreases the long-term incident stroke risk in patients with primary aldosteronism. Surgery. 2020;167:367–77.

    Article  PubMed  Google Scholar 

  11. Vaidya A, Hundemer GL, Nanba K, Parksook WW, Brown JM. Primary aldosteronism: state-of-the-art review. Am J Hypertens. 2022;35:967–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joseph JJ, Pohlman NK, Zhao S, Kline D, Brock G, Echouffo-Tcheugui JB, et al. Association of serum aldosterone and plasma renin activity with ambulatory blood pressure in African Americans: the Jackson Heart Study. Circulation. 2021;143:2355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown JM, Wijkman MO, Claggett BL, Shah AM, Ballantyne CM, Coresh J, et al. Cardiac structure and function across the spectrum of aldosteronism: the atherosclerosis risk in communities study. Hypertension. 2022;79:1984–93.

    Article  CAS  PubMed  Google Scholar 

  14. Wu T, Ren Y, Wang W, Cheng W, Zhou F, He S, et al. Left ventricular remodeling in patients with primary aldosteronism: a prospective cardiac magnetic resonance imaging study. Korean J Radio. 2021;22:1619–27.

    Article  Google Scholar 

  15. Su MY, Wu VC, Yu HY, Lin YH, Kuo CC, Liu KL, et al. Contrast-enhanced MRI index of diffuse myocardial fibrosis is increased in primary aldosteronism. J Magn Reson Imaging. 2012;35:1349–55.

    Article  PubMed  Google Scholar 

  16. Zhou F, Wu T, Wang W, Cheng W, Wan S, Tian H, et al. CMR-verified myocardial fibrosis is associated with subclinical diastolic dysfunction in primary aldosteronism patients. Front Endocrinol. 2021;12:672557.

    Article  Google Scholar 

  17. Tu W, Li R, Bhalla V, Eckert GJ, Pratt JH. Age-related blood pressure sensitivity to aldosterone in blacks and whites. Hypertension. 2018;72:247–52.

    Article  CAS  PubMed  Google Scholar 

  18. Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, et al. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension. 2014;63:1212–8.

    Article  CAS  PubMed  Google Scholar 

  19. Arima H, Murakami Y, Lam TH, Kim HC, Ueshima H, Woo J, et al. Effects of prehypertension and hypertension subtype on cardiovascular disease in the Asia-Pacific Region. Hypertension. 2012;59:1118–23.

    Article  CAS  PubMed  Google Scholar 

  20. Katsuya T, Ishikawa K, Sugimoto K, Rakugi H, Ogihara T. Salt sensitivity of Japanese from the viewpoint of gene polymorphism. Hypertens Res. 2003;26:521–5.

    Article  PubMed  Google Scholar 

  21. Kario K, Chen CH, Park S, Park CG, Hoshide S, Cheng HM, et al. Consensus document on improving hypertension management in Asian patients, taking into account Asian characteristics. Hypertension. 2018;71:375–82.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai CF, Yang SF, Chu HJ, Ueng KC. Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol. 2013;169:17–28.

    Article  PubMed  Google Scholar 

  23. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50.

    Article  CAS  PubMed  Google Scholar 

  24. Tsai CH, Pan CT, Chang YY, Chen ZW, Wu VC, Hung CS, et al. Left ventricular remodeling and dysfunction in primary aldosteronism. J Hum Hypertens. 2021;35:131–47.

    Article  PubMed  Google Scholar 

  25. Matsumoto T, Oki K, Kajikawa M, Nakashima A, Maruhashi T, Iwamoto Y, et al. Effect of aldosterone-producing adenoma on endothelial function and Rho-associated kinase activity in patients with primary aldosteronism. Hypertension. 2015;65:841–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rossi GP, Bisogni V, Bacca AV, Belfiore A, Cesari M, Concistrè A, et al. The 2020 Italian Society of Arterial Hypertension (SIIA) practical guidelines for the management of primary aldosteronism. Int J Cardiol Hypertens. 2020;5:100029.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pan CT, Tsai CH, Chen ZW, Chang YY, Wu VC, Hung CS, et al. Atrial fibrillation in primary aldosteronism. Horm Metab Res. 2020;52:357–65.

    Article  CAS  PubMed  Google Scholar 

  28. Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J. 2006;27:512–8.

    Article  CAS  PubMed  Google Scholar 

  29. Weber KT. Aldosterone and spironolactone in heart failure. N Engl J Med. 1999;341:753–5.

    Article  CAS  PubMed  Google Scholar 

  30. Reil JC, Hohl M, Selejan S, Lipp P, Drautz F, Kazakow A, et al. Aldosterone promotes atrial fibrillation. Eur Heart J. 2012;33:2098–108.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao J, Li J, Li W, Li Y, Shan H, Gong Y, et al. Effects of spironolactone on atrial structural remodelling in a canine model of atrial fibrillation produced by prolonged atrial pacing. Br J Pharm. 2010;159:1584–94.

    Article  CAS  Google Scholar 

  32. Tsai CT, Chiang FT, Tseng CD, Hwang JJ, Kuo KT, Wu CK, et al. Increased expression of mineralocorticoid receptor in human atrial fibrillation and a cellular model of atrial fibrillation. J Am Coll Cardiol. 2010;55:758–70.

    Article  CAS  PubMed  Google Scholar 

  33. Amir O, Amir RE, Paz H, Mor R, Sagiv M, Lewis BS. Aldosterone synthase gene polymorphism as a determinant of atrial fibrillation in patients with heart failure. Am J Cardiol. 2008;102:326–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–6.

    Article  CAS  PubMed  Google Scholar 

  35. Matsumura K, Fujii K, Oniki H, Oka M, Iida M. Role of aldosterone in left ventricular hypertrophy in hypertension. Am J Hypertens. 2006;19:13–18.

    Article  CAS  PubMed  Google Scholar 

  36. Lopez N, Diez J, Fortuno MA. Differential hypertrophic effects of cardiotrophin-1 on adult cardiomyocytes from normotensive and spontaneously hypertensive rats. J Mol Cell Cardiol. 2006;41:902–13.

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Andres N, Martin-Fernandez B, Rossignol P, Zannad F, Lahera V, Fortuno MA, et al. A role for cardiotrophin-1 in myocardial remodeling induced by aldosterone. Am J Physiol Heart Circ Physiol. 2011;301:H2372–2382.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen T, Do H, Pham T, Vu LT, Zuin M, Rigatelli G. Left ventricular dysfunction causing ischemia in patients with patent coronary arteries. Perfusion. 2018;33:115–22.

    Article  PubMed  Google Scholar 

  39. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes. 2013;62:313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Selvaraj J, Sathish S, Mayilvanan C, Balasubramanian K. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Mol Cell Biochem. 2013;372:113–26.

    Article  CAS  PubMed  Google Scholar 

  41. Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54–60.

    Article  CAS  PubMed  Google Scholar 

  42. Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, et al. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res. 2009;84:164–72.

    Article  CAS  PubMed  Google Scholar 

  43. Mosso LM, Carvajal CA, Maiz A, Ortiz EH, Castillo CR, Artigas RA, et al. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens. 2007;25:2125–30.

    Article  CAS  PubMed  Google Scholar 

  44. Belin de Chantemele EJ, Mintz JD, Rainey WE, Stepp DW. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension. 2011;58:271–9.

    Article  CAS  PubMed  Google Scholar 

  45. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132:2134–45.

    Article  CAS  PubMed  Google Scholar 

  46. Huby AC, Otvos L Jr., Belin de Chantemele EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67:1020–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 2008;22:1502–11.

    Article  CAS  PubMed  Google Scholar 

  48. Janowska JD. C1q/TNF-related protein 1, a multifunctional adipokine: an overview of current data. Am J Med Sci. 2020;360:222–8.

    Article  PubMed  Google Scholar 

  49. Muendlein A, Leiherer A, Saely C, Ebner J, Geiger K, Brandtner EM, et al. The novel adipokine CTRP1 is significantly associated with the incidence of major adverse cardiovascular events. Atherosclerosis. 2019;286:1–6.

    Article  CAS  PubMed  Google Scholar 

  50. Barbieri D, Goicoechea M, Sanchez-Nino MD, Ortiz A, Verde E, Verdalles U, et al. Obesity and chronic kidney disease progression-the role of a new adipocytokine: C1q/tumour necrosis factor-related protein-1. Clin Kidney J. 2019;12:420–6.

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen V, Tu TM, Mamauag MJB, Lai J, Saffari SE, Aw TC, et al. Primary aldosteronism more prevalent in patients with cardioembolic stroke and atrial fibrillation. Front Endocrinol. 2022;13:869980.

    Article  Google Scholar 

  52. Seccia TM, Letizia C, Muiesan ML, Lerco S, Cesari M, Bisogni V, et al. Atrial fibrillation as presenting sign of primary aldosteronism: results of the Prospective Appraisal on the Prevalence of Primary Aldosteronism in Hypertensive (PAPPHY) Study. J Hypertens. 2020;38:332–9.

    Article  CAS  PubMed  Google Scholar 

  53. Bollati M, Lopez C, Bioletto F, Ponzetto F, Ghigo E, Maccario M, et al. Atrial fibrillation and aortic ectasia as complications of primary aldosteronism: focus on pathophysiological aspects. Int J Mol Sci. 2022;23:2111.

  54. Parasiliti-Caprino M, Lopez C, Prencipe N, Lucatello B, Settanni F, Giraudo G, et al. Prevalence of primary aldosteronism and association with cardiovascular complications in patients with resistant and refractory hypertension. J Hypertens. 2020;38:1841–8.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Luo F, Fan P, Meng X, Yang K, Zhou X. Is primary aldosteronism a potential risk factor for aortic dissection? A case report and literature review. BMC Endocr Disord. 2020;20:1–6.

    Article  Google Scholar 

  56. Kim KJ, Hong N, Yu MH, Lee H, Lee S, Lim JS, et al. Time-dependent risk of atrial fibrillation in patients with primary aldosteronism after medical or surgical treatment initiation. Hypertension. 2021;77:1964–73.

    Article  CAS  PubMed  Google Scholar 

  57. Catena C, Colussi G, Lapenna R, Nadalini E, Chiuch A, Gianfagna P, et al. Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism. Hypertension. 2007;50:911–8.

    Article  CAS  PubMed  Google Scholar 

  58. Liao CW, Lin LY, Hung CS, Lin YT, Chang YY, Wang SM, et al. Time course and factors predicting arterial stiffness reversal in patients with aldosterone-producing adenoma after adrenalectomy: prospective study of 102 patients. Sci Rep. 2016;6:20862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsai CH, Chen YL, Pan CT, Lin YT, Lee PC, Chiu YW, et al. New-onset atrial fibrillation in patients with primary aldosteronism receiving different treatment strategies: systematic review and pooled analysis of three studies. Front Endocrinol. 2021;12:646933.

    Article  Google Scholar 

  60. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol. 2018;3:768–74.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Inoue K, Goldwater D, Allison M, Seeman T, Kestenbaum BR, Watson KE. Serum aldosterone concentration, blood pressure, and coronary artery calcium: the multi-ethnic study of atherosclerosis. Hypertension. 2020;76:113–20.

    Article  CAS  PubMed  Google Scholar 

  62. Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens. 2021;34:15–27.

    Article  CAS  PubMed  Google Scholar 

  63. Gao J, Zhang K, Chen J, Wang M-H, Wang J, Liu P, et al. Roles of aldosterone in vascular calcification: an update. Eur J Pharmacol. 2016;786:186–93.

    Article  CAS  PubMed  Google Scholar 

  64. Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 2005;96:643–50.

    Article  CAS  PubMed  Google Scholar 

  65. Gromotowicz-Poplawska A, Flaumenhaft R, Gholami SK, Merrill-Skoloff G, Chabielska E, Williams GH, et al. Enhanced Thrombotic Responses Are Associated With Striatin Deficiency and Aldosterone. J Am Heart Assoc. 2021;10:e022975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee SM, Choi YJ, Lee K, Kim HK, Park JS, Lim YC, et al. Pearls & Oy-sters: cerebral microbleeds caused by adrenocortical adenoma-related primary aldosteronism. Neurology. 2021;96:960–2.

    Article  CAS  PubMed  Google Scholar 

  67. Qian N, Xu J, Wang Y. Stroke risks in primary aldosteronism with different treatments: a systematic review and meta-analysis. J Cardiovasc Dev Dis. 2022;9:300.

  68. Petramala L, Concistre A, Mezzadri M, Sarlo F, Circosta F, Schina M, et al. Relationship between plasma aldosterone levels and arterial stiffness parameters in hypertensive patients with subclinical vascular damage. Int J Cardiol Cardiovasc Risk Prev. 2022;14:200138.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Choudhary MK, Varri E, Matikainen N, Koskela J, Tikkakoski AJ, Kahonen M, et al. Primary aldosteronism: Higher volume load, cardiac output and arterial stiffness than in essential hypertension. J Intern Med. 2021;289:29–41.

    Article  CAS  PubMed  Google Scholar 

  70. Petramala L, Concistre A, Circosta F, Gigante A, Sarlo F, Schina M, et al. Evaluation of intra-renal stiffness in patients with primary aldosteronism. High Blood Press Cardiovasc Prev. 2022;29:49–56.

    Article  CAS  PubMed  Google Scholar 

  71. Chen ZW, Pan CT, Tsai CH, Chang YY, Chang CC, Lee BC, et al. Heart-ankle pulse wave velocity is superior to brachial-ankle pulse wave velocity in detecting aldosterone-induced arterial stiffness. Biomedicines. 2021;9:1285.

  72. Lottspeich C, Kohler A, Czihal M, Heinrich DA, Schneider H, Handgriff L, et al. Atherosclerotic burden and arterial stiffness are not increased in patients with milder forms of primary aldosteronism compared to patients with essential hypertension. Horm Metab Res. 2021;53:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fernandez-Argueso M, Pascual-Corrales E, Bengoa Rojano N, Garcia Cano A, Jimenez Mendiguchia L, Araujo-Castro M. Higher risk of chronic kidney disease and progressive kidney function impairment in primary aldosteronism than in essential hypertension. Case-control study. Endocrine. 2021;73:439–46.

    Article  CAS  PubMed  Google Scholar 

  74. Haze T, Hatakeyama M, Komiya S, Kawano R, Ohki Y, Suzuki S, et al. Association of the ratio of visceral-to-subcutaneous fat volume with renal function among patients with primary aldosteronism. Hypertens Res. 2021;44:1341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin M, Heizhati M, Gan L, Yao X, Luo Q, Zhang D, et al. Higher aldosterone is associated with increased renal impairment risk in patients with hypertension and abnormal glucose metabolism: a longitudinal study. J Hypertens. 2022;40:561–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wen D, Xu C, Deng L, Yan W, Peng P, Yue X, et al. Monoexponential, biexponential, stretched-exponential and kurtosis models of diffusion-weighted imaging in kidney assessment: comparison between patients with primary aldosteronism and healthy controls. Abdom Radio. 2023;48:1340–9.

    Article  Google Scholar 

  77. Manosroi W, Atthakomol P, Wattanawitawas P, Buranapin S. Differences in glycemic abnormalities between primary aldosteronism and essential hypertension: a systematic review and meta-analysis. Front Endocrinol. 2022;13:870047.

    Article  Google Scholar 

  78. Schwartz WB, Relman AS. Effects of electrolyte disorders on renal structure and function. N Engl J Med. 1967;276:452–8. concl

    Article  CAS  PubMed  Google Scholar 

  79. Rafiq K, Hitomi H, Nakano D, Nishiyama A. Pathophysiological roles of aldosterone and mineralocorticoid receptor in the kidney. J Pharm Sci. 2011;115:1–7.

    Article  CAS  Google Scholar 

  80. Yuan Y, Xu X, Zhao C, Zhao M, Wang H, Zhang B, et al. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab Investig. 2015;95:1374–86.

    Article  CAS  PubMed  Google Scholar 

  81. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004;43:841–8.

    Article  CAS  PubMed  Google Scholar 

  82. Halimi JM, Mimran A. Albuminuria in untreated patients with primary aldosteronism or essential hypertension. J Hypertens. 1995;13:1801–2.

    Article  CAS  PubMed  Google Scholar 

  83. Reincke M, Rump LC, Quinkler M, Hahner S, Diederich S, Lorenz R, et al. Risk factors associated with a low glomerular filtration rate in primary aldosteronism. J Clin Endocrinol Metab. 2009;94:869–75.

    Article  CAS  PubMed  Google Scholar 

  84. Verma A, Vaidya A, Subudhi S, Waikar SS. Aldosterone in chronic kidney disease and renal outcomes. Eur Heart J. 2022;43:3781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zennaro MC, Boulkroun S, Fernandes-Rosa FL. Pathogenesis and treatment of primary aldosteronism. Nat Rev Endocrinol. 2020;16:578–89.

    Article  CAS  PubMed  Google Scholar 

  86. Yalamanchili HB, Calp-Inal S, Zhou XJ, Choudhury D. Hypokalemic nephropathy. Kidney Int Rep. 2018;3:1482–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Reungjui S, Roncal CA, Sato W, Glushakova OY, Croker BP, Suga S, et al. Hypokalemic nephropathy is associated with impaired angiogenesis. J Am Soc Nephrol. 2008;19:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin-Fernandez B, Rubio-Navarro A, Cortegano I, Ballesteros S, Alia M, Cannata-Ortiz P, et al. Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats. PLoS One. 2016;11:e0145946.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension. 2015;65:257–63.

    Article  CAS  PubMed  Google Scholar 

  90. Nagai Y, Miyata K, Sun GP, Rahman M, Kimura S, Miyatake A, et al. Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension. 2005;46:1039–45.

    Article  CAS  PubMed  Google Scholar 

  91. Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharm Rev. 2016;68:49–75.

    Article  CAS  PubMed  Google Scholar 

  92. Sogawa Y, Nagasu H, Itano S, Kidokoro K, Taniguchi S, Takahashi M, et al. The eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal injury model mice. PLoS One. 2018;13:e0203823.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res. 2021;82:341–63.

    Article  CAS  PubMed  Google Scholar 

  94. Ferreira JP, Rossignol P, Pizard A, Machu JL, Collier T, Girerd N, et al. Potential spironolactone effects on collagen metabolism biomarkers in patients with uncontrolled blood pressure. Heart. 2019;105:307–14.

    Article  CAS  PubMed  Google Scholar 

  95. Kadoya H, Satoh M, Sasaki T, Taniguchi S, Takahashi M, Kashihara N. Excess aldosterone is a critical danger signal for inflammasome activation in the development of renal fibrosis in mice. FASEB J. 2015;29:3899–910.

    Article  CAS  PubMed  Google Scholar 

  96. Baran W, Krzeminska J, Szlagor M, Wronka M, Mlynarska E, Franczyk B, et al. Mineralocorticoid receptor antagonists-use in chronic kidney disease. Int J Mol Sci. 2021;22:9995.

  97. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  PubMed  Google Scholar 

  98. Kobayashi H, Abe M, Nakamura Y, Takahashi K, Fujita M, Takeda Y, et al. Association between acute fall in estimated glomerular filtration rate after treatment for primary aldosteronism and long-term decline in renal function. Hypertension. 2019;74:630–8.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Q, Pan Y, Ma X, Yang H, Chang J, Hong L, et al. Elevated secretion of aldosterone increases TG/HDL-C ratio and potentiates the Ox-LDL-induced dysfunction of HUVEC. Cell J. 2021;23:61–69.

    PubMed  PubMed Central  Google Scholar 

  100. Manosroi W, Phudphong P, Atthakomol P, Phimphilai M. The differences of serum lipid profiles between primary aldosteronism and essential hypertension: a meta-analysis and systematic review. BMC Endocr Disord. 2022;22:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhu QG, Zhu F. Meta-analysis of blood parameters related to lipid and glucose metabolism between two subtypes of primary aldosteronism. J Clin Hypertens (Greenwich). 2023;25:13–21.

    Article  CAS  PubMed  Google Scholar 

  102. Chen UL, Liao CW, Wang SM, Lai TS, Huang KH, Chang CC, et al. Diabetes mellitus is associated with more adverse non-hemodynamic left ventricular remodeling and less recovery in patients with primary aldosteronism. J Investig Med. 2023;71:101–12.

    Article  PubMed  Google Scholar 

  103. Zhang Z, Luo Q, Tuersun T, Wang G, Wu T, Zhang D, et al. Higher prevalence of metabolic disorders in patients with bilateral primary aldosteronism than unilateral primary aldosteronism. Clin Endocrinol. 2021;94:3–11.

    Article  CAS  Google Scholar 

  104. Bu X, Sun F, Zhang H, Liu X, Zhao Z, He H, et al. Clinical characteristics of target organ damage in primary aldosteronism with or without metabolic syndrome. J Diabetes Res. 2022;2022:8932133.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fischer E, Adolf C, Pallauf A, Then C, Bidlingmaier M, Beuschlein F, et al. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J Clin Endocrinol Metab. 2013;98:2513–20.

    Article  CAS  PubMed  Google Scholar 

  106. Grewal S, Fosam A, Chalk L, Deven A, Suzuki M, Correa RR, et al. Insulin sensitivity and pancreatic beta-cell function in patients with primary aldosteronism. Endocrine. 2021;72:96–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Watanabe D, Yatabe M, Ichihara A. Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens. 2016;38:613–7.

    Article  CAS  PubMed  Google Scholar 

  108. Kidambi S, Kotchen JM, Grim CE, Raff H, Mao J, Singh RJ, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49:704–11.

    Article  CAS  PubMed  Google Scholar 

  109. Colussi G, Catena C, Lapenna R, Nadalini E, Chiuch A, Sechi LA. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care. 2007;30:2349–54.

    Article  CAS  PubMed  Google Scholar 

  110. Sherajee SJ, Fujita Y, Rafiq K, Nakano D, Mori H, Masaki T, et al. Aldosterone induces vascular insulin resistance by increasing insulin-like growth factor-1 receptor and hybrid receptor. Arterioscler Thromb Vasc Biol. 2012;32:257–63.

    Article  CAS  PubMed  Google Scholar 

  111. Adler GK, Murray GR, Turcu AF, Nian H, Yu C, Solorzano CC, et al. Primary Aldosteronism Decreases Insulin Secretion and Increases Insulin Clearance in Humans. Hypertension. 2020;75:1251–9.

    Article  CAS  PubMed  Google Scholar 

  112. Then C, Ritzel K, Herder C, Then H, Sujana C, Heier M, et al. Association of renin and aldosterone with glucose metabolism in a Western European population: the KORA F4/FF4 study. BMJ Open Diabetes Res Care. 2022;10:e002558.

  113. Shibayama Y, Wada N, Baba S, Miyano Y, Obara S, Iwasaki R, et al. Relationship between visceral fat and plasma aldosterone concentration in patients with primary aldosteronism. J Endocr Soc. 2018;2:1236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen KM, Lee BC, Chen PT, Liu KL, Lin KH, Chang CC, et al. Evaluation of abdominal computed tomography scans for differentiating the discrepancies in abdominal adipose tissue between two major subtypes of primary aldosteronism. Front Endocrinol. 2021;12:647184.

    Article  Google Scholar 

  115. Huang WC, Chen YY, Yang SY, Lai CF, Lai TS, Chen HY, et al. Fat mass as an important predictor of persistent hypertension in patients with primary aldosteronism after adrenalectomy. Hypertens Res. 2023;46:1375–84.

    Article  PubMed  Google Scholar 

  116. Yoshida Y, Shibata H. Fat mass: the most sensitive predictor of persistent hypertension in unilateral primary aldosteronism. Hypertens Res. 2023;46:1444–6.

    Article  PubMed  Google Scholar 

  117. Haze T, Ozawa M, Kawano R, Haruna A, Ohki Y, Suzuki S, et al. Effect of the interaction between the visceral-to-subcutaneous fat ratio and aldosterone on cardiac function in patients with primary aldosteronism. Hypertens Res. 2023;46:1132–44.

    Article  CAS  PubMed  Google Scholar 

  118. Kishimoto S, Matsumoto T, Oki K, Maruhashi T, Kajikawa M, Matsui S, et al. Microvascular endothelial function is impaired in patients with idiopathic hyperaldosteronism. Hypertens Res. 2018;41:932–8.

    Article  CAS  PubMed  Google Scholar 

  119. Sang M, Fu Y, Wei C, Yang J, Qiu X, Ma J, et al. Comparison of biomarkers of endothelial dysfunction and microvascular endothelial function in patients with primary aldosteronism and essential hypertension. J Renin Angiotensin Aldosterone Syst. 2021;22:1470320321999491.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chang YY, Chen A, Chen YH, Hung CS, Wu VC, Wu XM, et al. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism. J Renin Angiotensin Aldosterone Syst. 2015;16:353–9.

    Article  CAS  PubMed  Google Scholar 

  121. Cohen JB, Bancos I, Brown JM, Sarathy H, Turcu AF, Cohen DL. Primary aldosteronism and the role of mineralocorticoid receptor antagonists for the heart and kidneys. Annu Rev Med. 2023;74:217–30.

    Article  CAS  PubMed  Google Scholar 

  122. Bauersachs J, Lopez-Andres N. Mineralocorticoid receptor in cardiovascular diseases-clinical trials and mechanistic insights. Br J Pharm. 2022;179:3119–34.

    Article  CAS  Google Scholar 

  123. Buffolo F, Tetti M, Mulatero P, Monticone S. Aldosterone as a mediator of cardiovascular damage. Hypertension. 2022;79:1899–911.

    Article  CAS  PubMed  Google Scholar 

  124. Rossi GP, Maiolino G, Flego A, Belfiore A, Bernini G, Fabris B, et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertension. 2018;71:585–91.

    Article  CAS  PubMed  Google Scholar 

  125. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension. 2018;72:658–66.

    Article  CAS  PubMed  Google Scholar 

  126. Chen YY, Lin YH, Huang WC, Chueh E, Chen L, Yang SY, et al. Adrenalectomy improves the long-term risk of end-stage renal disease and mortality of primary aldosteronism. J Endocr Soc. 2019;3:1110–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu VC, Chueh SJ, Chen L, Chang CH, Hu YH, Lin YH, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35:1698–708.

    Article  CAS  PubMed  Google Scholar 

  128. Cohen DL, Wachtel H, Vaidya A, Hundemer GL, Tezuka Y, Davio A, et al. Primary aldosteronism in chronic kidney disease: blood pressure control and kidney and cardiovascular outcomes after surgical versus medical management. Hypertension. 2023;80:2187–95.

    Article  CAS  PubMed  Google Scholar 

  129. Samnani S, Cenzer I, Kline GA, Lee SJ, Hundemer GL, McClurg C, et al. Time to benefit of surgery vs. targeted medical therapy for patients with primary aldosteronism: a meta-analysis. J Clin Endocrinol Metab. 2023; https://doi.org/10.1210/clinem/dgad654).

  130. Jing Y, Liao K, Li R, Yang S, Song Y, He W, et al. Cardiovascular events and all-cause mortality in surgically or medically treated primary aldosteronism: a meta-analysis. J Renin Angiotensin Aldosterone Syst. 2021;22:14703203211003781.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu Y, Lin L, Yuan C, Shen S, Tang Y, Liu Z, et al. Recovery from diabetes mellitus in primary aldosteronism patients after adrenalectomy. BMC Endocr Disord. 2022;22:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Katabami T, Fukuda H, Tsukiyama H, Tanaka Y, Takeda Y, Kurihara I, et al. Clinical and biochemical outcomes after adrenalectomy and medical treatment in patients with unilateral primary aldosteronism. J Hypertens. 2019;37:1513–20.

    Article  CAS  PubMed  Google Scholar 

  133. Pan CT, Wu XM, Tsai CH, Chang YY, Chen ZW, Chang CC, et al. Hemodynamic and non-hemodynamic components of cardiac remodeling in primary aldosteronism. Front Endocrinol. 2021;12:646097.

    Article  Google Scholar 

  134. Rossi GP, Cesari M, Cuspidi C, Maiolino G, Cicala MV, Bisogni V, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension. 2013;62:62–69.

    Article  CAS  PubMed  Google Scholar 

  135. Ueda T, Tsurutani Y, Osada J, Inoue K, Hoshino Y, Ono M, et al. Comparison of echocardiographic changes between surgery and medication treatment in patients with primary aldosteronism. J Am Heart Assoc. 2022;11:e023813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao L, Xue J, Zhou Y, Dong X, Luo F, Jiang X, et al. Concurrent primary aldosteronism and renal artery stenosis: an overlooked condition inducing resistant hypertension. Front Cardiovasc Med. 2022;9:818872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15:277–83.

    Article  CAS  PubMed  Google Scholar 

  138. Safdar Z, Thakur A, Singh S, Ji Y, Guffey D, Minard CG, et al. Circulating aldosterone levels and disease severity in pulmonary arterial hypertension. J Pulm Respir Med. 2015;5:295.

  139. Safdar Z, Cho E. Effect of spironolactone use in pulmonary arterial hypertension - analysis from pivotal trial databases. Pulm Circ. 2021;11:20458940211045618.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lu M, Chen LY, Gairhe S, Mazer AJ, Anderson SA, Nelson JNH, et al. Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model. Am J Physiol Lung Cell Mol Physiol. 2022;322:L315–L332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

W-TW, V-CW, and Y-H Lin contributed to the concept and design of this review. W-T Wang drafted the preliminary manuscript. W-TW, C-WH, K-HT, K-CF, C-HT, S-YW, C-YW, Y-HH, S-HH, H-WL, F-YT, W-CW, C-CC, Y-LC, H-MC, L-YL, JSC, Y-HL, V-CW, C-MH, contributed to the critical revision of the manuscript for important intellectual content, read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Hao-Min Cheng, Chii-Min Hwu or Vin-Cent Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WT., Wu, TH., Er, LK. et al. Recent progress in unraveling cardiovascular complications associated with primary aldosteronism: a succinct review. Hypertens Res 47, 1103–1119 (2024). https://doi.org/10.1038/s41440-023-01538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01538-x

Keywords

Search

Quick links