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Abstract
This study aimed to assess the combined effects of blood pressure (BP) and glucose status on chronic kidney disease (CKD)
incidence in young and middle-aged adults. We examined data from 1,297,341 Japanese individuals aged <60 years (60.1%
men; mean age 41.4 ± 9.3 years) with no history of CKD at baseline. The interval-censored Cox proportional hazards model
with covariates was used. During a median follow-up period of 2.1 years, new onset CKD (estimated glomerular filtration
rate <60 ml/min/1.73 m2 and/or proteinuria) occurred in 80,187 participants. In participants without antihypertensive
treatment (AHT), the adjusted hazard ratios (95% confidence interval) per 1-standard deviation, that is, 15 mmHg increase in
systolic BP for CKD incidence, were 1.08 (1.07–1.09), 1.12 (1.10–1.13), and 1.15 (1.12–1.18) in normoglycemia, borderline
glycemia, and diabetes groups, respectively. These ratios were significantly higher in the borderline glycemia and diabetes
groups compared with those in the normoglycemia group (interaction p < 0.0001). The interaction between BP and
borderline glycemia was evident when the outcome definition was restricted to proteinuria. In participants under AHT,
systolic BP was most strongly associated with CKD risk in the diabetes group, although no significant interaction was
observed. High BP and high glucose status may synergistically increase the incidence of CKD. Strict BP management may
play an important role in the early prevention of CKD in individuals with worse glucose status within the young and middle-
aged population.
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Introduction

Chronic kidney disease (CKD) has emerged as a significant
global health burden in the past two decades. In 2017, the
global prevalence of CKD was 9.1% (about 697.5 million
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cases), representing a 29.3% increase compared to 1990 [1].
CKD has also been recognized as an independent risk factor
for cardiovascular disease, as well as a leading cause of end-
stage renal disease [2]. Moreover, CKD is irreversible and is
associated with a greater relative risk of death in younger
than in older adults [3]. The prevalence of CKD in adults
aged ≥30 years in the United States is predicted to increase
[4], suggesting that the early prevention of CKD, particu-
larly in the younger population, will become more impor-
tant in the future.

Globally, hypertension and diabetes are considered the
two leading drivers of CKD [5], and various studies sug-
gested that both of them were independent risk factors in the
incidence of CKD [6–8]. Hypertension and diabetes often
coexist and share similar etiological and pathological
mechanisms [9–11]. Thus, exploring the association
between the coexistence of hypertension and diabetes and
the heightened risk of CKD in the younger population may
provide insights for the early prevention of future CKD
incidence through effective management and treatment of
these two diseases.

Studies examining the combined effects of blood pres-
sure (BP) and glucose status on CKD incidence have yiel-
ded inconsistent results [12–15]. A previous study indicated

Point of view

● Clinical relevance
High BP and worse glucose status have a positive

synergistic interaction effect on the risk of chronic
kidney disease (CKD) in individuals without anti-
hypertensive treatment (AHT). Strict BP manage-
ment may play an important role in the early
prevention of CKD in individuals with worse glucose
status within the young and middle-aged population.

● Future direction
To further investigate the combined effects of BP

and glucose status on CKD incidence, a nationwide
survey taking into account the duration of hyperten-
sion and diabetes and information regarding the type
of AHT should be conducted.

● Consideration for the Asian population
Given the large number of people with CKD in

Asian populations, urgent action may be needed in
Asia for the early prevention of CKD through strict
management of BP and blood glucose levels.
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Graphical Abstract
This large-scale longitudinal cohort study showed high BP and diabetes synergistically increased the risk of CKD in
individuals without AHT. Strict BP management may play an important role in the early prevention of CKD in individuals
with worse glucose status within the young and middle-aged population.



a synergistic effect of BP and glucose status on the inci-
dence of coronary artery disease or cerebrovascular disease
[15]. Similarly, another longitudinal study involving 5823
Asians demonstrated a synergistic interaction between
hypertension and diabetes in relation to CKD incidence
[14]. However, the previous study categorized participants
into only four groups based on the presence or absence of
hypertension and diabetes, with a limited number of parti-
cipants (n= 309) having both conditions. This limited
sample size hindered a detailed assessment of the associa-
tion between BP and diabetes [14]. Meanwhile, some stu-
dies have reported no significant synergistic interaction
between hypertension and diabetes concerning kidney
function decline [12, 13]. One possible explanation for
these inconsistent findings is that these studies did not
consider the use of antihypertensive treatment (AHT)
among participants [12–15]. The association between BP
and the risk of CKD incidence is reported to change with
AHT [16].

Given these issues, our study aimed to evaluate the
combined effects of BP and glucose status on CKD inci-
dence in the young and middle-aged population, using data
from a large-scale health examination. We further stratified
the participants based on their use of AHT to gain insights
into the association between BP and diabetes.

Methods

Study design and populations

The current study analyzed data from the Japan Medical
Data Center (JMDC) health insurance claims database. The
JMDC database contains the annual health check-up data of
Japanese employees and their dependents aged <75 years,
who are enrolled in large companies’ health insurance plans
[16–18]. Individuals aged ≥75 years are not included in the
JMDC database, as they are covered by the public health
insurance system (the medical care system for the advanced
elderly).

A flowchart illustrating the participant selection process
is presented in Fig. 1. The JMDC database initially con-
sisted of 5,742,507 individuals aged <75 years who had
undergone at least one annual health check-up between
April 2008 and March 2020. Among them, 2,376,278
individuals lacked serum creatinine measurements, as they
are not mandatory in Japanese annual health check-ups.
Additionally, 174,534 individuals without information on
BP or AHT, 172 individuals with eGFR >200 ml/min/
1.73 m2 (considered outliers), and 401,506 individuals
without any information on glucose status were excluded.
After the exclusion, follow-up data were available for
1,992,413 individuals. Of those, 164,657 with a history of

CKD or kidney disease and 161,399 with a history of car-
diovascular disease and/or cerebrovascular disease at base-
line, considered to already have advanced vascular disease,
were excluded [2, 19]. Moreover, we excluded 300,232
individuals with an eGFR between 60 and 69 ml/min/
1.73 m2 due to their higher risk of CKD compared to those
with eGFR ≥70 ml/min/1.73 m2 [16, 18, 20]. Furthermore,
68,784 individuals aged ≥60 years at baseline were exclu-
ded to focus on evaluating the CKD risk specifically in the
young and middle-aged population. Finally, 1,297,341
participants were included in the present analysis.

JMDC, Inc. has received permission from the health
insurance societies for the data usage. We have contracted
with JMDC to use the data and have received it as anon-
ymously processed information. According to the Ethical
Guidelines for Medical and Biological Research Involving
Human Subjects in Japan, obtaining approval from the
Institutional Review Board or Ethics Committee and
informed consent from each participant is not required in
this process [21]. This exemption was due to the use of
uncoupled and anonymized data from the JMDC [21].

Data collection

We collected the data for this study at the annual health
check-ups. Health check-ups in Japan are encouraged to
comply with the guidelines recommended by the Japanese
Ministry of Health, Labour, and Welfare [22]. The guideline
recommends conducting blood tests after fasting for at least
10 h and performing urine tests by collecting fresh, mid-
stream urine samples [22]. Methods for laboratory testing are
also specified in the guideline, which recommends only the
enzymatic method for measuring creatinine levels; for other
items, various methods are recommended [22]. Information
including smoking status, alcohol consumption, the use of
antihypertensive, glucose lowering, and anti-dyslipidemia
drugs, and history of cerebrovascular disease and ischemic

Fig. 1 Flowchart of the participant selection process. CKD chronic
kidney disease, eGFR estimated glomerular filtration rate

Combined effects of blood pressure and glucose status on the risk of chronic kidney disease



heart disease were collected via a self-administered ques-
tionnaire. Dyslipidemia was defined as low-density lipopro-
tein cholesterol (LDL-C) ≥ 3.62mmol/l (≥140mg/dl), high-
density lipoprotein cholesterol (HDL-C) < 1.03mmol/l
(40mg/dl), triglycerides ≥1.69 (150 mg/dl), or the use of anti-
dyslipidemia medications.

Definitions

The Japanese guidelines recommend that BP be measured
twice consecutively in the sitting position for annual health
check-ups [23]. If two measurements were available, the
average of the two measurements was used in the present
study. First, we divided the participants into two groups:
those not taking AHT and those taking AHT. Participants
not taking AHT were further classified into five or four
categories based on their systolic BP (≤119, 120–129,
130–139, 140–159, ≥160 mmHg) or diastolic BP (≤79,
80–89, 90–99, ≥100 mmHg) according to the Japanese
Hypertension Society (JSH) 2019 guidelines [23]. Partici-
pants under AHT were also classified into three categories
according to systolic and diastolic BP (≤129, 130–139,
≥140 mmHg and ≤79, 80–89, ≥90 mmHg), taking into
account target levels of BP control [23] and the number of
participants in each group. Additionally, participants were
further classified as having diabetes, borderline glycemia, or
normoglycemia based on fasting glucose levels, HbA1c
levels, and the use of glucose lowering medications.

Diabetes was defined as having a fasting glucose level
≥126 mg/dl (7.00 mmol/l), HbA1c ≥ 6.5% (48 mmol/mol),
or receiving a glucose lowering medication. Borderline
glycemia was defined as fasting glucose levels between
100 mg/dl (5.6 mmol/l) and 125 mg/dl (6.9 mmol/l) and/or
HbA1c levels between 5.7% (39 mmol/mol) and 6.4%
(47 mmol/mol), without using a glucose lowering medica-
tion. Normoglycemia was defined as fasting glucose levels
<100 mg/dl (5.6 mmol/l) and HbA1c < 5.7% (39 mmol/
mol), without using a glucose lowering medication [15, 24].
HbA1c was reported in National Glycohemoglobin Stan-
dardization Program (NGSP) units (%) [25].

Outcome and follow-up

For this study, CKD was defined as an estimated glomerular
filtration rate (eGFR) < 60ml/min/1.73 m2 and/or the pre-
sence of proteinuria, based on previous epidemiological
studies [8, 14, 18, 20]. The eGFR was calculated using a
modified version of the equation used most commonly in
Japan: Japanese Society of Nephrology (JSN) eGFR (ml/min
per 1.73 m2)= 194 × (serum creatinine)−1.094 × Age−0.287

(×0.739, if female) (hereinafter referred to as eGFR)
[26, 27]. Additionally, we calculated the eGFR using the
Chronic Kidney Disease Epidemiology Collaboration

(CKD-EPI) equation modified for the Japanese population,
incorporating the Japanese coefficient, as follows: CKD-EPI
eGFR (ml/min/1.73m2)= 141 ×min (Cr/κ, 1)α ×max (Cr/κ,
1)−1.209 × 0.993Age × 1.018 (if female) × 0.813 (Japanese
coefficient). Where κ and α are 0.7 and −0.329 in females
and 0.9 and −0.411 in males, respectively. In this equation,
“min” indicates the minimum of SCr/κ or 1, and “max”
indicates the maximum of SCr/κ or 1 [28, 29]. The presence
of proteinuria was confirmed with a dipstick test for spot-
urine. The results were defined as positive when the dipstick
test showed 1+ or more, given that most of the individuals
with dipstick 1+ or more have been found to have albu-
minuria [30, 31].

The baseline for this study was considered as the data
recorded at the first annual health check-up. The primary out-
come was the new onset of CKD confirmed during the sub-
sequent annual check-ups. The time to CKD progression was
interval-censored between the last measurement without con-
firmed CKD and the first measurement with confirmed CKD
[32–34]. If multiple CKD events occurred during the follow-up
period, only the first event was considered for analysis. In cases
where no CKD event occurred during the follow-up (i.e., right
censoring), the final follow-up date was the date of the final
annual health check-up included in the study.

Statistical analysis

We calculated age-standardized CKD rates using the direct
method, assuming a population with the same proportion of
individuals aged <40, 40–49, and ≥50 years. An interval-
censored Cox proportional hazards model was used to
assess the adjusted hazard ratios for CKD incidence, con-
sidering cubic splines of the baseline hazard [33].

When analyzing the adjusted hazard ratios for CKD
incidence among groups according to the cross-
classification based on systolic or diastolic BP and glu-
cose status, the group with the lowest BP and normogly-
cemia was set as the reference. Adjusted hazard ratios were
then calculated per 1 SD, that is, 15 mmHg increase in
systolic BP or 11.5 mmHg increase in diastolic BP, in each
glucose status for comparability between systolic and dia-
stolic BP. Interactions between BP and borderline glycemia
or diabetes vs. normoglycemia were tested using the BP×
borderline glycemia category (for calculation of interaction
P N vs. B) and the BP× diabetes category (for calculation of
interaction P N vs. D) in the models. For interactions between
BP and borderline glycemia vs. diabetes, the model inclu-
ded the BP × diabetes category (for calculation of interac-
tion P B vs. D) and the BP× normoglycemia category. The
schema showing the calculation of the interaction P is
summarized in Supplementary Fig. 1.

Covariates included in the model were sex, age, body
mass index (BMI), current smoking, current drinking,

M. Toyama et al.



dyslipidemia, and eGFR at baseline. Baseline eGFR was
treated as a continuous variable. We performed the same
analysis with outcomes of eGFR <60 ml/min/1.73 m2 and
proteinuria. We also restricted our analysis to participants
whose baseline check-ups were conducted between 2015
and 2020 to create generalizable results for a recent Japa-
nese population. Stratification analyses were additionally
performed according to sex, age (<50 years of age and ≥50
years of age) and baseline systolic BP (<140 mmHg and
≥140 mmHg), which are strong risk factors for CKD
[5, 6, 35].

Continuous variables were expressed as means ±
standard deviation (SD). All analyses were conducted using
SAS software (version 9.4; SAS Institute, Cary, North
Carolina, USA). A P value < 0.05 was considered statisti-
cally significant.

Results

Baseline characteristics

Among the 1,297,341 participants, 779,988 (60.1%) were
men. The mean values for age, BMI, systolic and diastolic BP,
fasting plasma glucose (FPG), and HbA1c were 41.4 ± 9.3
years, 22.7 ± 3.7 kg/m2, 117.3 ± 15.3/ 72.5 ± 11.6 mmHg,
93.2 ± 16.0mg/dl, and 5.4 ± 0.5%, respectively. The median
baseline health check-up year in this study was 2018 (inter-
quartile range 2015–2018), with most data collected between
2015 and 2018.

Table 1 shows the baseline characteristics and the num-
ber of CKD events according to a combination of five
systolic BP categories and three glucose categories among
participants without AHT. Within the same systolic BP
category, the mean age, BMI, systolic BP, and proportions
of men and smokers consistently increased with higher
glucose status. The number of CKD events and the sex-and-
age-adjusted incidence rate for CKD per 1000 person-years
were highest in the group with the highest BP and diabetes.
Similar associations were observed among participants
under AHT (Supplementary Table 1).

CKD risks according to BP and glucose status

During a median follow-up of 2.1 years (interquartile range
1.2–4.0 years), 80,187 participants developed CKD with
25,357 experiencing eGFR <60 ml/min/1.73 m2, 57,887
experiencing proteinuria, and 3057 participants experien-
cing both eGFR <60 ml/min/1.73 m2 and proteinuria.

Table 2 presents the adjusted hazard ratios according to
BP and glucose status. In participants without AHT, the
group with systolic BP ≥ 160 mmHg and diabetes had the
highest hazard ratio for CKD incidence, with a value of 3.08

compared to the group with systolic BP < 120 mmHg and
normoglycemia. The risks for CKD incidence increased
stepwise with higher systolic BP categories within all glu-
cose status groups and with higher glucose status within all
systolic BP category groups. In the participants under AHT,
the risks for CKD were also elevated with increased systolic
BP and glucose status. Similar results were obtained when
all analyses were repeated using diastolic BP instead of
systolic BP.

Interaction between BP levels and glucose status on
CKD risks

Each 1 SD increase in systolic BP (15.0 mmHg) was sig-
nificantly associated with an increased risk for CKD inci-
dence in all glucose status groups, including the
normoglycemia group. In participants without AHT, the
adjusted hazard ratio of systolic BP for CKD incidence was
significantly higher in the borderline glycemia and diabetes
groups compared to those in the normoglycemia group
(interaction PN vs. D and PN vs. B < 0.0001; Fig. 2). In parti-
cipants under AHT, although the interaction was not sig-
nificant, the association between systolic BP and CKD risk
appeared to be clearer in the diabetes group than in the
normoglycemia group (Fig. 2). Similar results were
obtained when eGFR was calculated based on the CKD-EPI
equation (Supplementary Fig. 2).

A similar analysis was performed using diastolic BP. In
participants without AHT, the association between diastolic
BP and CKD risk, similar to systolic BP, was more pro-
nounced with worsening glucose status (interaction PN vs. D

and PN vs. B < 0.0001; Supplementary Fig. 3). However, in
participants under AHT, the interaction between diastolic
BP and glucose status on CKD risk was not consistent
(Supplementary Fig. 3).

Sensitivity analyses

When considering the outcomes of eGFR <60 ml/min/
1.73 m2 and proteinuria separately, the results were similar
to those based on the composite CKD risk except for the
risk of eGFR <60 ml/min/1.73 m2 in the borderline glyce-
mia group without AHT (Fig. 3). In participants without
AHT, systolic BP in the borderline glycemia group was
more clearly associated with proteinuria risk (interaction
PN vs. B < 0.0001; Fig. 3) rather than eGFR <60 ml/min/
1.73 m2 risk (interaction PN vs. B= 0.95; Fig. 3) when
comparing with the normoglycemia group.

After excluding participants under AHT at baseline and
during follow-up, the interaction between systolic BP and
glucose status on CKD risk became more apparent (Sup-
plementary Fig. 4). We also restricted our analysis to par-
ticipants whose baseline check-ups were conducted during

Combined effects of blood pressure and glucose status on the risk of chronic kidney disease
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2015–2020, which yielded results consistent with the main
results (Supplementary Fig. 5). Participants were stratified
by sex (men/women), age (<50 years/≥50 years), or baseline
systolic BP (<140 mmHg/≥140 mmHg) (Supplementary
Figs. 6 and 7). In participants without AHT, systolic BP was
more strongly associated with CKD incidence in the bor-
derline or diabetes groups compared to the normoglycemia
group, except in the stratified group with systolic BP ≥
140 mmHg (Supplementary Fig. 6). However, the interac-
tion between systolic BP and glucose status tended to be
inverse in the group with systolic BP ≥ 140 mmHg,
although it did not reach statistical significance (Supple-
mentary Fig. 6). In participants under AHT, the interactions
between systolic BP and glucose status on CKD
risk appeared to be clear in the groups of women, aged
<50 years, or with systolic BP < 140 mmHg (interaction
PN vs. D ≤ 0.062; Supplementary Fig. 7).

Discussion

Our results showed that in the general Japanese population,
the CKD risk gradually increases with higher BP and glu-
cose status, regardless of AHT. The groups with the highest
BP and diabetes were at the greatest risk of CKD. Addi-
tionally, the association between BP and CKD incidence
was observed even in the normoglycemia group, whereas
the association was significantly stronger in the borderline

glycemia or diabetes groups compared to the normoglyce-
mia group, especially in patients without AHT.

The present study revealed that hypertension and dia-
betes synergistically increased the risk of CKD in indivi-
duals without AHT. It was generally considered that
hypertension and diabetes were independent risk factors for
CKD [6–8]. However, previous studies examining the
combined effects of BP and glucose status on CKD risk
have yielded conflicting results. In this regard, two prior
studies involving 31,165 Chinese and 7342 Iranians did not
find a significant synergistic interaction between hyperten-
sion and diabetes for reduced eGFR < 60 ml/min/1.73 m2

[12, 13]. Similarly, in the present study, no synergistic
interactions were observed between BP and glucose status
among participants under AHT. Thus, the synergistic effect
of these two factors may vary depending on the therapeutic
intervention and the level of hypertension. Renin-
angiotensin system (RAS) inhibitors, which can prevent
hypertension and CKD progression [36–40], might have
obscured the synergistic effect between BP and glucose
status on the CKD risk. Our results, which revealed a more
synergistic interaction when the participants under AHT
during follow-up were excluded, support this idea. Addi-
tionally, the disparity in the main results between Iran and
our study could be due to differences in median follow-up
duration (11.3 years vs. 2.1 years). Long-term therapeutic
interventions for hypertension and diabetes might conceal
the synergistic effects between BP and glucose status.

Table 2 Adjusted hazard ratios
(95% confidence intervals) for
CKD incidence according to
BP-glucose status

Glucose status

Normal Borderline Diabetes

Systolic BP, mmHg

No AHT ≤119 1.00 (ref) 1.02 (1.00–1.05) 1.63 (1.53–1.73)

120–129 1.01 (0.99–1.04) 1.10 (1.07–1.14) 1.96 (1.85–2.08)

130–139 1.09 (1.06–1.12) 1.25 (1.20–1.29) 2.14 (2.01–2.28)

140–159 1.35 (1.30–1.41) 1.49 (1.42–1.55) 2.48 (2.31–2.67)

≥160 1.76 (1.60–1.93) 1.93 (1.76–2.11) 3.08 (2.69–3.53)

Under AHT ≤129 1.00 (ref) 1.11 (1.02–1.20) 1.44 (1.31–1.59)

130–139 1.05 (0.95–1.16) 1.12 (1.02–1.23) 1.76 (1.58–1.95)

≥140 1.27 (1.15–1.41) 1.41 (1.29–1.54) 2.08 (1.88–2.30)

Diastolic BP, mmHg

No AHT ≤79 1.00 (ref) 1.03 (1.01–1.06) 1.70 (1.62–1.79)

80–89 1.08 (1.05–1.11) 1.23 (1.19–1.27) 2.20 (2.09–2.32)

90–99 1.42 (1.36–1.48) 1.55 (1.48–1.62) 2.62 (2.42–2.83)

≥100 1.69 (1.57–1.81) 1.94 (1.81–2.08) 2.92 (2.59–3.29)

Under AHT ≤79 1.00 (ref) 1.09 (0.99–1.21) 1.55 (1.38–1.73)

80–89 1.07 (0.97–1.18) 1.16 (1.05–1.27) 1.66 (1.50–1.85)

≥90 1.21 (1.09–1.35) 1.37 (1.24–1.51) 2.01 (1.79–2.25)

Hazard ratios were adjusted for age, sex, body mass index, current smoking, current drinking, dyslipidemia,
and eGFR at baseline

AHT antihypertensive treatment, BP blood pressure, CKD chronic kidney disease

Combined effects of blood pressure and glucose status on the risk of chronic kidney disease



In our study, we evaluated the association between a
1 SD increase in BP (15.0 mmHg for systolic and
10.5 mmHg for diastolic BP) and the incidence of CKD for
each glucose status (normoglycemia, borderline glycemia,
and diabetes) based on data from over a million participants.
This allowed for a detailed analysis of the combined effects
of high BP and hyperglycemia. A recent longitudinal study
in 5823 Japanese people showed a synergistic interaction of
hypertension and diabetes for CKD incidence, similar to the
present findings [14]. However, that study divided partici-
pants into only four groups (with or without hypertension
and diabetes), limiting the assessment of CKD risk
according to the degree of hypertension and the CKD risk of
borderline diabetes. Additionally, the number of patients
with diabetes only or diabetes accompanied by hypertension
was small (258 and 309 cases, respectively), which could
have been insufficient to obtain stable point estimates.

An experimental study demonstrated a synergistic inter-
action between hypertension and diabetes in causing kidney
dysfunction and injury based on models of rats [41]. One
potential mechanism for this synergistic effect is increased
intraglomerular pressure, which is caused by impaired renal
autoregulation and glomerular hyperfiltration [41]. Fur-
thermore, oxidative stress and endoplasmic reticulum stress
are also thought to play an important role in the synergistic
effects of these two factors [41–44].

We additionally assessed the combined effects of BP and
glucose status for each incidence of eGFR < 60 ml/min/
1.73 m2 and proteinuria, respectively. The results were
similar to those based on the composite CKD risk, except in
participants without AHT, where the risk of eGFR <60 ml/
min/1.73 m2 due to elevated BP did not differ between
normoglycemia and borderline glycemia groups. The Fra-
mingham study reported that the risk of reduced eGFR in
the borderline glycemia group could be similar to that in the

normoglycemia group after adjustments for possible cardi-
ovascular risk factors [45]. In the United Kingdom Pro-
spective Diabetes Study (UKPDS), 30% of patients with
type 2 diabetes took 15 years (median) to develop eGFR
<60 ml/min/1.73 m2 [46]. The findings from our study,
spanning a 2-year follow-up period, suggest that the
synergistic effect between high BP and borderline glycemia
on the risk of eGFR reduction may require a longer period
to manifest. However, this may not be the case for protei-
nuria outcomes since the present study revealed that the
association between BP and proteinuria risk was stronger in
the borderline glycemia group than in the
normoglycemia group.

The clear synergistic effects of systolic BP and glucose
status for CKD incidence were observed in women, aged
<50 years, and systolic BP < 140 mmHg, respectively.
Given that men, older individuals, or those with systolic
BP ≥ 140 mmHg may already have a higher CKD risk than
the others [5, 6, 35], the risk of CKD could have already
reached a ceiling, resulting in a weak synergistic effect of
BP and glucose status on CKD risk. The strong interaction
observed between systolic BP and glucose status on CKD
risk, specifically among individuals with systolic BP < 140
mmHg, suggests that strict BP management may still play
an important role in preventing the development of CKD in
patients with diabetes, even when their BP is within levels
that are not considered hypertensive or uncontrolled.

The novelty of our study lies in the detailed classification
of participants according to the use of AHT and glucose
status, allowing specific calculation of the risk of CKD due
to elevated BP in each group. Detailed classification and
accurate estimation from the large sample size of the JMDC
database revealed a synergistic effect of BP and glucose
status on CKD risk in participants without AHT. The
association between BP and CKD risk was known to be
more pronounced in individuals without AHT than in those
under AHT [16], and this study suggests that prevention of
diabetes may reduce the adverse effects of elevated BP on
renal function.

Our study has several limitations. First, our study used
only single-point creatinine and urine protein data to define
CKD incidence due to the present database consisting of
annual health check-ups, which do not mandate frequent
measurement of serum creatinine. The current guideline
defines CKD as either kidney damage or eGFR <60 ml/min/
1.73 m2 for more than 3 months [47]. Unfortunately, we
were unable to employ this criterion in our study. Further-
more, previous reports have shown that a urine dipstick test
produces a considerable number of false negatives as well
as a large number of false positives [48, 49]. Therefore,
future studies based on quantitative measurements of urine
tests are needed. Nevertheless, this method of defining CKD
outcomes has been used in previous studies

Fig. 2 Adjusted hazard ratios (95% confidence intervals) per 1 SD
increase in systolic BP for CKD incidence. Hazard ratios were
adjusted for age, sex, body mass index, current smoking, current
drinking, dyslipidemia, and eGFR at baseline. One SD of systolic BP
is 15.0 mmHg. AHT antihypertensive treatment, BP blood pressure,
CKD chronic kidney disease, SD standard deviation
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[8, 12–14, 16, 18, 20, 45]. Second, while the World Health
Organization diagnostic criteria recommend using a 75-
gram oral glucose tolerance test to determine glucose status
[50], this specific laboratory data was not available in the
database. Therefore, we classified the participants based on
fasting glucose, HbA1c, and diabetes medication, which
may have led to potential misclassification of glucose status.
Third, although the Japanese guidelines specified the con-
ditions and methods for laboratory testing and BP mea-
surements, actual management depended on each health
insurance society. Adherence to this protocol may have
been limited in the present study. For the same reason,
detailed information on laboratory testing methods was not
available. Fourth, the data from the annual health check-ups
did not include information regarding the type of AHT.
Notably, a previous study based on real-world data found
that AHT with angiotensin II receptor blockers had a lower
risk of composite renal outcomes compared to dihy-
dropyridine calcium channel blockers [51]. Such differences
in the drug type might have influenced the results of this
study among participants under AHT. Fifth, the exact
duration of hypertension or diabetes in our participants was
unknown. It is reported that the duration of diabetes can
significantly influence the development of CKD [12, 52]
and it would have been valuable to examine the results
according to different duration of hypertension and dia-
betes. Finally, the JMDC database predominantly contains
data from young and middle-aged Japanese workers
employed in large enterprises. This limits the general-
izability of our findings. However, previous studies using
this database have yielded reasonable results regarding the
association between BP and CKD risk [16, 20]. Despite

these limitations, our study provides valuable evidence,
particularly for the early prevention of CKD, by showcasing
results in a younger population.

Perspective of Asia

The present study, based on a large-scale Japanese health
insurance claims database, suggested that high BP and
worse glucose status synergistically increased the risk of
CKD in individuals without AHT. The inconsistent results
on the combined effects of BP and glucose status on CKD
risk in Asians [12–14] may be because the combined effects
of these two factors varies with the therapeutic intervention
of hypertension. Up to an estimated 434.3 million adults
have been reported have CKD in Asia [53]. Given the large
number of people with CKD, urgent action may be needed
in Asia for the early prevention of CKD through strict
management of BP and blood glucose levels.

Conclusion

Our findings showed that high BP and diabetes synergisti-
cally increased the risk of CKD in individuals without
AHT. These results suggested that strict management of BP
may play an important role in preventing the development
of CKD in individuals with worse glucose status in the
young and middle-aged population.
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