Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma trimethylamine N-oxide metabolites in the second trimester predict the risk of hypertensive disorders of pregnancy: a nested case-control study

Abstract

The relationship between gut microbiota products trimethylamine oxide (TMAO) and related metabolites including betaine, choline and L-carnitine and hypertensive disorders of pregnancy (HDP) is unclear. In order to examine whether plasma TMAO and related metabolites predict the risk of HDP, a nested case-control study was conducted in Chinese women based on a prospective cohort including 9447 participants. 387 pairs of pregnant women (n = 774) were matched and their plasma TMAO, betaine, choline, and L-carnitine at 16–20 gestational weeks were measured by liquid chromatography–mass spectrometry. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated using the conditional logistic regression, to examine the association between TMAO metabolites and HDP. The findings showed that higher plasma betaine (≥24.94 μmol/L) was associated with a decreased risk of HDP and its subtype gestational hypertension (GH), with adjusted ORs of 0.404 (95% CI: 0.226–0.721) and 0.293 (95% CI: 0.134–0.642), respectively. Higher betaine/choline ratio (>2.64) was associated with a lower risk of HDP and its subtype preeclampsia or chronic hypertension with superimposed preeclampsia (PE/CH-PE), with adjusted ORs of 0.554 (95% CI: 0.354–0.866) and 0.226 (95% CI: 0.080–0.634). Moreover, compared with traditional factors (TFs) model, the TMAO metabolites+ TFs model had a higher predictive ability for PE/CH-PE (all indexes P values < 0.0001). Therefore, it suggests that the detection of plasma betaine and choline in the early second trimester of pregnancy can better assess the risk of HDP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data described in the manuscript, code book, and analytic code will be made available upon request pending approval by the authors.

References

  1. Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021;13:1–21.

    Article  PubMed  Google Scholar 

  2. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19:55–71.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas MS, Fernandez ML. Trimethylamine N-Oxide (TMAO), diet and cardiovascular disease. Curr Atheroscler Rep. 2021;23:12.

    Article  CAS  PubMed  Google Scholar 

  4. Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari-Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21:e12993.

    Article  CAS  PubMed  Google Scholar 

  5. Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10:1971.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105:600–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ufnal M, Zadlo A, Ostaszewski R. TMAO: a small molecule of great expectations. Nutrition. 2015;31:1317–23.

    Article  CAS  PubMed  Google Scholar 

  8. Koeth RA, Wang ZE, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5:e002767.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem. 2017;44:152–62.

    Article  PubMed  Google Scholar 

  11. Li T, Gua C, Wu B, Chen Y. Increased circulating trimethylamine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease. Biochem Biophys Res Commun. 2018;495:2071–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020;128:353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiong T, Mu Y, Liang J, Zhu J, Li X, Li J, et al. Hypertensive disorders in pregnancy and stillbirth rates: a facility-based study in China. Bull World Health Organ. 2018;96:531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Webster LM, Conti-Ramsden F, Seed PT, Webb AJ, Nelson-Piercy C, Chappell LC. Impact of antihypertensive treatment on maternal and perinatal outcomes in pregnancy complicated by chronic hypertension: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e005526.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Li J, Li N, Liu H, Tang J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy. 2019;38:96–104.

    Article  CAS  PubMed  Google Scholar 

  16. Wen Y, Peng L, Xu R, Zang N, Huang Q, Zhong M. Maternal serum trimethylamine-N-oxide is significantly increased in cases with established preeclampsia. Pregnancy Hypertens. 2019;15:114–7.

    Article  PubMed  Google Scholar 

  17. Wang J, Gu X, Yang J, Wei Y, Zhao Y. Gut microbiota dysbiosis and increased plasma LPS and TMAO levels in patients with preeclampsia. Front Cell Infect Microbiol. 2019;9:409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jääskeläinen T, Kärkkäinen O, Heinonen S, Hanhineva K, Laivuori H. No association in maternal serum levels of TMAO and its precursors in pre-eclampsia and in non-complicated pregnancies. Pregnancy Hypertens. 2022;28:74–80.

    Article  PubMed  Google Scholar 

  19. Salahi P, Gharabaghi M, Rocky A, Alirezaei M. In vivo: maternal betaine supplementation normalized fetal growth in diabetic pregnancy. Arch Gynecol Obstet. 2020;302:837–44.

    Article  CAS  PubMed  Google Scholar 

  20. Nanobashvili K, Jack-Roberts C, Bretter R, Jones N, Axen K, Saxena A, et al. Maternal choline and betaine supplementation modifies the placental response to hyperglycemia in mice and human trophoblasts. Nutrients. 2018;10:1507.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Petersen JM, Parker SE, Crider KS, Tinker SC, Mitchell AA, Werler MM. One-carbon cofactor intake and risk of neural tube defects among women who meet folic acid recommendations: a multicenter case-control study. Am J Epidemiol. 2019;188:1136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Derbyshire E, Obeid R. Choline, neurological development and brain function: a systematic review focusing on the first 1000 days. Nutrients. 2020;12:1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bekdash RA. Neuroprotective effects of choline and other methyl donors. Nutrients. 2019;11:2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adams JB, Kirby JK, Sorensen JC, Pollard EL, Audhya T. Evidence based recommendations for an optimal prenatal supplement for women in the US: vitamins and related nutrients. Matern Health Neonatol Perinatol. 2022;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chan YL, Saad S, Al-Odat I, Oliver BG, Pollock C, Jones NM, et al. Maternal L-carnitine supplementation improves brain health in offspring from cigarette smoke exposed mothers. Front Mol Neurosci. 2017;10:33.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Braekke K, Ueland PM, Harsem NK, Karlsen A, Blomhoff R, Staff AC. Homocysteine, cysteine, and related metabolites in maternal and fetal plasma in preeclampsia. Pediatr Res. 2007;62:319–24.

    Article  CAS  PubMed  Google Scholar 

  27. Sun YX, Guo Y, Xu H, Zhao J, Wu D, Hu JW, et al. The relationship between arginine vasopressin gene polymorphisms and plasma copeptin and hypertensive disorders of pregnancy: a nested case-control study. J Hypertens. 2023;41:608–17.

    Article  CAS  PubMed  Google Scholar 

  28. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310.

    Article  CAS  PubMed  Google Scholar 

  29. Davies SE, Chalmers RA, Randall EW, Iles RA. Betaine metabolism in human neonates and developing rats. Clin Chim Acta. 1988;178:241–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zeisel SH. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin Chem Lab Med. 2013;51:467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021;20:301–19.

    PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Team RC. R: a language and environment for statistical computing. https://www.R-project.org/.

  34. McArthur KL, Zhang M, Hong X, Wang G, Buckley JP, Wang X, et al. Trimethylamine N-oxide and its precursors are associated with gestational diabetes mellitus and pre-eclampsia in the Boston Birth Cohort. Curr Dev Nutr. 2022;6:nzac108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang X, Li Z, Gao Z, Wang D, Li X, Li Y, et al. Association between risk of preeclampsia and maternal plasma trimethylamine-N-oxide in second trimester and at the time of delivery. BMC Pregnancy Childbirth. 2020;20:302.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang ZN, Bergeron N, Levison BS, Li XMS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40:583–94.

    Article  CAS  PubMed  Google Scholar 

  37. Brantsaeter AL, Haugen M, Samuelsen SO, Torjusen H, Trogstad L, Alexander J, et al. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant Norwegian women. J Nutr. 2009;139:1162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Mbio. 2015;6:e02481.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gibson R, Lau C-HE, Loo RL, Ebbels TMD, Chekmeneva E, Dyer AR, et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr. 2020;111:280–90.

    Article  PubMed  Google Scholar 

  40. Ikem E, Halldorsson TI, Birgisdottir BE, Rasmussen MA, Olsen SF, Maslova E. Dietary patterns and the risk of pregnancy-associated hypertension in the Danish National Birth Cohort: a prospective longitudinal study. BJOG. 2019;126:663–73.

    Article  CAS  PubMed  Google Scholar 

  41. Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5:54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shimizu M, Yoda H, Igarashi N, Makino M, Tokuyama E, Yamazaki H. Novel variants and haplotypes of human flavin-containing monooxygenase 3 gene associated with Japanese subjects suffering from trimethylaminuria. Xenobiotica. 2019;49:1244–50.

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu M, Koibuchi N, Mizugaki A, Hishinuma E, Saito S, Hiratsuka M, et al. Genetic variants of flavin-containing monooxygenase 3 (FMO3) in Japanese subjects identified by phenotyping for trimethylaminuria and found in a database of genome resources. Drug Metab Pharmacokinet. 2021;38:100387.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Han X, Bao J, Yang J, Shi SQ, Garfield RE, et al. Choline supplementation during pregnancy protects against gestational lipopolysaccharide-induced inflammatory responses. Reprod Sci. 2018;25:74–85.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr. 2008;87:424–30.

    Article  CAS  PubMed  Google Scholar 

  46. Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129:373–87.

    Article  PubMed  Google Scholar 

  47. Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: their role in normal and complicated pregnancies. J Immunol. 2019;203:2757–69.

    Article  CAS  PubMed  Google Scholar 

  48. Socha MW, Malinowski B, Puk O, Dubiel M, Wicinski M. The NLRP3 inflammasome role in the pathogenesis of pregnancy induced hypertension and preeclampsia. Cells. 2020;9:1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 2010;43:732–44.

    Article  CAS  PubMed  Google Scholar 

  50. Delgado-Reyes CV, Wallig MA, Garrow TA. Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney. Arch Biochem Biophys. 2001;393:184–6.

    Article  CAS  PubMed  Google Scholar 

  51. Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys. 2010;493:71–81.

    Article  PubMed  Google Scholar 

  52. Bianchi G, Azzone GF. Oxidation of choline in rat liver mitochondria. J Biol Chem. 1964;239:3947–55.

    Article  CAS  PubMed  Google Scholar 

  53. Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem. 1996;271:22831–8.

    Article  CAS  PubMed  Google Scholar 

  54. Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104:2569–75.

    Article  CAS  PubMed  Google Scholar 

  55. Sowmya S, Swathi Y, Yeo AL, Shoon ML, Moore PK, Bhatia M. Hydrogen sulfide: regulatory role on blood pressure in hyperhomocysteinemia. Vasc Pharm. 2010;53:138–43.

    Article  CAS  Google Scholar 

  56. Maruta E, Wang J, Kotani T, Tsuda H, Nakano T, Imai K, et al. Association of serum asymmetric dimethylarginine, homocysteine, and l-arginine concentrations during early pregnancy with hypertensive disorders of pregnancy. Clin Chim Acta. 2017;475:70–77.

    Article  CAS  PubMed  Google Scholar 

  57. Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, et al. Effects of betaine supplementation on cardiovascular markers: a systematic review and Meta-analysis. Crit Rev Food Sci Nutr. 2022;62:6516–33.

    Article  CAS  PubMed  Google Scholar 

  58. Guasch-Ferre M, Hu FB, Ruiz-Canela M, Bullo M, Toledo E, Wang DD, et al. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J Am Heart Assoc. 2017;6:e006524.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dilger RN, Garrow TA, Baker DH. Betaine can partially spare choline in chicks but only when added to diets containing a minimal level of choline. J Nutr. 2007;137:2224–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the cooperation and participation of the members of this study. We especially thank the clinical staff at all participating hospitals for their support and contribution to this project.

Funding

This study was supported by grants from the National Natural Science Foundation of China (NO. 81903384), Natural Science Foundation of Jiangsu Province (NO. BK20181438), the Scientific Research Project of Suzhou Gusu Health Fostering Talents Plan (NO. GSWS2021066), the Science, Education and Health of Suzhou Youth Science and Technology Project (NO. KJXW2020073), the Maternal and Child Health Project of Jiangsu Province (NO. F202027, F201830), and the Suzhou Municipal Science and Technology Bureau (NO. SKY2023036, SKY2023041, and SS202009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Peng or Hongmei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Feng, P., Sun, Y. et al. Plasma trimethylamine N-oxide metabolites in the second trimester predict the risk of hypertensive disorders of pregnancy: a nested case-control study. Hypertens Res 47, 778–789 (2024). https://doi.org/10.1038/s41440-023-01563-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01563-w

Keywords

Search

Quick links