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Constraints on nonlocality in networks
from no-signaling and independence
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The possibility of Bell inequality violations in quantum theory had a profound impact on our

understanding of the correlations that can be shared by distant parties. Generalizing the

concept of Bell nonlocality to networks leads to novel forms of correlations, the character-

ization of which is, however, challenging. Here, we investigate constraints on correlations in

networks under the natural assumptions of no-signaling and independence of the sources.

We consider the triangle network with binary outputs, and derive strong constraints on

correlations even though the parties receive no input, i.e., each party performs a fixed

measurement. We show that some of these constraints are tight, by constructing explicit

local models (i.e. where sources distribute classical variables) that can saturate them.

However, we also observe that other constraints can apparently not be saturated by local

models, which opens the possibility of having nonlocal (but non-signaling) correlations in the

triangle network with binary outputs.
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The no-signaling principle states that instantaneous com-
munication at a distance is impossible. This imposes
constraints on the possible correlations between distant

observers. Consider the so-called Bell scenario1, where each party
performs different local measurements on a shared physical
resource distributed by a single common source. In this case, the
no-signaling principle implies that the choice of measurement
(the input) of one party cannot influence the measurement sta-
tistics observed by the other parties (their outputs). In other
words, the marginal probability distribution of each party (or
subset of parties) must be independent of the input of any other
party. These are the well-known no-signaling conditions, which
represent the weakest conditions that correlations must satisfy in
any reasonable physical theory2, in the sense of being compatible
with relativity. More generally, the no-signaling principle ensures
that the information cannot be transmitted without any physical
carrier. This provides a useful framework to investigate quantum
correlations (which obviously satisfy the no-signaling conditions,
but do not saturate them in general2) within a larger set of
physical theories satisfying no-signaling; see e.g., refs. 2–9.

Recently, the concept of Bell nonlocality has been generalized
to networks, where separated sources distribute physical resour-
ces to subsets of distant parties (Fig. 1). Assuming the sources to
be independent from each other10,11, arguably a natural
assumption in this context, leads to many novel effects. Notably,
it becomes now possible to demonstrate quantum nonlocality
without the use of measurement inputs11–15, but only by con-
sidering the output statistics of fixed measurements. Just recently,
a first example of such nonlocality genuine to networks was
proposed15,16. This radically departs from the standard setting of
Bell nonlocality, and opens many novel questions. Characterizing
correlations in networks (local or quantum) is however still very
challenging at the moment, despite recent progress17–28.

Moving beyond quantum correlations, this naturally raises the
question of finding the limits of possible correlations in networks,
assuming only no-signaling and independence (NSI) of the
sources22,29–33. Here, we investigate this question and derive
limits on correlations, which we refer to as NSI constraints. While
our approach can in principle be applied to any network, we focus
here on the well-known triangle network with binary outputs and
no inputs, for which we obtain strong, and even tight NSI con-
straints. Specifically, we show that, despite the absence of an
input, some statistics imply the possibility for one party to signal
to others by locally changing (or not changing) the structure of
the network. Formally, this amounts to considering a specific
class of so-called network inflations, as introduced in ref. 22,
which we show can lead to general and strong NSI constraints.
Moreover, we prove that some of our NSI constraints are in fact
tight, by showing that they can be saturated by correlations from
explicit trilocal models, in which the sources distribute classical
variables. Interestingly, however, it appears that not all of our NSI
constraints can be saturated by trilocal models, which opens the
possibility of having nonlocal (but nevertheless non-signaling)
correlations in the triangle network with binary outputs. Finally,
we conclude with a list of open questions.

Results
NSI constraints. The triangle network (sketched in Fig. 1a) fea-
tures three observers: Alice, Bob, and Charlie. Every pair of
observers is connected by a (bipartite) source, providing a shared
physical system. Importantly, the three sources are assumed to be
independent from each other. Hence, the three observers share no
common (i.e., tripartite) piece of information. Based on the
received physical resources, each observer provides an output
(a, b, and c, respectively). Note that the observers receive no input

in this setting, contrary to standard Bell nonlocality tests. The
statistics of the experiment are thus given by the joint probability
distribution p(a, b, c). We focus on the case of binary outputs:
a, b, c∈ {+1, −1}. It is then convenient to express the joint
distribution as follows:

pða; b; cÞ ¼ 1
8
ð1þ aEA þ bEB þ cEC þ abEAB

þ acEAC þ bcEBC þ abcEABCÞ;
ð1Þ

where EA, EB, and EC are the single-party marginals, EAB, EBC,
and EAC are the two-party marginals, and EABC is the three-body
correlator. Note that the positivity of p(a, b, c) implies constraints
on marginals, in particular p(+++)+ p(−−−) ≥ 0 implies

EAB þ EAC þ EBC ≥ �1 : ð2Þ
In the following, we will derive nontrivial constraints bounding

and relating the single-party and two-party marginals of p(a, b, c)
under the assumption of NSI. While it seems a priori astonishing
that the no-signaling principle can impose constraints in a Bell
scenario, featuring no inputs for the parties, we will see that this is
nevertheless the case in the triangle network.

The main idea is the following. Although one party (say Alice)
receives no input, she could still potentially signal to Bob and
Charlie by locally modifying the structure of the network. To see
this, consider the hexagon network depicted in Fig. 1b, and focus
on parties Bob and Charlie. From their point of view, the two
networks (triangle and hexagon) should be indistinguishable.
This is because all the modification required to bring the triangle
network to the hexagon (e.g., by having Alice adding extra parties
and sources) occurs on Alice’s side, and can therefore be space-
like separated from Bob and Charlie. If Alice, by deciding which
network to use, could remotely influence the statistics of Bob and
Charlie, this would clearly lead to signaling. Hence, we conclude
that the local statistics of Bob and Charlie (i.e., the single-party
marginals EB and EC, as well as the two-party marginals EBC)
must be the same in the triangle and in the hexagon. To see that
this condition really captures the possibility to signal, we could
imagine a thought experiment in which we would give an input to
Alice, which determines whether she modifies her network
structure or not. If she does so and this has an incidence on the
EBC marginal, then Bob and Charlie can learn about Alice’s input,
hence breaking the usual notion no-signaling condition. Note that
the input considered here is however purely fictional, Alice’s
input is not present in the actual experiment.

From the above reasoning, we conclude that the joint output
probability distribution for the hexagon, i.e., pða; b; c; a0; b0; c0Þ,
must satisfy several constraints. In particular, one should have
that

X
b pða; b; c; a0; b0; c0Þ ¼

X
b0 pða; b; c; a0; b0; c0Þ ¼ EB ð3Þ

Inflation

A

A

C ′ B ′

A′

B CB C

�

�

�
� �

�

�

�

�

a b

Fig. 1 Inflation of the triangle network to the hexagon network. In order to
capture NSI constraints in the triangle network a, we consider an inflation
to the hexagon network b. Importantly, from the point of view of Bob and
Charlie, the two situations must be indistinguishable. If not, then Alice
could (instantaneously) signal to Bob and Charlie, simply by locally
modifying the network structure.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16137-4

2 NATURE COMMUNICATIONS |         (2020) 11:2378 | https://doi.org/10.1038/s41467-020-16137-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


X
c pða; b; c; a0; b0; c0Þ ¼

X
c0 pða; b; c; a0; b0; c0Þ ¼ EC ð4Þ

X
bc pða; b; c; a0; b0; c0Þ ¼

X
b0c0 pða; b; c; a0; b0; c0Þ ¼ EBC;

ð5Þ
where all sums go over all outputs a; b; c; a0; b0; c0. From the
independence of the sources, we obtain additional constraints,
namely

X
bb0 pða; b; c; a0; b0; c0Þ ¼ E2

B ð6Þ
X

cc0 pða; b; c; a0; b0; c0Þ ¼ E2
C ð7Þ

X
bb0c pða; b; c; a0; b0; c0Þ ¼ EBCEB ð8Þ

X
bcc0 pða; b; c; a0; b0; c0Þ ¼ EBCEC ð9Þ

X
bcb0c0 pða; b; c; a0; b0; c0Þ ¼ E2

BC : ð10Þ
Clearly, we also get similar constraints when considering
signaling between any other party (Bob or Charlie) to the
remaining two.

Altogether, we see that NSI imposes many constraints on
pða; b; c; a0; b0; c0Þ. Obviously, we also require that

pða; b; c; a0; b0; c0Þ≥ 0 and
X

pða; b; c; a0; b0; c0Þ ¼ 1 : ð11Þ
Now reversing the argument, we see that the non-negativity of
pða; b; c; a0; b0; c0Þ imposes nontrivial constraints relating the
single- and two-party marginals of the triangle distribution p
(a, b, c). To illustrate this, let us proceed with an example in a
slightly simplified scenario, assuming all single-party marginals to
be uniformly random, i.e., EA= EB= EC= 0. In this case, we
obtain

64 pða; b; c; a0; b0; c0Þ ¼ 1þ ðabþ a0b0ÞEAB þ ðbcþ b0c0ÞEBC þ ðca0 þ c0aÞEAC

þ ðabcþ a0b0c0ÞF3 þ ðbca0 þ b0c0aÞF0
3 þ ðca0b0 þ c0abÞF00

3

þ aa0bb0E2
AB þ bb0cc0E2

BC þ aa0cc0E2
AC þ aa0ðbcþ b0c0ÞF4

þ bb0ðca0 þ c0aÞF0
4 þ cc0ðabþ a0b0ÞF00

4 þ aa0bb0ðcþ c0ÞF5

þ bb0cc0ðaþ a0ÞF0
5 þ aa0cc0ðbþ b0ÞF00

5 þ aa0bb0cc0F6 ≥ 0

ð12Þ
Importantly, notice that the above expression contains a number
of variables (of the form FX) that are uncharacterized; these
represent X-party correlators in the hexagon network, see
Supplementary Note 1 for more details. Hence, we obtain a set
of inequalities imposing constraints on our variables of interest
(i.e., EAB, EBC, and EAC), but containing also additional variables
that we would like to discard. This can be done systematically via
the algorithm of Fourier–Motzkin elimination34. Note that here
we need to treat the squared terms, such as E2

AB, as new variables,
independent from EAB, so that we get a system of linear
inequalities. Solving the latter, and taking into account positivity
constraints as in Eq. (2), we obtain a complete characterization of
the set of two-body marginals (i.e., EAB, EBC, and EAC) that are
compatible with NSI in the triangle network (for a hexagon
inflation and uniform single-party marginals), in terms of a single
inequality

ð1� EABÞ2 � E2
BC � E2

AC ≥ 0 ; ð13Þ
and its symmetries (under relabeling of the parties and of the
outputs). This implies a more symmetric, but slightly weaker
inequality:

ð1þ EABÞ2 þ ð1þ EBCÞ2 þ ð1þ EACÞ2 ≤ 6 : ð14Þ

Note that when EAB= EBC= EAC≡ E2, we get simply
E2 ≤

ffiffiffi
2

p � 1 � 0:41.
Next, we consider the symmetric case (i.e., EA= EB= EC≡ E1

and EAB= EBC= EAC≡ E2) and obtain nontrivial NSI constraints
on the possible values of E1 and E2 (Fig. 2). In particular,
correlations compatible with NSI must satisfy the following
inequality

ð1þ 2jE1j þ E2Þ2 ≤ 2ð1þ jE1jÞ3 : ð15Þ

Let us move now to the most general case, with arbitrary values
for single- and two-party marginals. For a given set of values EA,
EB, EC, EAB, EBC, and EAC, it is possible here to determine via a
linear program whether this set is compatible with NSI or not
(Supplementary Note 1). More generally, obtaining a character-
ization of the NSI constraints in terms of explicit inequalities (as
above) is challenging, due mainly to the number of parameters
and nonlinear constraints. We nevertheless obtain that the
following inequality represents an NSI constraint

ð1þ jEAj þ jEBj þ EABÞ2
þð1þ jEAj þ jECj þ EACÞ2
þð1þ jEBj þ jECj þ EBCÞ2

≤ 6ð1þ jEAjÞð1þ jEBjÞð1þ jECjÞ :

ð16Þ

A proof of this general inequality is given in Supplementary
Note 1. Note that this inequality reduces to Eq. (14) when EA=
EB= EC= 0, as well as to Eq. (15) for the symmetric case.

It is worthwhile discussing the connection between our
approach and the inflation technique presented in refs. 22,25.
There, the main focus is on using inflated networks for deriving
constraints on correlations achievable, with classical resources. In
that case, information can be readily copied, so that sources can
send the same information to several parties. Ultimately, this
allows for a full characterization of correlations achievable with
classical resources22. Copying information is however not
possible in our case, as no-signaling resources cannot be perfectly
cloned in general6. Hence only inflated networks with bipartite

1
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0

–0.5
0 0.2 0.4 0.6 0.8 1

E
2

E1

Fig. 2 Region of allowed correlations for symmetric distributions;
projection in the plane E2 vs E1. The turquoise region is ruled out by NSI
constraints, while the gray region is excluded from simple positivity
constraints. The white region is accessible via trilocal models. Correlations
in the yellow region satisfy NSI constraints (from the hexagon inflation), but
we could not find a trilocal model for them. The constraint Eq. (34) of ref. 22

is shown in dotted black. The dashed turquoise curve corresponds to the
NSI inequality Eq. (15), which turns out to be tight. Explicit trilocal models
are also obtained for the correlations marked by blue dots (Supplementary
Note 2).
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sources can be considered in our case, such as the hexagon. A
discussion of these ideas can be found in Section V.D of ref. 22,
where the idea of using inflation to limit no-signaling correlations
in networks is mentioned. Here, we derive explicitly bounds that
all correlations satisfying the NSI constraints, whether quantum
of post-quantum, have to satisfy, and identify the physical
principle behind them.

Finally, the choice of the hexagon inflation deserves a few
words. As seen from Fig. 1b, it is judicious to consider inflated
networks forming a ring, with a number of parties that is a
multiple of three. Intuitively, this should enforce the strongest
constraints on the correlations of the inflated network; in
particular, all single- and two-body marginals are fixed by the
correlations of the triangle. This would not be the case when
considering inflations to ring networks, with a number of parties
that is not divisible by three.

Tightness. A natural question is whether the constraints we
derived above, that are necessary to satisfy NSI, are also sufficient.
There is a priori no reason why this should be the case. Of course,
starting from the triangle network, there are many (in fact infi-
nitely many) possible extended networks that can be considered,
and no-signaling must be enforced in all cases. For instance,
instead of extending the network to a hexagon (as in Fig. 1), Alice
could consider an extension to a ring network featuring 9, 12, or
more parties. Clearly, such extensions could lead to stronger
constraints than those derived here for the hexagon network.

Nevertheless, we show that some of the constraints we obtain
above are in fact tight, i.e., necessary and sufficient for NSI. We
prove this by presenting explicit correlations (constructed within
a generalized probabilitic theory satisfying NSI) that saturate
these constraints. In fact, we consider simply the case where all
sources distribute classical variables to each party, which we refer
to as trilocal models. The latter give rise to correlations of the
form

pða; b; cÞ ¼ R
μðαÞdα R νðβÞdβ R ωðγÞdγ

pAðajβ; γÞ pBðbjα; γÞ pCðcjα; βÞ
; ð17Þ

where α, β, and γ represent the three local variables distributed by
each source, with arbitrary probability densities μ(α), ν(β), and ω
(γ). Also, pA(a∣β, γ) represents an arbitrary response function for
Alice, and similarly for pB(b∣α, γ) and pC(c∣α, β). Note that such
trilocal models represents a natural extension of the concept of
Bell locality to networks (see e.g., refs. 10,19).

We first consider the case of symmetric distributions, i.e.,
characterized by the two parameters E1 and E2, and seek to
determine the set of correlations that can be achieved with trilocal
models. As shown in Fig. 2, it turns out that almost all NSI
constraints can be saturated in this case, in particular the
inequality (15). After performing a numerical search, we could
construct explicitly some of these trilocal models, which involve
up to ternary local variables (see Supplementary Note 2 for
details). Moreover, we compare our NSI constraint (15) to the
one derived in ref. 22 (see Eq. (34)), and find that the present one
is stronger, and in fact tight (Fig. 2). Note also that a previous
work derived an NSI constraint based on entropic quantities29;
such constraints are however known to be generally weak, as
entropies are a coarse-graining of the statistics, which no longer
distinguishes between correlations and anticorrelations.

As seen from Fig. 2, there is however a small region (in yellow)
that is compatible with NSI (considering the hexagon inflation),
but for which we could not construct a trilocal model. Whether this
gap can be closed by considering more sophisticated local models
(using variables of larger alphabet) or whether stronger no-
signaling bounds can be obtained is an interesting open question.

For the triangle network with binary outcomes, any trilocal
distribution can be obtained by considering shared variables of
dimension (at most) six, and deterministic response functions24.

In fact, another (and arguably much more interesting) possibility
would be that this gap cannot be closed, as it would feature
correlations with binary outcomes satisfying NSI, but that are
nevertheless non-trilocal. To further explore this question, let us
now focus on the case where single-party marginals vanish, i.e.,
E1= 0. We investigate the relation between two-party marginals E2
and the three-party correlator E3= EABC, comparing NSI con-
straints and trilocal models. Notice that the NSI constraints we
obtain here do not involve E3 (as the latter cannot be recovered
within the analysis of the hexagon). Hence NSI imposes only
E2 ≤

ffiffiffi
2

p � 1, while positivity of p(a, b, c) imposes other constraints.
This is shown in Fig. 3, where we also seek to characterize the set of
correlations achievable via trilocal models (proceeding as above).
Interestingly, we find again a potential gap between trilocal
correlations and NSI constraints. This should however be
considered with care. First, the NSI constraints obtained from
the hexagon may not be optimal (see Discussion section). Second,
there could exist more sophisticated trilocal models (e.g., involving
higher-dimensional variables) that could lead to a stronger
correlations (i.e., cover a larger region in Fig. 3). Note also that
we investigated whether quantum distributions satisfying the
independence assumption exist outside of the trilocal region, but
we could not find any example (we performed a numerical search,
considering entangled states of dimension up to 4 × 4).

Finally, note that we also performed a similar analysis for the
case where single-party marginals vanish, but two-body marginals
are not assumed to be identical to each other. Here, we find that
inequality (13) can be saturated in a few specific cases. However,
there also exist correlations satisfying the NSI bounds that do not
seem to admit a trilocal model; details in Supplementary Note 1.

Discussion
We discussed the constraints arising on correlations in networks,
under the assumption of NSI of the sources. We focused our
attention on the triangle network with binary outputs for which
we derived strong constraints, including tight ones. Our work
raises a number of open questions that we now discuss further.

0 0.2 0.4 0.6 0.8 1
E3

0.5

0.1

0.3

–0.1

–0.3

E
2

Fig. 3 Region of allowed correlations for symmetric distributions with
E1= 0; represented in the plane E2 vs E3. The turquoise region is ruled out
by NSI constraints (dashed turquoise line given by Eq. (15)), while the gray
region is excluded from simple positivity constraints. The white region is
accessible via trilocal models. Correlations in the yellow region satisfy NSI
constraints (from the hexagon inflation), but we could not find a trilocal
model for them. Explicit trilocal models are also obtained for the
correlations marked by blue dots (see Supplementary Note 2).
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A first question is whether the constraints we derive (necessary
under NSI), could also be sufficient. We believe this not to be the
case, as stronger NSI constraints could arise from inflations of the
triangle to more complex networks (e.g., loop networks with an
arbitrary number of parties). Note that there could also exist
different forms of no-signaling constraints, that cannot be
enforced via inflation. In this respect, we compare in Supple-
mentary Note 1 our NSI constraints with the recent work of
ref. 32 proposing a very different approach to this problem, using
the Finner inequality. A notable difference is that the latter
imposes constraints on tripartite correlations, which is not the
case here.

Another important question is whether there could exist
nonlocality in the simplest triangle network with binary out-
comes. That is, can we find a p(a, b, c) that satisfies NSI, but that
is nevertheless non-trilocal? While we identified certain potential
candidate distributions for this, we could not prove any con-
clusive result at this point. We cannot exclude the possibilities
that (i) these correlations are in fact not compatible with NSI (as
there exist stronger NSI constraints) or (ii) these correlations can
in fact be reproduced by a trilocal model. In order to address
point (i), one could try to reproduce these correlations via an
explicit NSI model, for instance considering that all sources emit
no-signaling resources (such as nonlocal boxes2) which could
then be wired together by the parties. To address point (ii), one
could show that these correlations violate a multilocality
inequality for the triangle network. Of course finding such
inequalities is notably challenging, see e.g., ref. 13.

Furthermore, it would be interesting to derive NSI constraints
for other types of networks. Indeed, the approach developed here
can be straightforwardly used. Cases of high interest are general
loop networks, as well as the triangle network with larger output
alphabet (where examples of quantum nonlocality are proven to
exist11,15).

Finally, a more fundamental question is whether any correla-
tion satisfying the complete NSI constraints can be realized
within an explicit physical theory satisfying no-signaling (the
latter are usually referred to as generalized probabilistic the-
ories6). While this is the case in the standard Bell scenario (where
all parties share a common resource), it is not clear if that would
also be the case in the network scenario.

Received: 28 October 2019; Accepted: 16 April 2020;
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