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Joint inference of CFC lifetimes and banks suggests
previously unidentified emissions
Megan Lickley 1✉, Sarah Fletcher 2, Matt Rigby 3 & Susan Solomon 1

Chlorofluorocarbons (CFCs) are harmful ozone depleting substances and greenhouse gases.

CFC production was phased-out under the Montreal Protocol, however recent studies sug-

gest new and unexpected emissions of CFC-11. Quantifying CFC emissions requires accurate

estimates of both atmospheric lifetimes and ongoing emissions from old equipment (i.e.

‘banks’). In a Bayesian framework we simultaneously infer lifetimes, banks and emissions of

CFC-11, 12 and 113 using available constraints. We find lifetimes of all three gases are likely

shorter than currently recommended values, suggesting that best estimates of inferred

emissions are larger than recent evaluations. Our analysis indicates that bank emissions are

decreasing faster than total emissions, and we estimate new, unexpected emissions during

2014-2016 were 23.2, 18.3, and 7.8 Gg/yr for CFC-11, 12 and 113, respectively. While recent

studies have focused on unexpected CFC-11 emissions, our results call for further investi-

gation of potential sources of emissions of CFC-12 and CFC-113, along with CFC-11.
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The Montreal Protocol entered into force in 1989 and led to
the phase-out of industrial production of CFCs by 2010.
This global action reduced emissions of Ozone Depleting

Substances (ODSs) and avoided massive worldwide ozone losses1.
There are now signs that the Antarctic ozone hole is beginning to
heal2,3. While the phase-out of ODSs has led to decreases in their
atmospheric abundance, recent studies have pointed to an
observed and unexpected delay in the decrease of CFC-11 con-
centrations, indicating ongoing emissions of this gas that may be
linked to illicit production4,5. CFC-11 is the most abundant
source of chlorine in the atmosphere and a potent greenhouse
gas. Limiting its production and emissions is, therefore, critical
for both ozone recovery and to safeguard the planet against cli-
mate change. Quantifying illicit emissions of CFCs has been
limited by uncertainties in their underlying emissions from old
equipment (i.e., banks) with uncertain leak rates (release frac-
tions), as well as the lifetimes of these molecules in the atmo-
sphere. Joint consideration of atmospheric lifetimes together with
observed changes in atmospheric concentrations hence provide
our best estimate of global total emissions (i.e., both bank and
illicit emissions). Earlier work has focused on quantifying the size
of CFC banks and potential contributions to future emissions6;
here we focus on jointly estimating lifetimes of CFC-11, 12, and
113 as well as the magnitude and sources of global emissions of
these gases using all available information in a probabilistic
framework.

While there are several lifetime estimation methods, (e.g.,
tracer–tracer or observation-based methods, see SPARC7 for
details), two of the most widely used techniques are discussed
here. The first makes use of 3D chemistry climate models (CCM)
that integrate chemical sink loss frequencies and calculated global
distributions8. Results from six 3D CCMs and one 2D CCM were
made available through the Stratosphere-troposphere Processes
and their Role in the Climate (SPARC) modeling effort7,9, a
project of the World Climate Research Programme. CCMs use
observed surface concentrations as input, and the accuracy of
their modeled lifetimes largely depends on their ability to accu-
rately model atmospheric transport and chemical loss processes.
It takes ~3–7 years for air to be transported from the source of
emission to the upper atmospheric loss region and back. SPARC
models thus predict a decreasing trend in ODS lifetimes,
reflecting the disequilibrium between tropospheric and strato-
spheric concentrations when tropospheric concentrations are
increasing. These forward CCM simulations thus estimate “time-
varying” lifetimes based on observed variations of ODS con-
centrations. A near “steady-state” lifetime is achieved a few years
after tropospheric concentrations stop their rapid rise. The sec-
ond approach referred to as the “inverse modeling method”,
infers lifetimes in a Bayesian framework using near-surface mole
fraction measurements and, typically, fixed estimates of emissions
as inputs to an atmospheric model10. These different approaches
include different assumptions and over the years have led to wide

ranges in estimated steady-state lifetimes (see Table 1 of present
manuscript and Table 6.1 of SPARC7), and therefore large dif-
ferences in inferred emissions.

While knowledge of atmospheric lifetimes allows for emissions
to be inferred from changes in observed concentrations, further
analysis is required to partition the source of those emissions
from new production versus emissions from banks. The former
would represent a breach of the Montreal Protocol while the latter
remains permitted at this time, highlighting the policy impor-
tance of quantifying bank emissions. There are various approa-
ches to quantifying banks and their emissions. A top-down
approach makes use of observationally-derived emissions along
with assumptions regarding production and lifetimes11. The sizes
of banks are then estimated as the cumulative difference in
production and emissions over time.

Some emissions, such as leakage during production, occur
quickly (here referred to as direct emissions), while some are
delayed by storage in banks. Figure 1 illustrates how different
plausible lifetime and production assumptions can propagate into
large differences in top-down inferred banks. With respect to
lifetimes, we compare an assumed time-varying lifetime based on
mean SPARC modeled values with an assumed steady-state life-
time of 52 years, as cited in WMO (2018), Table A-13, to infer
historical emissions. Hence, Fig. 1 underscores the importance of
using appropriate time-varying lifetimes in emissions and bank
calculations. Figure 1 further illustrates how small differences in
assumed bank release fractions (i.e., leakage rate from banks) can
propagate into uncertainties in the source of emissions (i.e.,
whether emissions come from banks versus direct emissions from
new production). Figure 1 serves to illustrate how different see-
mingly reasonable assumptions about lifetimes, production, and
release fractions can both match observed concentrations and
lead to very different conclusions about the quantity and sources
of emissions, with some combinations of assumptions being
unphysical (i.e., producing negative direct emissions). Further
examples are presented in the SI.

An alternative bottom-up approach to estimating banks and
their emissions makes use of industry reported production data
along with a careful tallying of multiple equipment types and
estimated release fractions over time12,13. While this approach is
less reliant on indirect inference of bank magnitudes than the
top-down approach, it requires accurate and complete reporting
and does not make full use of all available data, such as atmo-
spheric observations.

In recent work, Lickley and colleagues6 take a Bayesian Para-
meter Estimation (BPE) approach, which makes use of
observationally-derived emissions to apply inference to a deter-
ministic bottom-up bank simulation model on a gas-by-gas basis
for CFC-11, 12, and 113. This bank estimation approach incor-
porates the widest range of constraints to date, including obser-
vations, reported production data, and previously published
release rates partitioned by equipment types and their respective

Table 1 Posterior atmospheric lifetime estimates for the unexpected emissions scenario and a comparison with previously
published estimates.

BPE-derived median posterior lifetimes
(p2.5, p97.5)

WMO (2003)/
IPCC (2001)

SPARC recommended steady state
(most likely 2-sigma CI)

Rigby et al. (2013)
(1-sigma CI)

2010 lifetimes Time-averaged lifetimes

CFC-11 49.1 (44.1, 54.6) 54.0 (47.5, 62.7) 45 52 (43, 67) 52 (45, 61)
CFC-12 84.7 (76.7, 95.5) 93.2 (81.7, 111.5) 100 102 (88, 122) 112 (95, 136)
CFC-113 79.9 (74.0, 88.7) 89.3 (79.6, 104.7) 85 93 (82, 109) 109 (97, 124)

Results shown from the present study include a 95% CI (p2.5, p97.5).
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uncertainties. That work found banks of CFC-11 and 12 were
likely larger than previous scientific assessments suggested,
although CFC-11 banks alone could not account for the recent
uptick in global emissions that Montzka and colleagues4 inferred
from observed concentrations.

Here, we extend the BPE model from Lickley et al. (2020)6 to
jointly rather than individually infer lifetimes and their

uncertainties for CFC-11, 12, and 113 and address correlations
across molecules. In doing so, we account for the common
atmospheric transport and chemical loss processes that govern
the lifetimes of CFC-11, 12, and 113. Evidence of correlated
lifetimes comes, for example, from the SPARC set of CCMs,
where a model producing lower than average CFC-11 lifetimes
also produces lower than average CFC-12 and 113 lifetimes. We

Fig. 1 Impact of parameter assumptions on banks and emissions estimates. Panel (a) illustrates the impacts of two atmospheric lifetime (LT)
assumptions on inferred total emissions (Emiss) from observed concentrations, while Panels (b–d) provide illustrative examples to show the sensitivities of
the breakdown of sources of those emissions to components from banks (BE) versus direct emissions (TDE). The solid lines throughout correspond to
quantities derived assuming the SPARC multi-model mean time-varying lifetime (with a time-averaged lifetime of 62 years), and the dashed lines
correspond to an assumed constant lifetime of 52 years, adopted as the steady state lifetime in the work of Rigby and colleagues5 and WMO (2018)3.
Panel (a) shows the emissions estimate using the first equation. The parameter, A, is a constant that converts units of atmospheric concentrations to units
of emissions. Panel (b) shows the bank estimates for the two lifetime scenarios and two illustrative production scenarios; bank estimates using reported
production are shown using the thicker lines, and the thinner lines correspond to a production scenario that is 10% larger than reported. Panel (c) shows
inferred bank emissions for the lifetime scenarios and production scenarios described above. The colors of the lines indicate different bank release fraction
(RF) estimates. Blue lines correspond to bank emissions for the median of the prior release fractions distributions used in the analysis from this paper. The
red lines correspond to the median −1σ of the prior release fraction distribution. Panel (d) shows the broad range of resulting inferred direct emissions,
with the lines corresponding to the same scenarios used in Panel (c).
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find lifetimes of CFC-12 and 113 are significantly shorter than
current SPARC recommended values, implying that observa-
tionally derived emissions are likely larger than current best
estimates. We find posterior estimates of non-bank emissions
during 2014–2016 were 23.2 for CFC-11, 18.3, and 7.8 Gg/yr for
CFC-11, 12, and 113, respectively, which are substantially larger
than previously identified sources. This calls for further investi-
gation of potential sources of unexpected emissions not only for
CFC-11, but also of CFC-12 and CFC-113.

Results
Modeling framework. To derive lifetimes, emissions and their
respective sources, we build on the Bayesian Parameter Estima-
tion approach to modeling banks and emissions developed by
Lickley and colleagues6. The basic framework develops a bottom-
up simulation model that simultaneously models banks, emis-
sions (partitioned into bank emissions versus direct emissions),
and mole fractions over time. The simulation model relies on
inputs including reported production of each equipment type,
estimates of release fractions and their respective uncertainties,
and lifetime estimates developed using the SPARC CCM time-
varying values. We develop prior distributions for each of the
input parameters using previously published values. We use
SPARC CCM modeled time-varying lifetimes to construct joint
lifetime priors for CFC-11, 12, and 113 that reflect the lifetime
uncertainties and correlations both across time and gases in the
BPE model. Sampling from these prior distributions, we also
develop priors for each of the outputs of the simulation model
(i.e., banks, bank emissions, direct emissions, and mole fractions).
Observed mole fractions are treated as observations in Bayes’
Theorem and used to estimate the posteriors of each of the inputs
and outputs of the simulation model (See “Methods” for more
details). Adding these new constraints to the BPE model allows us
to simultaneously infer lifetimes along with total emissions, bank
size, and bank emissions over time. In this way, we can better
quantify and partition recent emissions into bank emissions
versus unexpected sources using all available information.

Mole fraction estimates. Figure 2 shows the observations, prior
and posterior distributions of mole fraction estimates for CFC-11,
12, and 113. The observations are within the range of inferred
posterior model predictions of the data for all gases throughout
the whole time period (1955–2010). Posterior residuals (i.e., Dj �
Mj from Eq. (8); see “Methods”) are shown in the supplement
(Fig. S1) and appear normally distributed around zero.

Emissions estimates and comparison. Figure 3 shows prior and
posterior emissions estimates, calculated using the parameter-
based estimate of emissions (i.e., Equation (2); see “Methods”),
compared to an observationally-derived estimate, where emis-
sions are inferred using mole fractions and atmospheric lifetimes
(i.e., solving for Ej;t using Eq. (1) of “Methods”). This provides a
useful contrast to previous emissions comparisons from Lickley
et al. (2020)6, which adopted both a time-varying lifetime equal to
the SPARC multi-model mean, and a fixed lifetime scenario equal
to the time-average mean of SPARC multi-model mean. Com-
pared to Lickley et al. (2020), the posterior emissions in Fig. 2
show a closer match between parameter-based and observation-
ally derived emissions as well as lower uncertainties, which can be
explained in part by lifetimes being inferred instead of assumed.
By jointly inferring lifetimes, observationally-derived emissions
are represented as a distribution instead of fixed values, and our
simulated emissions and mole fractions are assumed to have
lower uncertainty than in Lickley et al. (2020), where lifetimes
were fixed. This leads to a smaller posterior distribution in

parameter-based emissions estimates that more closely matches
the observationally-derived estimates. We note that WMO 2018
emissions estimates for CFC-11 are within the uncertainty of our
posterior observationally-derived emissions. For CFC-12 and 113,
however, WMO 2018 emissions fall below the range of our
posterior observationally-derived emissions towards the end of
the simulation period, a result of posterior lifetimes being shorter
for these two gases than what is assumed in WMO 20183.

Lifetime estimates and comparison. Figure 4 shows the time-
varying prior and posterior lifetime estimates for CFC-11, 12, and
113. The SPARC multi-model mean is included for comparison.
This figure shows that the median joint posterior lifetime esti-
mates are shorter than the SPARC multi-model mean values
throughout the time period, though within the 2-sigma range, for
all three species. Note that it is not surprising that similar dif-
ferences with the posterior are found for all species, due to the
strong correlation assumed between model lifetimes. If the BPE is
instead run without assuming lifetime dependency across mole-
cules, then the result looks substantially different (Supplementary
Fig. 2). In this case, CFC-12 posterior lifetimes are significantly
lower than the SPARC multi-model mean, whereas CFC-11 and
CFC-113 posterior estimates are more similar to their priors than
the joint posterior estimates. This finding shows that our results
are strongly dependent upon the inclusion of CCM lifetime
uncertainties that are highly correlated between species. This
correlation is obtained from the SPARC model ensemble,
reflecting that the lifetimes of CFC-11, 12, and 113 are governed
by similar physical and chemical processes as noted above. Thus,
we argue that its inclusion makes the best use of the available
evidence. The uncorrelated version of the BPE model (i.e., not
including the dependencies across molecules in the lifetime
priors) leads to a higher estimated lifetime and lower estimated
Direct Emissions for CFC-11, and thus higher banks. Considering
the joint dependency across molecules, inferring lifetimes instead
of assuming them, and therefore reducing the assumed variance
in the likelihood function accounts for much of the difference
between bank estimates found here and Lickley et al. (2020) (See
Supplementary Figs. 3 and 4).

Our BPE analysis provides an estimate of time-varying
lifetimes and emissions up until 2010, which is the end of the
time period for the SPARC CCM simulations. For emissions
beyond 2010, we adopt a constant lifetime using posterior
emissions values from 2010 (see “Methods”). The posterior time-
averaged lifetime and 2010 lifetime estimates are shown in
Table 1 along with comparisons with previously published
estimates, importantly the SPARC recommended steady-state
lifetime. To derive their recommended lifetimes, SPARC takes a
weighted average of various estimation methods where the
weights reflect the level of uncertainty in each method (see
SPARC Chapter 67 for details). Inverse-modeling and CCM
derived lifetimes are among the methods used for all of CFC-11,
12, and 113. For CFC-11 and 12, satellite observation-derived
lifetimes are also included. The tracer–tracer method provides
values for CFC-12 and 113 based on an assumed CFC-11 lifetime.
While our CFC-11 2010 lifetime estimates agree with the SPARC
recommended lifetime estimates, our CFC-12 and 113 estimates
are outside the 2-sigma range that SPARC estimated to be most
likely (shown in Table 1), but within their possible 2-sigma range
((78, 151) for CFC-12 and (69, 138) for CFC-113; see Chapter 6
in SPARC7). Why would our CFC-11 lifetime estimate agree with
SPARC recommended lifetimes, but not CFC-12 and 113? We
attribute this to two factors. The first is that the SPARC
recommended values do not explicitly account for the inter
molecule correlations exhibited by the CCM modeled lifetimes.
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Fig. 3 Prior and posterior emissions and comparisons. Emissions comparisons of observationally-derived (red) and parameter-based (grey) inferred
emissions for the priors (a–c) and posteriors (d–f). The solid lines indicate the median and the shaded region indicates the 95% CI for both prior and
posterior distributions. The uncertainties in observationally-derived emissions reflect the role of uncertainties in lifetimes and thus are updated in the
posterior to reflect the lifetime posterior estimates. The dashed blue line indicates global emissions estimates from WMO (2018)3, provided for
comparison.

Fig. 2 Mole fraction estimates. The grey line and shaded region indicate median and 95% CI of the prior distribution for (a) CFC-11 (b) CFC-12, and (c)
CFC-113. The dashed blue lines are observed concentrations and the red line and shaded region indicate the median and 95% CI for the posterior
distributions.
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While the CCM derived lifetimes are a component of the
weighted average, it is only the multi-model mean that is included
and the inter-molecule correlations exhibited by the CCMs are
not explicitly modeled in the weighted average. The second
(which is a key limitation in earlier studies that use inverse-
modeling to derive lifetimes, including SPARC) is that the
recommended lifetimes depend on emissions assumptions,
whereas our analysis jointly infers emissions along with lifetimes.
We expect that the SPARC prescribed emissions for CFC-12 and
113 are biased low relative to CFC-11 for the inverse-modeling
component of their estimate, contributing to this difference in
recommended values. This is supported by the relatively long
lifetimes for CFC-12 and 113 coming from the inverse-modeling
component of the weighted average (see Table 6.1 from Chapter 6,
SPARC7).

Emissions estimates from banks versus new production. We
adopt the 2010 posterior lifetime distributions from our analysis,
along with 2010 posterior distributions of Bank and RF dis-
tributions to forward simulate observationally-derived total
emissions for 2011–2016, Bank emissions, and their difference,
which we refer to as Direct Total Emissions. The assumption that
atmospheric lifetimes are relatively constant from 2010 onwards
is broadly supported by ensemble lifetime estimates from the
Whole Atmosphere Chemistry Climate Model (WACCM)
simulations, shown in Supplementary Fig. 5. This is done for
inferred parameter distributions allowing both an unexpected
emissions scenario (as in Lickley et al., 20206) and reported
emissions scenario in order to provide our best estimate of the
sources and magnitude of emissions that can include unexpected
production and release if suggested by all the inputs. However, for
our post-2010 estimated values, we assume that RF remains
constant and we do not account for a portion of further new
production going into banks (since this is both poorly known and
is expected to be relatively small compared to the existing bank).
The assumption of a constant RF post-2010 reflects the posterior
RF timeseries derived from the bottom-up accounting model that
accounts for changes in bank composition over time (see Sup-
plementary Fig. 6). Results are shown in Fig. 5 for the unexpected
emission scenario and the reported production scenario is pro-
vided in Supplementary Fig. 7. Direct total emissions are shown
in Fig. 6.

Discussion
Table 2 summarizes the key findings of our study. In this analysis
we set out to estimate lifetimes and their uncertainties for CFC-
11, 12, and 113, and provide information on their emissions and

sources of emissions. Our analysis suggests that the lifetime of
CFC-11 is 49.1 years with a 95% CI of (44.1, 54.6), in the range of
most previously estimated values. We estimate CFC-12 and CFC-
113 lifetimes to be 84.7 years with a 95% CI of (76.7, 95.5), and
79.9 years with a 95% CI of (74.0, 88.7), respectively. Both mean
values for CFC-12 and 113 estimated lifetimes are lower than
previous surface mole fraction trend-based estimates10, although
they are statistically consistent, at the 2-sigma level, with SPARC
2013 possible ranges7. We attribute this difference in estimated
values to the inclusion of a wider range of constraints in our
analysis, namely the inclusion of co-dependencies across mole-
cules’ lifetimes. This is an important distinction between this
work and previous inverse-modeling studies, which did not
account for such co-dependencies across molecules. The present
study probabilistically accounts for the correlation in lifetimes
across gases as exhibited by chemistry-climate models (from
SPARC). That is, shorter (longer) than average lifetimes for one
gas will likely imply shorter (longer) than average lifetimes for the
other gases. Here we show that including such dependencies
clarifies our conclusions about lifetimes, as illustrated in Fig. 4
versus Supplementary Fig. 2.

Montzka et al. (2018)4 used a single set of NOAA observations
along with a constant lifetime of 57.5 years, derived from the two
3-D CCM simulations used in their analysis, to estimate total
CFC-11 emissions from 2002–2012 to be 54 Gg/yr, and from
2014–2016 to be 67 Gg/yr, with an unexpected increase of
13 ± 5 Gg/yr. Here we use both the AGAGE and NOAA global
observational datasets that are merged along with other con-
straints to estimate average total CFC-11 emissions from
2002–2012 of ~66.6 Gg/yr and from 2014–2016 of ~77.6 Gg/yr,
with a difference of 10.9 Gg/yr, and a 95% CI of (10.1, 11.8).
Rigby et al. (2019) provided evidence that an emission increase of
7 ± 3 Gg/yr occurred from eastern China between the periods
2008–2012 and 2014–2017. Note that Rigby et al. (2019) use the
SPARC recommended lifetime values (e.g., 52 years for CFC-11),
thus their emissions estimates represent a lifetime-corrected
version of Montzka et al. (2018) values. We find that while a large
fraction of total emissions over these time periods do come from
banks, significant decreases in bank emissions as banks are
depleted (see Table 2) now suggests that a significant increase of
direct total emissions is occurring over time. Our best estimate of
total direct emissions of CFC-11 from 2014–2016 is 23.2 Gg/yr,
with a 95% CI of (13.7, 35.8). Therefore, we find that total
unexpected emissions due to new production in breach of the
Protocol are likely to be higher than the increase inferred by
Montzka et al. (2018)4 by about 10 Gg/yr. Further, our best
estimate exceeds the contribution estimated for eastern China by
Rigby et al. (2019) by about 16 Gg/year, supporting the proposal

Fig. 4 Time varying lifetime distributions. The black line and grey shaded region indicate the median and 95% CI of the prior lifetimes, derived from
SPARC modeled values for (a) CFC-11 (b) CFC-12, and (c) CFC-113. In each panel, the dashed blue line indicates the SPARC multi-model mean. The red line
and shaded region indicate the median and 95% CI of the posterior lifetime distributions.
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that unexpected sources elsewhere are likely (notwithstanding
that Rigby et al., 2019 only estimated the magnitude of the rise in
emissions, rather than the excess over a declining bank, as we
have in this work). However, the lower limit of our 95% CI is
within Rigby et al. (2019)’s stated uncertainty range, indicating
that it is unlikely but plausible that eastern China is the only
source.

For CFC-12, emissions are consistently decreasing post-2000.
Nonetheless, since our estimate of bank emissions are on average
decreasing faster than total emissions, significant direct total
emissions from 2014–2016 are also very likely to be occurring for
this gas. CFC-12 direct emissions for 2014–2016 are estimated to
be 18.3 Gg/yr, with uncertainties large enough to contain zero
only at the 95% CI. Further, between 2002–2012 and 2014–2016
there is a significant increase in estimated direct emissions of
18.0 Gg/yr, with a 95% CI of (11.8, 22.7); i.e., exceedingly unlikely
to include zero. This finding strongly merits further investigation,
as CFC-12 production is expected to accompany CFC-11 pro-
duction in most chemical plants14. Estimated total CFC-113
emissions are ~8.6 Gg/yr with an ~95% CI of (6.0, 11.0) for both
2002–2012 and 2014–2016. Further, given the decrease in bank

emissions, we estimate the direct total emissions to have increased
to 7.8 Gg/yr in 2014–2016 from 3.3 Gg/yr in 2002–2012, sub-
stantially larger than expected from its allowed reported global
use in feedstocks (see Lickley et al., 2020). We note that the
NOAA and AGAGE data do not separate measurements of CFC-
113 and CFC-113a. Recent studies have noted an increase in
CFC-113a concentrations15,16. Accounting for this trend in CFC-
113a and assuming the instruments are equally sensitive to both
CFC-113 and CFC-113a, we find direct total emissions of CFC-
113 to be 6.4 Gg/yr in 2014–2016, which is within the 95%
uncertainty range of our values reported here (see Supplementary
Fig. 11).

Overall, our findings strengthen the understanding of estimates
and their uncertainties for lifetimes, banks, and apparent direct
emissions of all three of the major CFCs, 11, 12, and 113. We
have shown that all three molecules are likely being directly
emitted in comparable amounts between 2014 and 2016, in
contrast to expectations under the Montreal Protocol. Deter-
mining the sources of these emissions and whether and how to
reduce them is a pressing challenge for the Parties to the Montreal
Protocol.

Fig. 6 Direct total emissions. Posterior top-down total emissions estimates minus posterior bank emissions for (a) CFC-11 (b) CFC-12, and (c) CFC-113.
Shaded region indicates the 95% confidence interval.

Fig. 5 Posterior bank and total emissions. Posterior emissions (red and grey), median posterior bank emissions (black), observationally derived emissions
with posterior lifetimes (blue) for (a) CFC-11 (b) CFC-12, and (c) CFC-113. Shaded regions indicate the 95% confidence interval.

Table 2 Median emissions estimate (95% CI) by source for the unexpected emission scenario. Values are reported in [Gg/yr].

CFC-11 CFC-12 CFC-113

Bank Emissions 2002–2012 66.2 (55.7, 80.0) 92.3 (71.8, 107.7) 5.4 (2.0, 9.4)
Total Emissions 2002–2012 66.6 (55.2, 79.4) 91.6 (77.4, 104.7) 8.6 (5.7, 11.0)
Direct Total Emissions 2002–2012 −1.0 (−11.8, 11.8) 0.0 (−17.9, 22.4) 3.3 (−1.3, 7.8)
Bank Emissions 2014–2016 54.4 (47.1, 61.9) 42.7 (24.9, 58.9) 0.72 (0.08, 2.8)
Total Emissions 2014–2016 77.6 (67.0, 89.5) 59.3 (45.7, 71.8) 8.6 (5.9, 10.9)
Direct Total Emissions 2014–2016 23.2 (13.7, 35.8) 18.3 (−2.3, 36.8) 7.8 (4.6, 10.4)
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Methods
Bayesian parameter estimation modeling framework. In this section, we discuss
the adaptations to the BPE model developed in Lickley et al. (2020). This model is
implemented by first developing a bottom-up simulation model for CFC-11, 12,
and 113 that uses a collection of input parameters to recursively simulate outputs,
which include mole fractions,Mj;t , emissions, Ej;t ; and banks, Bj;t , for molecule j, in
year, t. The input parameters include atmospheric lifetimes, τj;t , production,
Prodj;t ; direct emissions, DEj;t ; and bank release fractions RFj;t: The equations for
the deterministic simulation model are shown in Eqs. (1)–(3). Mole fractions are
modeled as;

Mj;t ¼ Mj;t�1 ´ exp
1
τj;t

 !
þ A ´Ej;t ð1Þ

where A is a constant that converts units of emissions to units of mole fractions.
We follow Daniel et al. (2007)17 and let A include a fixed factor of 1.07 to account
for the increased mixing ratios at the surface relative to globally average values.
Emissions, Ej;t ; in Eq. (1) are modeled as;

Ej;t ¼ RFj;t ´Bj;t�1 þ DEj;t ´ Prodj;t ð2Þ
and banks, Bj;t; in Eq. (2) are modeled recursively as

Bj;t; ¼ ð1� RFj;tÞ ´Bj;t�1 þ ð1� DEj;tÞ ´Prodj;t ð3Þ
Prior distributions for each of the input parameters are described below and in

Lickley et al. (2020). While the deterministic simulation model is independent
across molecules, chemistry-climate models demonstrate that the lifetimes of
molecules exhibit interdependencies across molecules. We, therefore, obtain joint
posterior distributions of the vector of input parameters by implementing Bayes’
theorem as follows;

P θ11; θ12; θ113jD11;D12;D113

� �
/ P θ11; θ12; θ113

� �
P D11; j; θ11; θ12; θ113
� �

P D12; j; θ11; θ12; θ113
� �

P D113; j; θ11; θ12; θ113
� �

ð4Þ
where θj ’s denote the vector of inputs and outputs of the deterministic

simulation model (Eqs. 1–3) and Dj denotes the data (i.e., observed mole fractions)
for molecule, j. We assume that the data (D11; D12; and D113) are conditionally
independent given θ11; θ12; and θ113. This assumption implies that the relationship
between D11; D12; and D113 is captured in the simulation model described in (1–3),
but that the errors between data and model are uncorrelated across molecules.

In Eq. (4), P θ11;θ12;θ113
� �

describes the joint prior distribution of the input
parameters and outputs for CFC-11, 12, and 113 for all model years.
PðDjjθ11;θ12;θ113Þ is the multivariate likelihood of all years of observed mole
fractions of molecule j, given the parameters of the deterministic simulation model
as described in Eqs. (1)–(3), i.e., the error between data and simulation model. For
computational efficiency, we solve Eq. (4) using sequential Bayesian updating. To
do so, we first solve for the posterior Pðθ11;θ12;θ113jD11;D12Þ where

P θ11; θ12; θ113jD11;D12

� �
/ Pðθ11; θ12; θ113ÞPðD11jθ11; θ12; θ113ÞPðD12jθ11; θ12; θ113Þ

ð5Þ

This posterior is then used as the prior distribution and updated given observed
mole fractions of CFC-113 (D113), obtaining a posterior distribution equivalent to
Eq. (4);

P θ11; θ12; θ113jD11;D12;D113

� � / P θ11; θ12; θ113jD11;D12

� �
P D113jθ11; θ12; θ113
� �

ð6Þ
The posteriors in Eqs. (4)–(6) are obtained by multiplying by a normalizing

constant such that the right-hand side integrates to 1.
To solve for the posterior in Eq. (4), the model is implemented as follows.

1. First develop prior distributions for all input parameters in θ. This includes
joint prior distributions for τ11; τ12, and τ113 as well as Prodj;t , DEj;t ; and
RFj;t:

2. Using Monte Carlo simulation, sample from the prior distributions and
simulate many realizations of mole fraction time series using Eqs. (1), (2)
and (3).

3. Specify likelihood function of observed mole fractions given simulated mole
fractions (i.e., the error between data and model).

4. Estimate the joint posteriors of Eqs. (5) and (6) using the sampling
importance ratio method described further below.

We describe each step of the model in more detail below.

Release fraction and direct emissions priors. For each molecule, priors are
developed for release fraction (RF) and direct emissions (DE) using industry-
reported data and previously published emissions functions12. As in Lickley et al.
(2020), we jointly estimate RF and DE priors using a bottom-up accounting
method that evaluates the composition of the bank over time. This includes
accounting for various equipment types and release fractions. RF is modeled as a
fraction of the bank and depends on the type of equipment in the bank in any given
year. DE is modeled as a fraction of production and depends on the type of

equipment produced in a given year. An update since Lickley et al. (2020), is that
the prior DE of foam now follows a beta distribution (with parameters 5, 5)
centered at 1.5%, based on values reported in Ashford (2004). For a detailed
description of other RF and DE priors, see the Supplementary Information in
Lickley et al. (2020).

Production priors. Production priors are modeled as in Lickley et al. (2020), where
a lognormal distribution is assumed with a lower bound that is 95% of global
reported values. Reported values of global production come from the Alternative
Fluorocarbon Environmental Acceptability Study (AFEAS) for years prior to 1989,
and from the United Nations Environmental Program (UNEP) from 1989
onwards. We adopt a correction for the AFEAS data following WMO (2002)11

where AFEAS production values are augmented with production data from UNEP.
We assume autocorrelation over time in the bias of reported production and infer
this autocorrelation parameter (see Lickley et al. (2020) for more details). For CFC-
113, we adjusted prior distributions so that observed mole fractions are contained
in the prior simulated mole fraction range. This was achieved by setting a lower
bound of production to 70% of reported and doubling the uncertainty range (i.e.,
changing B from 0.2 to 0.4, see Lickley et al. (2020) for details). We include two
scenarios for production, one where the priors are based on reported production
and one where both CFC-11 and CFC-113 have “unexpected emissions” from 2000
onwards in line with estimates from Montzka et al. (2018) and Lickley et al. (2020).
Since CFC-11, 12, and 113 are considered jointly, the method can also reveal
whether unexpected production of CFC-12 is likely.

Lifetime Priors. We develop joint priors for the atmospheric lifetimes that take
into account the correlation in lifetimes over time and across molecules. We
develop priors for lifetimes from the time varying SPARC CCM values as follows:

1. For each of the SPARC CCMs, compute the inverse of each modeled lifetime
(since the inverse of lifetimes typically assumed to be normally distributed,
Chapter 6 of SPARC7). We then smooth the inverse lifetime using a 10-year
moving average. Most modeling groups that contributed lifetime estimates
to SPARC, considered the period from 1960 to 2010. Some available
modeled lifetime calculations end before 2010, in which case we assume the
last 10-year averaged value holds for the remainder of the time period.

2. For each molecule, j; create a Nyrs ´Nmodels matrix, Kj; of the smoothed
inverse lifetimes. Nyrs is equal to 42; the number of SPARC modeled years
after smoothing with a 10-yr window. Nmodels is the number of SPARC
models and is equal to 7.

3. We assume that the inverse of these modeled lifetimes are normally
distributed, Our prior lifetime distributions are then modeled as;

1=τ11
1=τ12
1=τ113

� N

μ11
μ12
μ113

;Στ

0
B@

1
CA ð7Þ

where μj is a Nyrs ´ 1 vector equal to the row average of Kj and Στ ; is a

3Nyrs ´ 3Nyrs matrix equal to the covariance of
K11
K12
K113

2
4

3
5:

4. Samples from this prior will represent the inverse lifetimes from 1965 to
2006. Lifetime samples are extended on each end of the time series to obtain
an estimated prior from 1955 to 2010 (i.e., the 1965 value in the sample is
applied to all years prior to 1965, and the 2006 value is applied to all
subsequent years).

Likelihood of observed data given modeled mole fractions. Observed mole
fractions come from the merged dataset based on AGAGE and NOAA global mean
surface station measurements18. Data are available from 1980 to 2018. Due to large
uncertainties in unreported emissions since 2012 and due to SPARC time-varying
CCM lifetime estimates ending in 2010, we base the likelihood of each simulation
on yearly observed data between 1980 and 2010. We assume that;

Dj ¼ Mj þ ϵj; ð8Þ

where Dj is a NObs ´ 1 vector where NObs corresponds to 31 years and each
input is yearly observed mole fractions for molecule, j, between 1980 and 2010.
Mj is a NObs ´ 1 vector of simulated mole fractions, accounting for dependence
across all molecules, and ϵj is a NObs ´ 1 vector corresponding to the error term

and is assumed to be normally distributed with mean zero and covariance ΣLF
j :

Note that the simulation model described in Eqs. (1)–(3) is for the period
1960–2010 ðNyrs ¼ 51Þ, and the posterior is conditioned on observations which
are available for 1980–2010, hence NObs = 31. The likelihood function is,
therefore, a multivariate function of the difference between modeled and
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observed mole fractions;

PðDj; j; θ11;θ12;θ113Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð ÞNObs jΣLF
j j

q exp � 1
2
ϵTj ΣLF

j

� ��1
ϵj

� �
ð9Þ

The covariance matrix, ΣLF
j ; represents the sum of the uncertainties of modeled

and observed mole fractions. CFC-11 and 12 are both measured to an estimated
accuracy of around 1%, and CFC-113 is measured to an accuracy of ~1.5%18. We
adopt these values and assume that errors from observations are equivalent to ~1%
of observed CFC-11 and CFC-12 mole fractions, and 1.5% of observed CFC-113
mole fractions. We do not know the uncertainty of the simulation model, and
chose uncertainties for the simulation model component of uncertainty equivalent
to 2% of observed mole fractions for CFC-11 and 12, and 4% of observed mole
fractions for CFC-113. Taken together and assuming an additive error model, these
choices lead to ΣLF

j having diagonal elements equal to 0:03 ´Dj for CFC-11 and
CFC-12, and 0:055 ´Dj for CFC-113. We assume high autocorrelation in error
terms and include autocorrelations in the off-diagonals of 0.99, 0.99, and 0.98 for
CFC-11, CFC-12, and CFC-113, respectively. This parameterizes the strong
influence of near-fully correlated uncertainties such as scale errors. The selections
for uncertainties and autocorrelation values were based on expert judgment.
Autocorrelation values as low as 0.95, and uncertainties ranging from 1–5.5% were
tested and results were within uncertainty of those provided here.

Estimating posteriors. As in Lickley et al. (2020), the posteriors are estimated
using the sampling importance ratio (SIR) method, which involves sampling from
the priors and then resampling the prior samples based on an importance ratio
proportional to the likelihood function (see Bates et al. (2003)19 and Hong et al.
(2005)20 for more details). Using a sequential updating approach, we implement the
sampling procedure twice, first to obtain the posterior P θ11; θ12; θ113jD11; D12

� �
as

shown in Eq. (5). For this iteration of the SIR method, the prior distribution is the
joint prior distribution of all three molecules, P θ11; θ12; θ113

� �
; as described above.

The posterior is then obtained by resampling based on weights proportional to the
importance ratio;

Pðθ11; θ12; θ113jD11;D12Þ
Pðθ11; θ12; θ113Þ

/ P D11jθ11; θ12; θ113
� �

P D12jθ11; θ12; θ113
� �

ð10Þ
The posterior distributions obtained in the first iteration are then treated as the

priors in the second updating stage. Note that the only component of θ113 that is
conditioned on D11;D12 are the atmospheric lifetimes. To obtain the full posterior,
we resample from the updated priors based on weights proportional to the
importance ratio;

P θ11; θ12; θ113jD11;D12;D113

� �
Pðθ11; θ12; θ113jD11;D12Þ

/ P D113jθ11; θ12; θ113
� � ð11Þ

To sample from the priors, we use a sample size of N= 1000,000. The first
iteration of resampling uses an N= 300,000, and the second iteration of resampling
uses an N= 100,000. To check the convergence of the SIR algorithm on the true
posterior, the BPE was implemented ten times. The range in estimated values of the
median of each lifetime distribution, as well as the 95 and 68% confidence intervals,
was within 3% across the 10 iterations of the model, and median values were well
within the uncertainty of lifetime estimates reported below.

Data availability
The datasets generated and/or analyzed during the current study are available at https://
github.com/meglickley/CFCLifetimes.

Code availability
All code used in this work is available at https://github.com/meglickley/CFCLifetimes 21.
All analyses were done in MATLAB.
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