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Rare and everywhere: Perspectives
on scale-free networks

Petter Holme® '

Are scale-free networks rare or universal? Important or not? We present the
recent research about degree distributions of networks. This is a controversial
topic, but, we argue, with some adjustments of the terminology, it does not have
to be.

This year marks the 20th anniversary of one of the most influential, but also most controversial,
network papers—“Emergence of scaling in random networks” by Barabasi and Albert!. Together
with Watts and Strogatz’ work on small-world networks?, it helped connecting network scientists
of different backgrounds into an interdisciplinary field?, and drew much attention and many
aspiring young scientists (including myself) to the study of networks.

Barabidsi and Albert found that for three empirical networks “independent of the system and
the identity of its constituents, the probability P(k) that a vertex in the network interacts with k
other vertices decays as a power law”!. They attributed this to a growth mechanism, preferential
attachment, where new vertices attach to old ones with a probability proportional to the degree
(number of neighbors) of the old vertices. Within just a few years, a multitude of papers claimed
to have discovered new types of networks with power-law degree distributions—scale-free
networks—and new mechanisms creating them*.

In the early days, the appeal of scale-free networks came from complexity science>—an
umbrella term for many research directions trying to find hidden laws in the complex world
around us, and simple rules to explain them. One such idea is emergence—the phenomenon that
a multitude of interacting units can as a group behave in ways not predictable from the behavior
of the units alone. Examples of emergence include the undulating movements of a school of fish
or a bird flock. Sometimes emergent patterns can be scale free, meaning roughly that they are
organized similarly at different (e.g., spatial) scales. Examples of scale-freeness include coast
lines, naked trees, broccoli, and—as Barabdsi and Albert claimed—power-law degree distribu-
tions. A probability distribution can be scale free in the sense that statements about relative
abundance, such as “there are twice as many vertices with degree two thousand than three
thousand” are true even if one changes the scale “thousand” to “hundred”, or “million™.

A final concept of complexity science that is important for understanding the success of scale-
free networks is universality. Emergent patterns are often consequences of basic symmetries and
behavioral rules of the constituents. Thus, bird flocks of different species can have similar
movement patterns. This means that rather different systems can share emergent properties—
Barabasi and Albert argued that the scale-freeness of networks is such a universal phenomenon.

In the Platonic realm of simple mechanistic models, extrapolated to infinite system size, the
concepts of emergence, universality and scale-freeness are well-defined and clear. However, in
the real world, where systems are finite and many forces affect them, they become blurry. If you
meditate in front of a broccoli, you will notice that even though the same principles of
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organization occur at different scales, there are also differences—
you can guess how zoomed-in a picture of a broccoli is. This
blurring makes complexity concepts less applicable to the real
world, but is that enough to make them uninteresting? I think
that is a question without a scientific answer.

Barabési and Albert’s bold view of a simple statistical pattern
uniting networks—from power grids to social networks, from
neural networks to the Internet—was challenged from early on.
Critics made the point that although the degree distribution is scale
free, the actual networks are not°. They pointed out that power-law
degree distributions and the preferential attachment mechanism
were already discovered®. Even more polarizing, however, was the
claim that degree distributions rarely follow power laws.

The first paper that used statistical tests to refute claimed
observations of scale-free networks was probably by Jones and
Handcock’. More influential, however, was the paper by Clauset,
Shalizi and Newman® that devised a statistical procedure for
evaluating if a probability distribution is a power law or not. Until
then, researchers typically plotted distributions in a double-
logarithmic scale. If such plots were straight enough, they called it
a power law. Replacing that method—inexact and prone to
motivational biases—was a great merit of ref. 8.

In “Scale-free networks are rare”, now published in Nature
Communications®, Broido and Clauset take a more data-centric
approach. They use a collection of 927 empirical networks
(compared to seven of ref. 8) and exploit the fact that
information-rich network data can be reduced to many simple
networks. Broido and Clauset proceed to evaluate how close to
power laws the degree distributions of different classes of net-
works are, using five categories of scale-freeness—from “super-
weak” to “strongest”. Fifty-seven percent of the data sets, they
find, belong to at least some kind of scale-free class, while only 4%
belong to the “strongest” category. Furthermore, while biological
and technological networks can reach the “strongest” level, social
networks can, at most, be “weakly” scale-free.

When “Scale-free networks are rare” appeared as a preprint in
January 2018 it triggered a tremendous online activity, including
articles, blog posts (by Barabasi https://www.barabasilab.com/
post/love-is-all-you-need among others), and lengthy discussions
on social media. The most common arguments against the claim
that scale-free networks are rare relate to the concept’s origins in
complexity science and in particular the fact that scale-freeness is
only well-defined in the infinite-size limit. According to this view,
a network is scale-free if its degree distribution approaches a
power law as the network keeps growing following the same
mechanisms. Thus, fluctuations that make a network fail a sta-
tistical test would not matter, because if one let the network
evolve, it could soon pass the test (or vice versa—pass the test for
small networks and fail for large)!.

Now we have one camp of network scientists thinking of scale-
free networks as ideal objects in the large-size limit, and another
seeing them as concrete objects belonging to the real world.
Scientists often sneer at the humanities with their schools of
thought and lack of consensus!!, but such is the current state of
network science.

Can we find consensus? A first step would obviously be to
agree on a precise definition. Maybe we could define scale-
freeness as an emergent property and find a principled, statistical
way of testing for it? We would first have to infer the growth
process, then extrapolate it to infinity. Without such scaling
arguments, methods (like that of ref. °) are restricted to state-
ments about finite data sets. Inferring general network growth
processes is a challenging and relatively unexplored topic!213.
Ref. 14 probably represents the state of the art. Furthermore, for
networks where the growth is not documented, this approach is,
strictly speaking, impossible. Instead of striving for a synthesis of

the two schools, we could also keep both. Distinguishing between
statistical and emergent scale-free networks should be easy since
it is equivalent to the distinction between finite, real networks and
their projections into infinity.

On one hand, we need the large-system limit, if not for the
allure of complexity-science buzzwords, then for the mathema-
tical concepts derived in this limit. These include concepts that
have spread far outside the mathematical sciences. One such
example is epidemic thresholds—models of epidemics can change
behavior (from one state where large-scale outbreaks are possible,
to another where all outbreaks will be small) at exact parameter
values (governing, e.g., how easily a person gets infected). A
celebrated result states that scale-free networks with degree
exponents less than three don’t have epidemic thresholds!?, i.e.,
epidemics can always reach a large fraction of the population.
However, this holds only for infinite networks. If, by the method
of Broido and Clauset, a finite network is consistent with a power-
law degree distribution of exponent two, then it still, strictly
speaking, does not have an epidemic threshold. Applying meth-
ods for finite networks to emergent properties will always be
inexact, just like bringing emergence-related concepts (such as
scale-freeness) to the real world of finite networks.

On the other hand, we need theories and methods that—in the
same vein as Broido and Clauset—are specialized to finite net-
works. The reason is simple—network science is successful
because it is applicable to real-world network data, and real-world
data may be large, but never infinite.

Why do we still debate scale-free networks? By January 2018,
the polemics following ref. 8 had long since subsided. Presenta-
tions at network-science conferences reporting new scale-
free network findings, or models of their emergence, were
rarer than the scale-free networks themselves (viz. 4%). I, and
(I believe) most colleagues, were following the principle
that “knowledge of whether or not a distribution is heavy-tailed is
far more important than whether it can be fit using a power
law”13, Thus, it was surprising that the scale-free debate would
flare up again. There are obviously scientific reasons for it. The
preprint of ref. ? has, at the time of publication, over 50 citations.
One such spin-off work is Voitalov et al’s!® explorations of
softer statistical criteria for scale-freeness. Still, it often feels like
the topic of scale-free networks transcends science—debating
them probably has some dimension of collective soul searching
as our field slowly gravitates toward data science, away from
complexity science.
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