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Bacterial glycosyltransferase-mediated cell-surface
chemoenzymatic glycan modification
Senlian Hong1, Yujie Shi1, Nicholas C. Wu 2, Geramie Grande3, Lacey Douthit3, Hua Wang3, Wen Zhou4,

K. Barry Sharpless3, Ian A. Wilson 2,5, Jia Xie3 & Peng Wu 1

Chemoenzymatic modification of cell-surface glycan structures has emerged as a com-

plementary approach to metabolic oligosaccharide engineering. Here, we identify Pasteurella

multocida α2-3-sialyltransferase M144D mutant, Photobacterium damsela α2-6-sialyltransfer-
ase, and Helicobacter mustelae α1-2-fucosyltransferase, as efficient tools for live-cell glycan

modification. Combining these enzymes with Helicobacter pylori α1-3-fucosyltransferase, we
develop a host-cell-based assay to probe glycan-mediated influenza A virus (IAV) infection

including wild-type and mutant strains of H1N1 and H3N2 subtypes. At high NeuAcα2-6-Gal
levels, the IAV-induced host-cell death is positively correlated with haemagglutinin (HA)

binding affinity to NeuAcα2-6-Gal. Remarkably, an increment of host-cell-surface sialyl Lewis

X (sLeX) exacerbates the killing by several wild-type IAV strains and a previously engineered

mutant HK68-MTA. Structural alignment of HAs from HK68 and HK68-MTA suggests

formation of a putative hydrogen bond between Trp222 of HA-HK68-MTA and the C-4

hydroxyl group of the α1-3-linked fucose of sLeX, which may account for the enhanced host

cell killing of that mutant.
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Complementary to metabolic oligosaccharide engineering
(MOE)1, chemoenzymatic glycan labeling and modifica-
tion have emerged as valuable tools to modify glycan

structures within a cellular environment2–4. Unlike MOE, which
relies on a cell or an organisms’s own glycan biosynthetic
mechinary to incorporate unnatural monosaccharides with link-
age promiscuity, chemoenzymatic glycan modification utilizes a
recombinant glycosyltransferase to transfer natural or unnatural
monosaccharides with novel functions from activated nucleotide
sugars to glycoconjugates on the cell surface with linkage speci-
ficity. For these reasons, chemoenzymatic glycan modification
provides a facile and more precise way for probing the function of
glycans in cellular processes.

In their pioneering work, Sackstein, Xia et al., applied che-
moenzymatic glycan modification based on human α1-3-
fucosyltransferase (FT) to install α1-3-linked fucose (Fuc) onto
the cell-surface, thereby creating E-selectin ligand, sLeX (NeuAcα2-
3-Galβ1-4-(Fucα1-3)-GlcNAc), so as to enhance the engraftment
and trafficking of human multipotent mesenchymal stromal cells
and cord blood cells5,6. In our previous work, we employed che-
moenzymatic glycan modification to tune cell-surface receptor
signaling and stem cell proliferation2,7. Combining this method
with bioorthogonal click chemistry, several labs, including our
own, have demonstrated that imaging and profiling of specific
cellular glycans can be realized8–10. Recently, we also applied this
method to construct live cell-based glycan arrays on the surface of
Chinese hamster ovary (CHO) Lec2 mutant cells possessing a
relatively homogeneous repertoire of N-linked glycoforms11.

To date, glycosyltransferases from both mammalian organisms
and bacteria have been used for chemoenzymatic glycan modifica-
tion. Mammalian Golgi glycosyltransferases are type II transmem-
brane proteins12. For cell-surface glycan modification, truncated
versions are often used, including human FT6 and FT7 and
ST6Gal1, ST3Gal4, and ST3Gal12,5,9,13. Bacterial glycosyl-
transferases, on the other hand, often lack the transmembrane
domain and, therefore, are more easily expressed in Escherichia coli
as soluble proteins. Notable examples include Helicobacter pylori α1-
3-FT (Hp1,3FT), the bacterial homologue of the human blood group
A antigen glycosyltransferase, and the Campylobacter jejuni β1-4-N-
acetylgalactosaminyl transferase10,14,15. Unfortunately, many bac-
terial glycosyltransferases that are active for assembly of oligo-
saccharides in test tubes do not exhibit activities on the cell surface.

Here, to expand the enzyme repertoire for chemoenzymatic
glycan modification, we perform a screen to identify bacterial
glycosyltransferases with relaxed donor specificity that can be
used for cell-surface glycan modification. We report that Pas-
teurella multocida α2-3-ST M144D mutant (Pm2,3ST-M144D),
Photobacterium damsela α2-6-ST (Pd2,6ST), and H. mustelae α1-
2-FT (Hm1,2FT) can be adopted as useful tools for this appli-
cation (Fig. 1a). Moreover, Pm2,3ST-M144D and Pd2,6ST are
tolerant to large substituents introduced to the C-5 position of the
cytidine-5′-monophosphate-N-acetylneuraminic acid (CMP-
NeuAc) donor. We successfully use these two STs to survey the
expression patterns of their respective glycan acceptors in tissue
specimens. Combining these enzymes with our previously dis-
covered Hp1,3FT, we develop a live cell-based assay to analyze
host-cell glycan-mediated influenza virus infection.

Results
Screening recombinant bacterial STs and FTs. In the screening
that we performed, natural and unnatural nucleotide sugars
functionalized with biotin were used to assess if they can be
accepted as the donor substrates of glycosyltransferases of inter-
est. Initially, we focused our screen on sialyltransferases and
fucosyltransferases due to the fact that sialic acid (Sia), Fuc, and

galactose (Gal) are the three most common monosaccharides
found on cell-surface glycans16. Sia α2-3- or α2-6-linked to
terminal Gal, respectively, are exploited by avian and human
influenza virus as receptors for host infection17. On the other
hand, Fuc residues, when attached to terminal Gal in an α1-2-
linkage or attached to the GlcNAc of N-acetyllactosamine in an
α1-3-linkage, form blood group H antigen and Lewis X (LeX,
Galβ1-4-(Fucα1-3)-GlcNAc), respectively16. Unlike Hp1,3FT,
which has been used extensively for glycan modification, no other
bacterial STs or FTs have been exploited to transfer biophysical
probes (e.g., biotin and fluorescent dyes) directly onto cell sur-
faces for such an application.

We employed the CHO cell mutant Lec2 cells18,19 in this
screen. Lec2 has a minimum level of sialylation, resulting in un-
capped LacNAc and polyLacNAc on cell-surface N-glycans. After
incubating with each individual of these enzymes/donor substrate
pair, newly formed glycan epitopes of specific linkage were
probed by fluorescently labeled lectins, including Ulex europaeus
agglutinin 1 (UEA 1, specific for α1-2-linked Fuc), Aleuria
aurantia lectin (AAL, specific for α1-3- and α1-6-linked Fuc),
Maackia amurensis lectin (MAL, specific for α2-3-linked Sia, and
Sambucus nigra lectin (SNA, specific for α2-6-linked Sia).
Quantifying the cell-surface lectin staining signals, we discovered
two sialyltransferases, Pm2,3ST-M144D20 and Pd2,6ST20–22, and
a fucosyltransferase, Hm1,2FT23, that can install natural sialic
acid or fucose, respectively, onto the cell surface (Figs. 1f, g).
Consistent with our previous observations, robust AAL staining
siganl was obtained when Lec2 cells were treated with Hp1,3 FT
and guanosine 5’-diphospho-Fuc (GDP-Fuc). For enzymes
providing positive signals, dose-dependent modification was
observed. For example, as shown in Supplementary Fig. 2, cell-
associated ECA staining decreased while SNA staining increased
along with increasing the concentration of the CMP-NeuAc for
Pd2,6ST-mediated Lec2 cell sialylation.

To further validate the activities of Hm1,2FT, Hp1,3FT,
Pm2,3ST-M144D, and Pd2,6ST, we performed in vitro glycosyla-
tion reactions using the natural donor substrates, CMP-NeuAc
(for STs) and GDP-Fuc (for FTs), and type 2 N-acetyllactosamine
(LacNAc, Galβ1-4-GlcNAc) as the acceptor. Thin-layer chroma-
tography (TLC) and liquid chromatography-mass spectrometry
(LC/MS) analysis confirmed the formation of Fucα1-2-Galβ1-4-
GlcNAc, NeuAcα2-3-Galβ1-4-GlcNAc, NeuAcα2-6-Galβ1-4-
GlcNAc, and LeX in Hm1,2FT, Pm2,3ST-M144D, Pd2,6ST, and
Hp1,3FT-mediated transformations, respectively (Figs. 1b, c).
Consistent with a previous report22, when trimeric LacNAc was
used as the acceptor substrate, both terminal and internal
galactose residues were modified by Pd2,6ST.

Subsequently, Fucα1-2-Galβ1-4-GlcNAc was treated with
Hp1,3FT or Pd2,6ST to produce Lewis Y or Fucα1-2-(NeuAcα2-
6)-Galβ1-4-GlcNAc, respectively (Figs. 1c–e). By treating LeX with
Pm2,3ST-M144D and CMP-NeuAc, sLeX was produced (Fig. 1d).

Evaluating the donor substrate promiscuity of STs and FTs.
Originally reported by Chen and coworkers, Pm2,3ST-M144D and
Pd2,6ST, are highly efficient for one-pot chemoenzymatic oligo-
saccharide synthesis20,24. These enzymes have broad substrate
scopes, tolerating functional groups including azide, alkyne, acetyl,
O-methyl introduced at either the N-acyl side chain or the C-9
position. Likewise, Hm1,2FT has been used to synthsize the human
blood H antigen. However, the donor substrate scope of this
enzyme remains unexplored. To profile the tolerance of the above
three enzymes for unnatural donor substrates to modify cell-surface
glycans, we used azide-bearing sugar donors GDP-FucAz and
CMP-SiaNAz. In this experiment, Lec2 cells were incubated with a
sialyltransferase (Pm2,3ST-M144D or Pd2,6ST) and CMP-SiaNAz,
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or with a fucosyltransferase (Hp1,3FT or Hm1,2FT) and GDP-
FucAz. Following the enzymatic treatment, the modified cells were
reacted with an alkynyl biotin via the ligand (BTTPS)-assisted
copper-catalyzed azide-alkyne [3+ 2] cycloaddition reaction
(CuAAC)25, and probed with Alexa Fluor 488-streptavidin. Flow
cytometry analysis revealed that Pm2,3ST-M144D- or Pd2,6ST-
treated Lec2 cells were robustly labeled, and the labeling was time-
dependent (Figs. 1h, i). As expected, Hp1,3FT-treated cells also
exhibited significant labeling (Supplementary Fig. 3A, B). However,
no signals were detectable for the Hm1,2FT-treated cells (Supple-
mentary Fig. 3C), suggesting that this enzyme is unable to accept
the azide-functionalized donor. The non-tolerance of unnatural
donors by Hm1,2FT was further confirmed by in vitro LacNAc
modification (Supplementary Fig. 3D, E).

Further evaluation of the donor substrate scope of Pm2,3ST-
M144D and Pd2,6ST revealed that besides the N-acyl modified
CMP-SiaNAz, these two enzymes were capable of incorporating
other CMP-Sia analogs, including CMP-9AzSia26, CMP-
SiaNAl27, and CMP-SiaNPoc11, onto cell-surface glycans (Sup-
plementary Fig. 4).

To survey if the promiscuity of Pm2,3ST-M144D and Pd2,6ST
could enable the transfer of biotin- or Cy3-functionalized CMP-Sia
derivatives directly to the cell surface for one-step glycan labeling,
Lec2 cells were incubated with either enzyme in the presence of
crude conjugation product of CMP-SiaNAz-Cy3 or CMP-SiaNAz-

biotin. Biotinylated cells were further probed with Alexa Fluor 647-
streptavidin. The cell-surface fluorescence of streptavidin-labeled
or Cy3-labeled cells were then quantified by flow cytometry or
examined by fluorescence microscopy, respectively. We detected
strong fluorescent signal in both enzyme-treated cells. In control
experiments, only background fluorescence was observed for cells
treated with CMP-donors in the absence of both STs (Fig. 2a–d).
To confirm that these signals were produced from glycoprotein
labeling, lysates of treated Lec2 cells, CHO cells and Lec8 cells were
collected. Anti-biotin western blot confirmed that biotin was
incorporated into glycoproteins of Lec2 cells and CHO cells (MW
55-250 KD), not the mutant CHO Lec8 cells that lack cell-surface
LacNAc (Fig. 2f, g). Moreover, PNGase F releasement of N-linked
glycans essentially abolished all signal of labeled CHO and Lec2
cells, suggesting that LacNAc residues in N-linked glycans are the
primary targets labeled by these enzymes. However, it is also
possible that CHO cells express low levels of extended core 1 and
core 2 O-glycans. Therefore, there are few acceptor substrates to be
modified by ST(Pm2,3ST-M144D or Pd2,6ST).

STs-based chemoenzymatic labeling of tissue specimens. Next,
we evaluated the feasibility of labeling tissue specimens via one-
step ST(Pm2,3ST-M144D or Pd2,6ST)-mediated glycan mod-
ification. Whole embryo frozen sections from C57BL/6 mouse
(E16) were incubated with either STs and CMP-SiaNAz-biotin
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Fig. 1 Recombinant bacterial FTs and STs for live cell-surface glycan modification. a Specific positions on mammalian cell-surface LacNAc(Galβ1-4-
GlcNAc)-containing glycans that can potentially be modified by fucosylation (α1-2- or α1-3-linked) and sialylation (α2-3- or α2-6-linked). Recombinant
bacterial glycosyltransferases (FTs and STs) used in this study include Hm1,2FT, Hp1,3FT, Pm2,3ST-M144D, and Pd2,6ST. b Analysis of in vitro sialylation
products by TLC. ++ indicates the final reaction system was further mixed with starting material LacNAc, and analyzed by TLC. c Analysis of in vitro
fucosylation products by TLC. d, e Analysis of in vitro products generated by a combination of sialylation and fucosylation by TLC. sLeX was formed by
combining Hp1,3FT and Pm2,3ST-M144D (d). NeuAcα2-6-(Fucα1-2)-LacNAc was formed by combining Hm1,2FT and Pm2,3ST-M144D (e). f, g Analysis of
newly formed glycan epitopes on the cell-surface of Lec2 CHO cells via chemoenzymatic glycan modification. Modified cells were stained by lectins and
analyzed by flow cytometry. h, i Evaluation of the substrate tolerance of bacterial sialyltransferases. Unnatural sugar CMP-SiaNAz bearing the azide group
were tested for STs. In figures f–i, error bars represent the standard deviation of three biological replicates. ** indicated Welch’s t-test P < 0.01. Source data
for figures b–i are provided as a Source Data file
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before staining with Alexa Fluor 594-streptavidin and imaged
using fluorescence microscopy. In contrast to the higher back-
ground of the traditional two-step strategy using azide-bearing
unnatural sugars followed by CuAAC-conjugation of biotin,
Pd2,6ST-mediated one-step tissue glycan labeling showed much
better contrast (Supplementary Fig. 5). Interestingly, compared to
samples without enzyme-treatments, tissue slides treated with STs
showed robust fluorescence with distinct labeling patterns (Fig. 3,
and Supplementary Fig. 6, 7). The outer skin and the salivary
gland region exhibited intensive signals afforded by labeling with
both enzymes. Interestingly, Pd2,6ST-labeling generated sig-
nificantly higher signals than Pm2,3ST-M144D-labeling in bone
structures, including the sections of leg, rib, spine, and skull.
When tissue sections were digested first with PNGase F to remove
N-glycans before incubating with either STs, CMP-SiaNAz-biotin,
and Alexa Fluor 594-streptavidin, Alexa Fluor 594-associated
fluorescence was still detectable in most organs, strongly sug-
gesting that other glycoconjugates (e.g., O-glycans) are also
labeled (Supplementary Fig. 7).

Probing IAV-HA-glycan interactions via live cell-based array.
As another application of chemoenzymatic cell-surface glycan
modification, we probed how changes to live host-cell glycosy-
lation patterns impact IAV infection. The attachment of the HA

of IAV to the sialylated glycans of host epithelium is the first step
in the viral entry cycle17. Glycan microarrays have been heavily
employed to identify sialylated glycoepitopes that act as host
receptors for IAV and to uncover the Sia binding-preferences of
different HAs or whole viruses28–33. It has been found that
human IAVs prefer NeuAcα2-6-linked to Gal (human-type),
which is abundantly expressed on epithelial cells of the human
airway. By contrast, avian IAVs prefer NeuAcα2-3-Gal (avian-
type) and bind poorly to the human upper airway
epithelium34–37. Despite the rich information gleaned from gly-
can microarray-based analyses, our understanding of HA-glycan
interactions is incomplete without elucidating its physiological
relevance. The solid-phase based glycan arrays do not capture the
entire potential diversity of glycans present on the cell surface. As
revealed by the lectin staining of lung tissues from different
donors, cell-surface glycosylation patterns vary from individual to
individual, exhibiting fluctuations in α2-3- or α2-6-linked sialy-
lation, α1-3-fucosylation, and sLeX expression (Fig. 4a, and
Supplementary Fig. 8). The variation of glycan expression in a
person’s respiratory tract may possibly account for differential
susceptibility to influenza infection. We hypothesize that creating
specific glycan epitopes that were previously identified by
microarray-based binding assays directly on the live cell surface
may serve as a quick way to dissect their specific contributions in
a more native environment.

b cBF Cy3/DAPI Merged Hp1,3FT w/o FT

P
d2

,6
S

T

B
F

P
m

2,
3S

T
M

14
4D

C
y3

/D
A

P
I

w
/o

 S
T

M
er

ge
d

a d

1, R = H, CMP-NeuAc
2, R = R1, CMP-SiaNAz-Cy3
3, R = R2, CMP-SiaNAz-biotin

Hp1,3FT

w/o FT
0

4

3

2

1

0 5 10 15

F
uc

A
z-

bi
ot

in
M

F
I

(a
.u

. ×
10

5 )

T/mins

e

0

6

4

2

0 5 10 15

S
ia

N
A

z-
bi

ot
in

M
F

I (
a.

u.
 ×

10
4 )

Pd2,6ST

w/o ST

T/mins

Pm2,3ST-M144D

GDP-FucAz-biotin

Hp1,3FTPd2,6ST

CMP-SiaNAz-biotin
PNGaseF –

+
+
+ +

+ + + + +
+

+ + +
+––

–
– –++

+ +

– –

Pm2,3ST
M144D

KDa
250
130
100

70

55

KDa

250

130

100

70

55

PNGaseF
CMP-SiaNAz-biotin

Pd2,6ST
Pm2,3ST
M144D

GDP-FucAz-biotin
PNGaseF

CHO cells
Hp1,3FT

Pm
2,

3S
T-M

14
4D

Pd2
,6

ST

Hp1
,3

FT

Blan
k

CHO Lec8 cells

α−biotin

αtubulin

α−biotin

αtubulin

α−biotin

f g

Coomassie
blue

staining

KDa

250

130

100

70

55

N
NN

O
H
N

4

OS

NHHN

O

H H

N N

O3S SO3Na

SO3Na

NH

O

N N
N

R group

4, R = H, GDP-Fuc
5, R = R1, GDP-FucAz-Cy3
6, R = R2, GDP-FucAz-biotin

R1, Cy3-

R2, biotin-PEG4-

N

NH2

ON

OO

PO

O

HO

O

COOH

H
N

OHHO

OH

OH

O
R

OH OH

O

PO

OHO

O

R

OH

NH

N

N

O

NH2
N

OO

P

O

OHOH

OH

OH OH

Fig. 2 One-step glycan labeling enabled by recombinant bacterial glycosyltransferases. The Pm2,3ST-M144D, Pd2,6ST, or Hp1,3ST-mediated incorporation
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Currently, only two influenza A subtypes circulate within
humans: namely H1N1 and H3N231. Using Lec2 cells and a
combination of the four enzymes described above, we assembled
a small cell-based glycan array (Fig. 4b). We incubated the HA of
influenza A/HongKong/1/1968 (HK68, H3N2) with this array
and assessed its binding preference. As expected, HA of HK68
exhibited strong preference for NeuAcα2-6-linked to Gal.
Surprisingly, it also exhibited significant binding with sLeX

created by 1,3FT and 2,3 ST on the cell surface (Fig. 4c).

Studying IAV infection in glycan-modified host cells. To
evaluate if the interaction with sLeX on the host-cell surface plays
any role in the viral infection, we adopted a live cell-based
infection assay, in which we in situ edited the glycocalyx of
Madin–Darby canine kidney (MDCK) cells, a well-established cell
line for studying IAV, using the aforementioned glycosyl-
transferases. Cultures of the glycocalyx-modified cells, untreated
cells, or cells treated with nucleotide sugars only were infected
with serial dilutions of IAV in 96-well plates. This assay provides
a direct approach to evaluate the impact of Sia and Fuc that are
attached to the cell surface with distinct linkages on the sus-
ceptibility of host cells to IAV infection, enabling correlating
glycosylation patterns with host-cell killing.

As found previously, both NeuAcα2-6-Gal and NeuAcα2-3-Gal
are present on the surface of MDCK cells38. However, the
expression level of NeuAcα2-6-Gal is low39. Using Pd2,6ST,
additional NeuAcα2-6-Gal epitopes can be created by adding
NeuAc to the terminal and internal Gal residues of the LacNAc
repeats (Fig. 5a and Supplementary Fig. 9B). This is confirmed by
the increase in the SNA staining, which reached a plateau when
~250 μM CMP-NeuAc was used (Supplementary Fig. 10A).
Likewise, using Hp1,3 FT- mediated in situ Fuc modification,
sLeX epitopes can be readily created as confirmed by the anti-
cutaneous lymphocyte-associated antigen (anti-CLA) immunos-
taining (Fig. 5b). To futher characterize the newly created glycan
epitopes on the cell surface, we performed MALDI-TOF analysis
of N-linked glycans of the Sia-edited and Fuc-edited cells. As
shown in Supplementary Fig. 11, the appearence of a tetra-

antennary N-glycan with four sialic acids added to the peripheral
galactose was clearly identified in Sia-edited cells, but was not
detectable in untreated MDCK cells. In addition, the peak
intensity corresonding to sialylated bi-antennary epitopes (desig-
nated with asterisk in Supplementary Figs. 11B and 11C) also
increased significantly. Likewise, the newly created bi-antennary,
tri-antennary, and tetra-antennary sLeX epitopes, as well as a
tetra-antennary LeX, were found in Fuc-edited cells.

Naturally occurring H3N2 strains, HK68, A/Aichi/2/1968
(Aichi68) and A/Perth/16/2009 (Perth09), and an H1N1 strain,
A/Solomon Islands/3/2006 (SI06), as well as two laboratory-
derived H1N1 strains, A/WSN/33 (WSN) and A/Puerto Rico/8/
1934 (PR8), were used in this infection assay. We first subjected
MDCK cells to Pd2,6ST-mediated or FT-mediated modification
to increase cell-surface NeuAcα2-6-Gal epitopes or create new
sLeX epitopes, respectively. Next, we incubated the modified cells
or cells treated with nucleotide sugars only with serial dilutions of
IAV. Two days later, the host-cell viability was analyzed.

As expected, increasing NeuAcα2-6-Gal epitopes enhanced
IAV-dependent cell killing for all strains tested, especially at high
viral titers (Fig. 5). As shown in Supplementary Fig. 9B, the
higher the concentration of CMP-NeuAc that was used to install
NeuAc onto the cell surface, the more severe the HK68-induced
killing became. It was clearly observed that the killing reached a
plateau at 10−5 and 10–4 viral dilutions when ~250 μM CMP-
NeuAc was used, which is consistent with the maximum amounts
of NeuAc residues that can be installed on MDCK cells. In the
control experiment, treating cells with the donor substrate CMP-
NeuAc but without Pd2,6ST only had a minor impact on viral
infection (Figs. 5c–i). Interestingly, the newly added sLeX epitopes
on the host-cell surface also augmented influenza-induced cell
death (Figs. 5d–i). At 10–1 viral dilution, 50 ± 4% (±, the standard
deviation of six biological replicates), 39 ± 2%, 53 ± 6% of the sLex

decorated cells remained viable upon incubating with Aichi68,
Perth09 or SI06 (H1N1), respectively. By contrast, 68 ± 2%, 48 ±
3%, 78 ± 6% of the unmodified cells were viable upon infection by
these viral strains. More pronounced effects induced by the sLex

addition were observed upon infection with HK68, WSN, or PR8;
at 10–3 viral dilution, only 73 ± 6%, 40 ± 1%, 41 ± 1% of the
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infected cells that were modified by sLex remained viable,
respectively, whereas 89 ± 3%, 62 ± 1%, 92 ± 2% of the unmodi-
fied cells were viable following infection by these viral strains. The
fucosyltransferease-mediated sLeX creation also induced dose-
dependent host-cell killing upon IAV infection. As shown in
Supplementary Fig. 12 for the infection with WSN, at a viral
dilution of 10−3–10−5, the maximum killing was achieved when
~100 μM GDP-Fuc was used (Supplementary Fig. 12B), which is
consistent with the maximum quantities of sLeX epitopes that can
be created on MDCK cells (Supplementary Fig. 12A).

MDCK cells modified by unnatural Sia and Fuc analogs were
also evaluated in this infection assay using HK68. As shown in
Fig. 5j, although C-9- and N-acetyl-Az modified Sia α2-6-linked
to Gal exhibited similar activities as the natural ones to promote
the influenza virus infection, α2-6-linked SiaNAl and SiaNPoc
installed via the same fashion showed reduced activities (Fig. 5j
and Supplementary Fig. 13). Finally, all Fuc analogs examined
were found to share similar functions at 10−3 virus titer.
However, at 10−4 virus titer, the alkyne-bearing fucose
analog, FucAl, seemed to enhance host-cell infection by HK68
(Fig. 5k, l).

Profiling the structural constraints of HA for glycan binding.
Then, the impacts of different HA structures on the binding of
host-cell-surface glycan were profiled via chemoenzymatic
glycan modification. H3N2 IAV have circulated in humans
since 1968, but antigenic drift of HA continues to be a driving
force that enables the virus to escape prior immunity. Since the

major antigenic sites of the HA overlap with the receptor-
binding site (RBS), the virus constantly evolves to effectively
adapt to host immune responses without compromising its
virulence40–42. The RBS consists of the 130-loop, 150- loop,
190-helix, and 220-loop (Wilson et al., 1981)43. While the 130-
loop, 150-loop, and 190-helix are relatively conserved among
HA subtypes, a higher genetic diversity has been detected in the
220-loop, which reflects also some differences in residues
responsible for receptor specificity in the different subtypes
(e.g., H1N1 vs. H3N2)29,30.

To examine if sequence variation within the HA-RBS confers
H3N2 influenza viruses any advantage to infect host cells
harboring NeuAcα2-6-Gal epitopes or sLeX epitopes, we further
assessed the wild-type HK68 virus and three laboratory-derived
220-loop mutants that can potentially escape from preexisting
immunity, although exhibiting weaker binding toward the
NeuAcα2-6-Gal receptor41. HK68-MTA (G225M/L226T/
S228A), HK68-LSS (G225L/L226S), and HK68-QAS (G225Q/
L226A) share a very similar HA backbone conformation, but
their binding affinity for NeuAcα2-6-Gal decreases following the
order of HK68-MTA >HK68-LSS > HK68-QAS41. All three
mutants were found to have WT-like virus replication fitness in
unmodified MDCK cells presumably due to the low level of α2-6-
linked Sia expressed in this cell line.

To evaluate viral infection in MDCK cells harboring elevated
NeuAcα2-6-Gal epitopes or sLeX epitopes, we treated the glycan-
modified cells with WT HK68 or the three mutants. Consistent
with previous observations41, all four strains exhibited similar
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host-cell killing capabilities in unmodified MDCK cells
(Figs. 6a–d). By contrast, upon elevating the cell-surface
NeuAcα2-6-Gal levels, the capability to induce host-cell death
compared to wild-type HK68 was observed to be HK68-MTA >

HK68-LSS > HK68-QAS, which matched their NeuAcα2-6-Gal
binding affinities. Interestingly, these same mutants manifested
different killing capabilities in host cells harboring sLeX epitopes.
Compared with WT HK68, enhanced killing was observed for
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HK68-MTA, whereas HK68-LSS and HK68-QAS exhibited
decreased capability to infect sLeX-decorated host cells (Figs. 6e–i).

Compared with HK68, HK68-MTA was found to possess better
preference for sLeX harboring cells, especially at low viral titers
(Fig. 6i). In order to probe the molecular basis for this observation,

apo structures of HK68-WT HA (PDB 4FNK)44 and HK68-MTA
HA (PDB 5VTX)41 were aligned with the crystal structure of A/
canine/Colorado/17864/06 (H3 subtype)45 HA in complex with
sLeX using the RBS (residues 117–265 of HA1)46. As previously
described41, a minor shift of 220-loop backbone of 0.8 Å was
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observed in HK68-MTA HA. Our alignment revealed that this shift
likely enabled the formation of an H-bond between the C4 hydroxyl
of Fuc and Nε1 of W222 (Fig. 6j), which could not be formed
between the HK68-WT HA and sLeX. Specifically, the distance
between the C4 hydroxyl of Fuc and Nε1 of W222 in HK68-MTA
HA is 3.3 Å, which is at the high end of the hydrogen-bond distance
range (2.2–3.5 Å). By contrast, the distance between C4 hydroxyl of
Fuc and Nε1 of W222 of the wild-type HA is 3.6 Å, which is outside
of the normal hydrogen-bond range. This interaction is likely to be
responsible for the better binding affinity of HA-HK68-MTA to
sLeX and accordingly the enhanced host-cell killing compared with
wild-type HK68.

Discussion
In 1979, Paulson et al. first demonstrated that Sia could be
directly transferred from CMP-Sia to the cell surface of desialy-
lated erythrocytes using recombinant mammalian sialyl-
transferases4. Recently, due to the creation of the expression
vector library encoding all known human glycosyltransferases by
Moremen et al., any human glycosyltransferase of interest can
now be produced as secreted catalytic domain GFP-fusion pro-
teins in mammalian and insect cell hosts47. Studies by Boons,
Steet and coworkers and by our own lab have demonstrated that
several enzymes produced by this system are highly efficient for
cell-surface chemoenzymatic glycan modification2,9,48. However,
this approach is associated with relatively high cost. For cell-
surface labeling studies, the GFP tag usually needs to be cleaved
before treating cells due to non-specific bindings of GFP to the
plasma membrane. Complementary to mammalian glycosyl-
transferases, bacterial counterparts have been developed for cell-
surface glycan modification. Significantly, our most recent study
have demonstrated that certain bacterial glycosyltransferases, e.g.,
HpFT, possesses remarkable donor substrate scope such that even
DNA or antibody-conjugated nucleotide sugar donors can be
recognized and transferred to the cell surface and endow the
modified cells with desired functions49.

In this study, we discovered that bacteria-derived Pm2,3ST-
M144D, Pd2,6ST, and Hm1,2FT can be exploited for cell-surface
glycan labeling and modification. As demonstrated previously
and also here, these enzymes were easily prepared in multi-
milligram quantities in E. coli as His-tagged recombinant pro-
teins. Among these three enzymes, Pm2,3ST-M144D
and Pd2,6ST were found to tolerate a CMP-Sia donor functio-
nalized with biotin or Cy3, enabling cell-surface acceptor glycans
to be tagged with these probes for enrichment or visualization.
Applying Pm2,3ST-M144D and Pd2,6ST-mediated chemoenzy-
matic glycan modification to label whole embryo frozen sections
from C57BL/6 mice (E16), we found that the salivary gland
expressed high levels of acceptor glycans of both enzymes. Sia was
first isolated from bovine submaxillary mucin by Blix in 193650.
Thus, it is not surprising that salivary gland expressed high levels
of sialyltransferase acceptors. Interestingly, in the developing
bones Pd2,6ST-labeling yielded much higher signals than
Pm2,3ST-M144D-labeling. Although Pm2,3ST-M144D can only
label the terminal Gal, Pd2,6ST is capable of labeling galactoses of
internal LacNAc units22. The distinct labeling pattern observed
here suggests that abundant polyLacNAc glycans are present in
bones and in cartilage. This observation is consistent with a
previous report that revealed that polyLacNAc were pre-
dominantly found in N-glycans of undifferentiated human bone
marrow mesenchymal stem cells51.

Combined together with our previously discovered H. pylori
1,3FT, Pm2,3ST-M144D and Pd2,6ST were used to create a
diverse array of sialylated and fucosylated glycan epitopes on the
cell surface. By using MDCK cells modified via this enzyme-

mediated glycan modification to probe the infection of wild-type
HK68 and its HA mutants, we confirmed that the ability of an
IAV to induce host-cell death is positively correlated to the Sia-
NAcα2-6-Gal binding affinity of the viral HA. Furthermore, this
correlation is dose dependent—only at high levels of cell-surface
NeuAcα2-6-Gal can this correlation be observed. Unexpectedly,
besides NeuAcα2-6-Gal receptors, several naturally occurring
H1N1 and H3N2 strains also recognized sLeX epitopes on the
host cells, to facilitate their infection. As is the case for the newly
created NeuAcα2-6-Gal epitopes, increasing the quantity of sLeX

on the cell surface exacerbates the severity of IAV infection in a
dose-dependent manner.

HA is the major surface antigen that evolves at an exceptionally
high rate. Variation in the HA-RBS through antigenic drift has
produced changes in receptor binding that begins to blur the
definition of human-type receptor specificity42,52–54. Our inves-
tigation uncovered that several H3N2 and H1N1 strains,
including Aichi68 (H3N2), WSN (H1N1), and PR8 (H1N1),
exhibit preference for high sLeX-bearing cells over high Sia-
NAcα2-6-Gal-bearing cells especially at low viral titers (Fig. 5). At
low virus dilutions, these strains induced significantly higher
levels of cell death in sLeX-harboring MDCK cells than in Sia-
NAcα2-6-Gal-harboring counterparts. These observations suggest
that such strains may selectively infect human populations with
high sLeX-expression in their respiratory tracts, such as patients
with cystic fibrosis and patients suffering from airway inflam-
mation55. It has been documented that several avian influenza
virus strains exhibit strong affinities for sLeX-type
receptors36,37,56. Therefore, it is likely that human populations
with high sLeX-expression in their respiratory tracts are suscep-
tible to these viruses as well.

Our studies strongly suggested that binding specificity and
strength to HA are not only encoded in the structure of individual
glycans, but also are determined by the density of these epitopes
on the cell surface, which is contributed by repeating unit copies
that are found in a single glycan or its neighboring structures.
This context-dependent molecular recognition underscores the
importance of tools that empower the investigation of glycan
functions within a more native environment such as the cell
surface. The chemoenzymatic glycan modification technique
described here should serve as a valuable tool for accomplishing
this goal. Currently, we are applying this technique to explore the
impact of changes to cell-surface glycosylation patterns on the
infection of other types of human viruses.

Methods
Enzyme activity assay for donor and acceptor substrates. The activity of
purified enzymes was tested by TLC and LC-MS. All reactions were carried out
at 37 °C in 40 μL of 50 mM Tris-HCl (pH 7.5) containing 10 mM MgSO4. 5 mM
N-acetyllactosamine (LacNAc) was used as the acceptor substrate for all
enzymes, and 5 mM CMP-NeuAc or GDP-Fucose as the donor. For Hp1,3FT,
Pd2,6ST, and Pm2,3ST-M144D, the enzymes were added at a concentration of
0.15 μg/μL, and the reaction time was 30 min. Hm1,2FT was used at 0.3 μg/μL,
and the reaction time was 4 h. To further investigate the acceptor specificity of
the enzymes, we performed sequential enzymatic reactions, by adding another
enzyme and the required donor substrate after completing the current reaction.
Lewis X (LeX)was produced by fucosylating LacNAc with Hp1,3FT as described
above, and sialyl-Lewis X (sLeX) was produced by adding 5 mM CMP-NeuAc
and 0.15 μg/μL Pm2,3ST to the reaction. Fucα1-2-(NeuAcα2-6)-Galβ1-4GlcNAc
or Lewis Y (LeY) was generated by sequentially adding Hm1,2FT and Pd2,6ST
(or Hp1,3FT) reactions, respectively. The donor tolerance tests were performed
under the same conditions above using unnatural nucleotide sugar analogs
(GDP-FucAz and GDP-FucAl). For TLC analysis, isopropanol: H2O: NH4OH
(8:3:2) was used as the development solvent, the nucleotide sugar was visualized
under a 365 nm ultraviolet lamp, while LacNAc and the products were visualized
by staining with 10% sulfuric acid in ethanol. For LC-MS analysis, 100 μL of
ethanol was added to the reaction mixture and centrifuged at 13,000 × g for
2 min. The supernatant was then analyzed by LC-MS under positive mode (for
fucosyltransferases-catalyzed reactions) or negative mode (for sialyltransferases-
catalyzed reactions).
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Chemoenzymatic glycan labeling. For flow cytometry, the cultured cells were
collected, washed twice with PBS, and resuspended in labeling buffer (HBSS buffer
with 3 mM HEPES and 20 mM MgSO4). About 150,000 cells were used in a total
reaction volume of 50 μL, containing ~3 μg enzyme and 0.2 mM nucleotide sugar
donor. In lectin staining, natural GFP-Fucose or CMP-NeuAc was used. After
incubating at 37 °C for 15 min, the cells were washed twice and resuspended in
50 μL HBSS buffer containing 10 mM CaCl2, 10 mM MgCl2, 10 μg/mL FITC (or
biotin)- conjugated lectins (AAL-FITC, UEA-FTIC, SNA-biotin, ECA-biotin and
MAL-biotin), and 1 in)- conjugated lectin on ice in dark for 30 mins, cells were
washed three times and resuspended in 100 μL HBSS buffer containing 10 mM
CaCl2 and 10 mM MgCl2. In one-step glycan labeling of cells, GDP-FucAz-biotin
or CMP-SiaNAz-biotin was used. After incubating at 37 °C for 15 mins, the cells
were washed twice with PBS and resuspended in 50 μL FACS buffer (PBS con-
taining 0.5 mM EDTA and 2% FBS) with 5 μg/mL Alexa Flour 488-streptavidin (or
AF647-streptavidin as indicted) and 1 μg/mL DAPI. Then, the cells were kept on
ice in dark for 30 min, washed twice and resuspended in 100 μL FACS buffer. In
two-step labeling, GDP-FucAz or CMP-SiaNAz was used. After incubating at 37 °C
for 15 min, the cells were washed twice with PBS and resuspended in 100 μL PBS
containing 0.5% FBS, 50 μM CuSO4, 300 μM BTTPS, 2.5 mM sodium ascorbate,
and 50 μM Alkyne-PEG4-biotin. The click reaction was carried out at rt for 10 mins
and quenched with 2 μL 50 mM bathocuproine disulfonate (BCS). The cells were
then washed twice with PBS and resuspended in 50 μL FACS buffer (PBS con-
taining 0.5 mM EDTA and 2% FBS) with 5 μg/mL Alexa Fluor 488-streptavidin
and 1 μg/mL DAPI. The cells were kept on ice in the dark for 30 min, and washed
twice and resuspended in 100 μL FACS buffer. The resuspended cells were then
analyzed by flow cytometry. The one-step biotin labeling of cell surface LacNAc
containing glycan with Pm2,3ST and Pd2,6ST was performed in different cell lines.
After staining with AF647 (or AF488)-streptavidin conjugates, cell-surface fluor-
escence was detected by flow cytometry.

For fluorescent imaging, the one-step fluorescent labeling of cell-surface
LacNAc containing glycan with STs (Pm2,3ST or Pd2,6ST) or Hp1,3FT was
performed in Lec2 cells using CMP-SiaNAz-Cy3 (or GDP-FucAz-Cy3) and imaged
by fluorescence microscopy. For one-step biotin labeling of LacNAc containing
glycans in tissues, slides were incubated with HBSS (pH 7.4) buffer with 3 mM
HEPES, 20 mM MgSO4 and 100 μM CMP-SiaNAz-biotin, and 0.3 μg/mL enzymes
(Pm2,3ST-M144D or Pd2,6ST) or without enzymes, for 30 mins at 37 °C. Cells
were then stained with anti-actin, DAPI and Alexa Fluor 594-streptavidin
conjugates, and imaged after washing off the free dyes. For Immunofluorescent
staining of human lung tissue, paraffin-embedded lung tissue specimens (LCN241)
from different healthy human donors were purchased from commercial supplier
(US Biomax, Inc.) and used following its recommondations. One antibody (anti-
human/mouse CLA antibody, 1:250) and three lectins (AAL, MAL, and SNA,
20 μg/mL) were utilized for the detection of sLeX epitopes, α1-3-fucosylation, α2-
3-linked or α2-6-linked sialylation, respectively. In brief, after the deparaffinizing,
rehydrating and immunoblocking the sections, the tissue samples were randomly
assigned into four group for this assay and incubated with antibody or lectins in
dark on ice for 2 h. The resulted biotin was further stained with Alexa Fluore 647-
streptavidin conjugates. Then, the slides were washed and stabilized with mounting
medium containing DAPI, before subjected to fluorescence microscopy.

PNGaseF treatment and western blotting. CHO, CHO-Lec2, and CHO-Lec 8
cells were labeled by Pm2,3ST-M144D, Pd2,6ST, or Hp1,3FT with CMP-SiaNAz-
biotin or GDP-FucAz-biotin for 30 mins at 37 °C, washed twice with PBS, and
lysed on ice in NP-40 lysis buffer. The lysates were then denatured and treated with
PNGaseF according to NEB PNGaseF protocols. The western blot was probed with
HRP-conjugated anti-biotin IgG.

Modifying Lec2 cell-surface glycan for HA binding assay. HA of HK68 virus
was prepared as previously reported41. For HA binding assay, CHO-Lec2 cells were
seeded into 96-well flat bottom plate at a density of 2 × 104 cells per well. After 24 h-
incubation, cells were treated with recombinant bacterial glycosyltransferase (FTs
and STs) and corresponding nucleotide sugars (0.5 mM, GDP-Fuc for FTs and
CMP-NeuAc for STs), sequential or one-pot incubation to create new glycoepitopes
on the cell-surface as depicted in the figures. After this exogenous glycan mod-
ification, the cells were washed three time and incubated with PBS buffer containing
2% BSA and HAs (40 μg/mL), human anti-HA-Fc and anti-Fc-HRP at molar ratio
of 4:2:1 for 4 h at 4 °C. Then cells were washed gently with washing buffer (PBS
containing 0.05% tween 20) three times, incubated with 1x TMB (Invitrogen) for
20mins at rt, before quenched with 1M H2SO4 and quantified on a plate reader.

Influenza virus A infectivity assay. WSN, HK68 virus, and the mutant viruses
were prepared as previously reported41. (Aichi68, Perth09, PR8 and SI06 strains were
a gift from Dr. James Paulson at TSRI) Host MDCK-cells were seeded into 96-well flat
bottom plate at the density of 2 × 104 cells per well. When cell grew to about 80%
confluency, MDCK cells were subjected to Pd2,6ST-catalyzed α2,6sialylation,
Hp1,3FT-assisted α1-3-fucosylation or not. The influenza A viruses then were diluted
in media and incubated with MDCK cells. At 2 h post-infection, cells were washed
three times with PBS followed by the addition of fresh medium containing trypsin.
After 48 h-incubation, cell viability was quantified using MTS (G3582) method as

recommended by the commercial supplier. For cell viability quantification, the
samples with microbial containmination were excluded from the statistics.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The binding of sLeX with HK68-HA and HK68-MTA-HA was modeled based on
aligning the corresponding HA apo structures to the crystal structure of A/canine/
Colorado/17864/06 (H3 subtype) HA in complex with sLeX (by PyMOL57). Structure
information resources were HK68-HA (PDB 4FNK)44, HK68-MTA-HA (PDB 5VTX)41,
and canine HA45. Alignment was performed using the receptor-binding subdomain
(residues 117 to 265 of HA1)46. The raw data underlying Figs. 1b–i, 2d–g, 4c, 5 and 6a–i,
as well as Supplementary Figs. 1A, 2, 3B-E, 4, 9, 10, 12, and 13 are available in the source
data file. Other raw data that support the findings of this study are available from the
authors on reasonable request.
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