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Standard assessments of climate forecast skill can
be misleading
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Assessments of climate forecast skill depend on choices made by the assessor. In this
perspective, we use forecasts of the El Nifio-Southern-Oscillation to outline the impact of
bias-correction on skill. Many assessments of skill from hindcasts (past forecasts) are
probably overestimates of attainable forecast skill because the hindcasts are informed by
observations over the period assessed that would not be available to real forecasts. Differ-
ences between hindcast and forecast skill result from changes in model biases from the
period used to form forecast anomalies to the period over which the forecast is made. The
relative skill rankings of models can change between hindcast and forecast systems because
different models have different changes in bias across periods.

limate forecasts attempt to track the evolution of the more slowly evolving parts of the

climate system. They can extend over any time scale longer than weather forecasts!, but

have been pioneered and applied so far mostly on seasonal timescales. Seasonal climate
forecasts aim to predict those processes of climate variability that evolve and carry memory on
the seasonal time scale, and which transmit their expression into weather systems and other
features of interest>. These processes are often related to so called modes of variability, of which
the El Nifio Southern Oscillation (ENSO)3-2 in the tropical Pacific is one of the most important
ones for seasonal to interannual climate forecasts. This is mainly because it evolves on seasonal
and longer timescales, and it provides discernable influences on weather systems across large
swathes of the Pacific and Indian Ocean basins and into the Antarctic region®, so called
teleconnections”.

Here, we discuss the influence a number of methodological decisions can have on the
assessment of predictive skill of ENSO forecasts. While we focus on evaluating ENSO forecast
skill here, the issues arising in the interaction of forecast processing and skill apply more
generally to all climate forecasts.

History of ENSO forecast skill
Forecasts of ENSO have been issued since the late 1980s8, with more routine forecasts emerging
in the 1990’s to include those made through coupled general circulation models (CGCMs)®. The
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PERSPECTIVE

forecasts from CGCMs sit alongside those from simpler physical
models or empirical statistical models that use past climate data
to form relationships to predict future outcomes. There is a
general expectation in the community that forecast skill from the
CGCMs has, or at least will eventually, outstrip that from sta-
tistical models!®!! (see Supplementary Note 1 for an assessment
of how long ENSO forecasts have skill). ENSO is a dynamical
process, whereby each event is associated with a form of onset
(the event begins), duration, and decay (the event ends). ENSO
onset involves a range of interacting nonlinear processes'?!3 and
would seem to be better suited to prediction by dynamical
(CGCM) than statistical models!4. Despite this, it is still unclear
whether and when CGCMs are better than statistical models and
whether either model type has meaningful skill in forecasting the
onset of ENSO.

These questions have been answered differently by different
studies. For example, Barnston et al.10 concludes that ENSO skill
in CGCMs now exceeds that in the statistical models used to
forecast ENSO. On the other hand, DelSole and Tippett!® finds
that a set of CGCMs!® are no more skillful than a simple
regression model in forecasting ENSO. On the question of fore-
casting onset, L’'Heureux et al.!” propose the 2015/16 El Nifio as
an example of successful ENSO prediction, while Glantz!8
reviews past El Nifo forecasts and concludes that there is little
skill in forecasting onset.

There are a range of reasons why there is no real definitive view
on ENSO forecast skill in dynamical models. A major difficulty
with all skill assessments of ENSO is that there are only a handful
of major ENSO events of each type (El Nifio, La Nifia) in the
period since the 1980s and 1990s when ENSO hindcasting and
forecasting commenced!3. The small number of events limits the
power of any statistical tests of skilll%1419, The assessment of
ENSO forecast skill will depend on the period (typically a decade
or two) chosen to test and the number and type of ENSO events
in the period!?. The predictability of ENSO may vary from period
to period in the sense that the predictability of chaotic systems
varies due to flow dependency?’. The predictability will also
appear to vary for different periods simply because they will
contain different very small samples of ENSO behaviour?l.
Another factor that can influence the forecast skill assessment is
the inclusion of artificial skill in the evaluation procedure.

Artificial skill
The apparent forecast skill of ENSO varies depending on whether
skill is assessed in hindcasts (forecasts over periods in the past) or
forecasts (predictions over yet-to-be observed future periods).
Most ENSO skill assessments have been based on hindcasts.
Hindcast datasets can contain many more forecasts than actual
forecast archives, and so offer a chance for more robust statistics
in the assessment of skill. On the other hand, hindcasts present
more idealised conditions for forecasts than for actual forecasts
because they allow for more complete ingestion of data for initial
conditions, tuning and calibration of the model over events that
will be included in model tests, and opportunities to provide more
systematic post-processing of the forecasts. These differences
imply that hindcast skill can be a poor estimate of true forecast
skill>!. Hindcast skill can be an overestimate of real forecast skill if
the hindcasts contain artificial skill?2, or an underestimate if there
is variability in skill sampled from different periods. The term
‘artificial skill’ here is understood to refer to skill in hindcasts that
would not be attainable in a real forecast system due to some
aspect of the idealised nature of the hindcasts; e.g., using data that
would not be available in a comparable forecast situation.

The production of artificial skill is important as it can mislead
the users of climate forecasts about the true skill and utility of the

forecasts for their operations. All climate models have some bias
relative to the real world (see Box 1). The post-processing of
ENSO hindcasts usually includes a step (or steps) to correct for
this bias and to translate the actual forecast values of sea surface
temperature into anomalies. Without bias-correction, the model
forecast climate may be too far from the observed climate to be
readily interpretable. The process of bias-correction is one place
where artificial skill can enter into the assessment of hindcast
skill. In most ENSO hindcast skill assessments, the bias-
correction is carried out in a single step in forming the forecast
anomalies. Our focus here is on the methods typically used to
generate bias-corrected forecast anomalies, their potential role in
generating artificial skill, and how this relates to the diversity of
views of ENSO skill. We show this using a simple set of bias-
correction methods that are representative of the main methods
applied to hindcast data in the literature on ENSO skill.

QOur discussion of bias-correction methods (see Box 2) divides
them into two broad categories, denoted ‘fair’ and ‘unfair’. These
terms are used strictly in regard to what is ‘fair’ in skill com-
parisons with real-time climate forecasts. Any bias-corrected
hindcast that uses observed data that would not be available to a
real-time forecast (because the observation occurs after the
forecast commences) is classified as ‘unfair’. Such a forecast has
an unfair advantage by knowing some aspect of the future that is
not knowable to real forecasts. We make this broad distinction
between bias-correction methods because it is directly relevant to
whether artificial skill enters the forecasts.

Reference forecasts

Forecasts are typically compared with some form of simple
reference forecast to set a baseline for skill. We use here a simple
linear regression model of ENSO described by DelSole and
Tippett!®> and (in the supplementary information) an ordered
logistic regression model?> as reference forecasts. The goal here is
not to compare CGCMs to sophisticated statistical models or
operational statistical models, as in Barnston et al.10. Rather, we
use simple regression models to provide a clear baseline that has
no explicit dynamics or physics, and only very basic fitting to the
observed data. We employ two types of regression model because
they can be related to different ways of assessing skill. The linear
regression model minimises the distance of the data from the fit
to the data and thus may have an advantage for any skill score
that is based on distance of the forecast from the observations. On
the other hand, the ordered logistic regression provides a mini-
misation based on categories in the data, such as El Nifio, neutral,
and La Nifia conditions, and may perform better in categorical
assessments. By engaging both a linear and categorical regression
here we can try to account for the advantages of each type of
model depending on whether a distance-based or category-based
skill score is used. The logistic regression model is only used here
for categorical forecasts.

Regression forecasts (of each type) are generated over the
period from 1982 matching the CGCM forecasts. Most forecasts
are run a year from initiation. The resolution of the forecasts is
monthly, allowing for lead times out to a year. The forecasts are
made for the value of Nifi03.4, which is a typical index of ENSO.
The CGCM forecasts are represented by the ensemble mean of
10-member ensembles for each CGCM. An example of the
resulting forecasts is shown in Fig. 1. The peak of Nifo3.4 values
in the middle of the figure represents the 2010 El Nifio event. The
CGCM ensemble mean forecasts initialised before the event tend
to miss the onset of the event as depicted by the forecasts that
continue with low amplitude despite the rising amplitude of the
observed event. The tendency to miss the onset of the event is
even more apparent for the linear regression model.
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Box 1 | Model bias

Since climate models are not perfect representations of the real world, the climatology of any forecast model (the mean climate formed from a set of
the forecasts made) will never reproduce the observed climatology exactly. The time averaged difference between the model and observed climatology
is called model bias. For climate forecasts, the model is initialised to start the forecast close to the observations as shown in Fig. Box 1 panel a for a
sequence of model starts. The model climatology at 0"-months lead is therefore close to the observed climatology, as is evident in Fig. Box 1 panel b,
which shows the near-identical model and observed climatologal distributions for each calendar month of the year. At longer lead times the model
forecast will revert towards the model's preferred climatology. This is evident at lead 11 in Fig. Box 1 panel ¢, by which time the model no longer tracks
observations so closely. The climatology of the model at lead 11 now shows clear differences from the observed in Fig. Box 1 panel d. The model means
for each month have shifted from the observed means, and the shape of the model distribution is different from the observed. The model's mean bias is
typically removed from forecast fields by subtracting the difference between model mean and observed mean climatologies (blue shaded area in Fig.
Box 1 panels b and d) for each month for each model lead time. This correction does not address any differences between the shapes of the model and
observed distributions.
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Fig. Box 1: Model bias schematic. Panels a and ¢ show Nifio3.4 temperature for observations and the aerO4 model ensemble mean at lead 0" (the start
of the forecast) and after 11 months, for a sequence of forecasts issued a month apart. The observations values are simply the time series of Nifio3.4
temperature and are identical at lead 0* and lead 11. The model values at lead 11 are the values predicted by forecasts initialised 11 months prior to the

time shown. The panels b and d show the distribution of lead O* and lead 11 values for the model and observations for each calendar month. These are
again identical for observations, but change for the model. The dots on these plots show the mean of the distributions.

Dynamical models versus regression models
We compare the skill of the set of dynamical model hindcasts/
forecasts of Nifi03.4 with the skill of the simple regression models.
We use a test period of 1999-2016 to assess the model skill. We
further divide our skill assessment into cases where the bias-
correction of the forecasts uses a training period of 1982-1998
(fair methods), and where it uses forecasts (and observations)
from the testing period after the commencement of the forecast
(unfair methods). These methods are described in detail in Box 2.
The relative skill of the forecast systems is assessed with the
random walk skill scores described in the methods section.

The results for the random walk comparison at lead time
3 months (a typical seasonal forecast lead) are shown in Fig. 2
panels a—e for each of the bias-correction methods. The results
are all relative to the linear regression model. The interpretation
of the scores is as follows. When the random walk skill score
(RWSS) in Fig. 2 is steady and horizontal (zero gradient), the
forecast comparisons have stabilised such that the relative pro-
portion of wins for each system is not changing as additional
forecasts are included in the comparison. The proportion of wins
for the dynamical model forecast can be read from the right
vertical axis label. The slope of the RWSS line is indicative of any

changes in the proportion by which one forecast is beating
another. A positive or negative slope indicates a change in the
proportion of wins of one or other of the forecast systems relative
to the prior win proportion. For the first few years in each of
the plots in Fig. 2a-e, the slope changes randomly, reflecting the
small number of comparisons and the role played by chance for
such small numbers. As the number of forecast comparisons
increases, the slopes tend toward zero indicating that the forecast
comparison has stabilised in the sense of reflecting the relative
levels of skill of the two forecast systems. However, the skill levels
of forecast systems may change through time, reflecting changes
in the systems themselves!>.

The results for 4 of the 5 bias-correction methods in Fig. 2
panels a—e show that the CGCMs are similar (cm3, cm4i, nemo,
and seas5) or a bit worse (remaining models) than the regression
model, consistent with DelSole and Tippett!®. For the unfair
method there is no difference between the CGCMs and the
regression forecasts (scores sit mostly in the ‘chance’ region in
Fig. 2), but this method uses the inappropriate climatology in the
test period to derive forecast anomalies.

The results for the fair methods (fair, fair-sliding, fair-all) in
Fig. 2 panels a-e are broadly similar, though the dynamical
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Box 2 | Bias correction methods

When evaluating climate forecasts, the target forecast variable is often converted to anomalies (about some specified mean climatology) for
comparison to observations. This process may remove mean model bias over the chosen climatological period. The choices made in forming this
climatology can have an impact on the assessment of skill. For assessment of hindcast data, it is good practice to define a period of time to be used as a
reference climatology for the bias-correction (a training period), and a separate period to be used for testing the hindcasts (testing period)#3. We have
divided the hindcast archive period into two such periods (1982-1998 & 1999-2015) as shown in schematic form in Fig. Box 2. In practice, model groups
make a range of different choices of reference climatology. We summarise the main approaches as follows.

biased develops a climatology in the training period from observations (purple box in Fig. 2)44-4%, For the biased method, observed values of Nifio3.4 are
averaged as a function of calendar month and used as a climatology to subtract from all matched calendar months in the forecast data. No variation in
the climatology is made for lead time here, since there is no lead-time dependence in the observed climatology. By not subtracting the model's own
climatology, any offset or bias in where the model climatology sits relative to observations is retained in the anomalies.

unfair uses a baseline climatology for the forecasts from the set of all forecasts (as a function of calendar month and lead time) in the test period (pink
box). Though this method is widely used for deriving forecast anomalies2129.30,:39.41.46-56 it is a form of 'cheating’ in skill evaluation?, as it uses
observed data in the test period for which the model will be evaluated to adjust the forecast anomalies in that period. The reference climatology in the
test period is made up of forecasts initialised in this period, which require observations to initialise. These observations would not be available to actual
forecasts.

unfair-cv is a variant of the unfair method that applies a form of ‘cross-validation’, whereby a period of time centred around the current forecast time is
removed, and then the current anomaly is computed with respect to the climatology of the remaining data®/ (red boxes). This method is important in
the literature as it is often posed as a form of best practice227:3345, This method is still in the unfair category as it uses information from the future
period after the forecast is made.

fair derives the model climatology from the appropriate training period (green box). A ‘fair’ forecast can not use any observations of the climate system
that apply to the period after the forecast commences, since such observations are never available for real-time forecasting. Some hindcasts have been
assessed with the fair method'>°8, and of course all assessments of real-time forecasts®10:>9 are fair. Variants of fair include fair-sliding, which uses a
sliding window behind the forecast as a reference period (blue box), and fair-all with a growing window that includes all forecasts initiated prior to the
current forecast (orange box).

Observations biased
/\/\/W\/\\\/\_/\J‘ W\W\/\/\/\ W Time
Train period Test period
1982-01 1998-12 1999-01 Current forecast 2015-12
Model hindcasts/forecasts
-
0*
W

e

fair-sliding / fair

awipy pear

-~
[
X
&
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Fig. Box 2: Schematic bias correction plot. The schematic shows a time series of the observed variable at the top and hindcast/forecast time series at
different lead times (to 11 months) on the bottom. The time series are divided in half to give a training period (blue shade) and a testing period (tan
shade). The training period is typically reserved for computing the model climatology of the forecasts, and the testing period is used to test the bias-
corrected forecasts. The coloured lines depict the periods used in forming the reference climatologies for the different bias correction methods
described above. Solid lines indicated fixed periods. Dashed lines indicate periods that move as the forecast start date moves.

models ultimately do better using fair-sliding and fair-all than
fair. This is understandable in that the fair reference climatology
is fixed in the training period and is further separated in time
from each new forecast start in the testing period as the forecasts
march through the testing period in the random walk score. The
reference climatologies for fair-sliding and fair-all move along
behind each new forecast in the testing period and so do not

suffer the disadvantage of using a reference climatology increas-
ingly removed from the testing period.

The results shown here in Fig. 2 at lead time 3(a-e) are broadly
repeated at all of the lead times (1 to 11 months) tested. The final
value of the random walk skill score (after completing all forecast
comparisons in the test period) is shown as a function of lead
time in Fig. 2 panels f-j and indicates two broad groups of
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Fig. 1 El Nifio Southern Oscillation (ENSO) time series and forecasts. The black line shows the observed value of Nifio3.4. The blue/green lines are 12-
month forecasts of Nifio3.4 for the North American Multimodel Ensemble (NMME) and Copernicus Climate Change Service (C3S) multimodel ensemble
mean. The shading for these forecast lines runs from dark blue for the first month of the forecast through green for long lead times. The red/yellow lines
are 12-month forecasts of Nifio3.4 for the linear regression model, where the first month is shaded red and longer leads are yellow. The grey lines are
ensemble mean forecasts from individual NMME and C3S models. The fair method is used to calculate anomalies.

models. One set (cm3, cm4i, nemo, gmao, seas5) has similar skill
to the regression model regardless of whether the fair or unfair
method is used. The seas5 model is the best performing CGCM
relative to the regression model at short leads, but its skill is
indistinguishable from linear regresson by 6 months lead. The
other set of models (aer04, cola, florA, florB) are generally a bit
worse than the linear regression model unless the bias-correction
method for the models is the wunfair one. The results for the
comparison with a linear regression model here are broadly
similar if using a logistic regression model instead (see Supple-
mentary Note 3).

One important feature of the results in panels f-j in Fig. 2 is
that the rankings of the models relative to one another changes
depending on the method used to form the anomalies : biased,
unfair, fair, fair-sliding, or fair-all. The relative model rankings at
lead 6 (the longest lead for which we have all models) is shown
for each of the bias correction methods. The changes in ranking
between unfair and fair methods are striking. For example, florA
and aer04 are among the most skillful models for unfair and
among the least skillful for fair. The relative rankings change
much less among the different variants of the fair method.

Comparison of fair and unfair method

Thus far we have seen that the dynamical models perform better
relative to simple regression models when using unfair than fair.
In this section we perform a direct comparison between unfair
and fair methods for the same forecast model bias corrected in
the two different ways. A direct comparison using fair and unfair
methods for all dynamical models is shown in Fig. 3. At 3 months
lead (panel a) the models again fall into two broad classes; one set
(cm3, cmd4i, nemo, seas5) that are largely indifferent between fair
and unfair, and another set (aer04, cola, florA, florB) where the
unfair method is more skillful than fair. By lead 6 (panel b)
almost all the models (excepting only cm4i) are now in the zone
where unfair is more skillful than fair. For the second group of
models above the advantage is striking where the unfair method
wins 80% of forecast comparisons to fair’s 20%.

As a function of lead time, the random walk skill score, RWSS,,,
(panel ¢ in Fig. 3) is ambiguous in selecting the more skillful
method at very short lead (0, 1 months). There is little advantage
to the unfair method close to initialisation, but as lead time
increases the unfair method progressively dominates fair. The
main difference between models is how quickly this occurs as a
function of lead time, with one group of models (aer04, florA,

florB) where unfair dominates fair by about lead 3, and another
group (cm3, nemo, gmao, seas5) where this occurs by about lead
4 or 5. The exceptions to the progressive dominance of unfair
with lead time are cola, where a change in initial condition error
between training and testing periods dominates the performance
at low lead times (see Supplementary Note 2), and cm4i, which
remains indifferent between fair and unfair over all lead times.

The cross-validated form of the unfair method, unfair-cv per-
forms similarly to the pure unfair method in dominating fair
forecasts (see Supplementary Note 6). A visualisation of the
advantages of the unfair methods is given in Box 3. The reasons
for their advantages are related to the biases in the models and are
investigated next.

Why are unfair hindcasts advantaged?
To understand why the unfair method benefits so much by using
a reference climatology from the test period, one needs to assess
the climatologies formed in the training and test period and how
they shape the forecast anomalies in the test period. The model
forecast climatologies are typically broken down by calendar
month and lead time as shown in Fig. 4. The training period
climatology is in row a and the test period climatology is in row c.
The difference in these model climatologies, A(F),, . is shown in
row e. Any difference between these reference climatologies leads
to different outcomes for the fair and unfair methods. We show
why this is so and examine the contributions to this difference.

The model forecast anomalies are generated for the fair and
unfair methods by subtracting the reference climatologies in the
training (row a) and testing (row c) periods respectively from the
forecast values. For the unfair method, since the reference cli-
matology covers the period tested, the climate state and model
biases are estimated exactly and removed such that the mean of
the forecast anomalies (as functions of month and lead) are zero.
This means that the unfair forecast anomalies are all well centred
(see panels b and c in Fig. Box 3). However, for the fair method,
any shift in climate state or change in model bias from the
training to testing period is retained in the forecast anomalies,
which are offset by the amounts shown in row e of Fig. 4. These
offsets can be up to 1.5 °C for some months and leads and detract
from skill of the fair forecasts.

There are two major contributors to the differences in refer-
ence climatology between the training and testing period:

1. the nonstationarity or shift in climate between the periods
(a change in the observed climatology)
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Fig. 2 Skill relative to linear regression. Dynamical model Nifio3.4 random walk skill score (RWSS) at lead 3 months relative to linear regression model
using the methods: biased, unfair, fair, fair-sliding, and fair-all in panels (a-e). Forecasts are for the period 1999 to 2016. The white shaded area is an
envelope encompassing the RWSS that would be obtained 95% of the time for coin toss trials. The blue shaded area indicates regions where a given
dynamical model would be closer to observations than the regression model more often than expected due to chance. The tan region is the converse where
the regression model is more often closer to observations than the dynamical model than expected by chance. The RWSS can vary between —1 (model
always less skillful than regression), O (model and regression equally skillful), to 1T (model always more skillful than regression). This score can also be
expressed as the percentage of wins for the dynamical model (right vertical axis). The panels (f-J) show the final value of the random walk skill score,
RWSS,, for lead times from 1-11 months. The coloured boxes in panels (f-j) are ordered to show the model rankings relative to linear regression at lead 6,
going from least skillful on the left to most skillful on the right. The colour code for the models is given in the legend in panel a. For skill relative to logistic
regression, see Supplementary Note 3.
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and RWSS,, as a function of lead time (¢).

2. the change in model bias from training period to
testing period

There will also be differences in mean climatology due to the
limited sample sizes of the climatological distributions here,
which are hard to quantify.

Climate shift. The climate shift contribution, A(O),,, ., is repre-
sented by the difference between the observed climatologies in the
training and testing period in the first column of row e. There is
actually a slight cooling in Nifo3.4 from the training to test
period. This cooling is consistent with the change in phase of the
Pacific Decadal Oscillation?* from a predominatly warm phase
(El Nifio dominated) in the training period to a predominantly
cold phase (La Nifia dominated) in the testing period?>. The
change in model climate from the training to testing period,
A(F),,, is shown in the remaining columns of row e. At short
lead times, the cooling climate shift in observations is commu-
nicated to the forecast climatologies because each of the forecasts
making up the forecast climatologies are initialised about the set
of observations in these periods. At longer lead times, the model
forecast climatologies are increasingly too warm (e.g., Fig. Box 3
panel c), tending to overheat El Nifio’s and underplaying the
colder La Nifia events.

Change in model bias. The bias in the models depends on the
climate state?!, and since there is a shift in climate state between
the periods, there is a change in the profile of model bias between
the periods. The model bias is the difference between the forecast
climatology and observed climatology and is shown for the
training and test periods in rows b and d of Fig. 4. The biases vary
between models, with mostly cold bias in aer04, cm4i, nemo, and
gmao, mixed bias in cola, cm3, and seas5, and warm biases in the
flor models. The change in the profile of model bias between the
periods is evident with most of the models showing warmer
biases in the testing period than the training period. The differ-
ence in bias between the periods, AB,, ;, is shown in row f. The
warming of the biases is evident with the preponderance of

positive values in this row. The models fall into roughly two
groups. A high AB,, ; group (cola, aer04, florA, florB) has rela-
tively large change in bias across the periods, and a low AB,, ,
group (cm3, cm4i, nemo, seas5) has smaller change in bias. The
gmao model is somewhat intermediate between the two groups.
The high AB,,, models warm substantially in the testing period
relative to the training period, whereas the observations cool,
which results in a larger change in bias. For all models here, the
magnitude of AB,, , increases with lead time, 7, as expected.

Relative contributions of shift in climatology and change in
bias. The forecast anomalies for the fair method have a mean
offset relative to those for the unfair method given by the change
in model climatology from training to testing period, A(F),,,, in
row e of Fig. 4. This offset has contributions from both the cli-
mate shift and the model bias change, so that the values for the
models in row e are the sum of the bias changes in row f and the
climate shift for observations at the beginning of row e. At short
lead times (<3 months) the change in model bias, AB,,,, is still
small and the change in model climatology, A(F),, ., is dominated
by the climate shift in observations, A{O),,,. This is evident in
the cooling (blue shades) in model climatology in months 1-5
(Jan-May) at short leads in row e. At longer leads (>3 months),
the change in climatology is increasingly positive for all models,
and it is clear that most of the contribution to A(F),, . then comes
from the model warm bias shift, AB,,,. This point can be illu-
strated by considering these changes for a single calendar month
(March) in row g. The climate shift in observations, A(O)narch.«
(blue bars) is the same at all lead times of course, whereas the
change in model bias, ABpjarch > tends to increase with lead time
(red bars). The sum of these is the change in model climatology,
A(F)March,» which is nearly equal to A(O)narcn,; for leads < 3, and
then is increasingly positive with lead as the model change in bias
tends to dominate the sum.

A hypothetical model with no biases (or at least no change in
bias, AB,,, ;= 0) would still exhibit sensitivity to the choice of fair
or unfair methods whenever there is any change in the observed
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Box 3 | Cross validation and unfair hindcasts

To visualise the advantage that the unfair hindcasts have over fair hindcasts, we show a time series of Nifio3.4 at lead 6 for fair, unfair, and observations
in Fig. Box 3 panel a. The forecast anomalies for the fair method are (on average) about a degree too warm, whereas the unfair method anomalies are
much closer to observations. The distributions of the forecast anomalies at lead 0" (Fig. Box 3 panel b) are well centred for fair and unfair forecasts, but
by lead 6 (Fig. Box 3 panel ¢) the fair forecast anomalies are generally offset. The consequences of the fair anomaly offset for the skill of the fair ENSO
forecasts are quite drastic because the anomaly shift of about 1°C is twice the magnitude of the Nifio3.4 anomaly (0.5°C) used to define an

ENSO event.

Some have argued that the unfair method can be made fairer by carrying out a form of cross-validation when deriving the reference climatology in the
testing period?2745_ |n the cross-validated form of the unfair method, unfair-cv, whenever an anomaly is calculated, a window of forecasts centred
about the anomaly is removed from the set of forecasts used to compute the baseline forecast climatology. As the data comprising the forecast
climatology contains significant autocorrelation, it is argued that a span of typically about 3 years needs to be excluded in the anomaly window?>. We
have tested this with odd-length windows from 1 to 7 years width. The results are not very sensitive to the width selected and so we chose a 7-year
window to maximise the effect of cross validating. The unfair-cv method is just as skillful as the unfair method in outperforming the fair method (see
Supplementary Fig. 6). By leaving a year out of the reference climatology (or even 3, or 5, or 7 as we show here), the reference climatology still benefits
from having all of its years taken from the test period. Years in the test period are initialised in the background state that applies to the forecasts, and
the anomalies formed from that climatology are reasonably well centred (dotted lines in Fig. Box 3 panels b and ¢). Leaving some data out of that
climatology does not de-centre the anomalies anywhere near as much as using the training period (solid lines). To show how little difference the cross-
validation makes to the unfair method, the unfair and unfair-cv anomalies are plotted together, and practically lie on top of one another in both the time
series (Fig. Box 3 panel a) and pdfs in Fig. Box 3 panels b and ¢. The near equivalence of the unfair and unfair-cv anomalies explains why the skill
determinations are nearly identical for these two methods. Since the cross-validated climatology, unfair-cv, makes almost the same transgressions (of
test data) as the unfair method and retains most of the benefits of those transgressions, we do not regard it as a valid way to make the unfair method
fairer.

Nifo3.4 index

\9‘9
Initial time
b C
0.5 g unfair-cv
0.25 A1 b unfair
0 22 1 ‘_—___///\ ] ot fair
. T T = ~
0 R = s
0.25 A1 b — observations
0 Zg ] _"__‘4/\_ ] seas5
s 0 N b — 9mao
g 0.28 E ___A E nemo
b 7 — cméi
0281 A . — cm3
0281 J/‘”\_ 1 — florB
b 7 — florA
0'28 ] 2N ] L aer04
0.23 g RN g - N — cola
-4 -2 0 2 4 -4 -2 0 2 4
Nifo03.4 index Nifo3.4 index

Fig. Box 3: Observed and model forecast Nifio3.4 anomalies. In panel a the black line shows observed Nifio3.4 anomalies in the testing period. The red
lines are for the florB ensemble mean Nifio3.4 anomalies at lead time 6 for anomalies calculated by the methods fair, unfair, and unfair-cv. The unfair-cv
anomalies are calculated removing a 7-year cross-validation window. The probability density distribution of the anomalies is shown for each dynamical
model over all months at lead time 0" (panel b) and lead 6 months (panel ¢) in the testing period. The anomalies have been calculated according to the
anomaly methods, fair (solid lines), unfair (dashed), and unfair-cv (dotted).

climate. Conversely, a model for which there is no change in do so because their warming biases in months 1-5 are nearly
climatology from training to testing period (A(F),,,=0) would opposite to the observed cooling in these months, and partly
be insensitive to choice of fair or unfair, but it would also mean cancel to produce lower changes in forecast climatology. This
that the model hasn’t accurately captured any observed change in  cancellation is particularly apparent in the month of March for
climate (A(O),,, ;) between the two periods. The models here that cm4i, which has near zero change in climatology from lead 3
have lowest sensitivity to fair or unfair (cm3, cm4i, seas5) partly —onwards (Fig. 4 row g).
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Fig. 4 Observed and model climatologies and biases. Row a is the observed climatology, (Oyiy) .. and set of model forecast climatologies, (Fyiq ), .. for

the training period (as functions of calendar month and lead time). Row b shows the training period biases, By, . Which are the differences between the

model and observed climatologies in the training period, (Fyain)

— (Otain) - Row € is the observed climatology, (Ojeq)

mrt and set of model

climatologies, (Fiest),, ., for the testing period. Row d shows the testing period biases, By, ,, which are the differences between the model and observed

climatologies in the testing period, (Fiest)m.c
A(O)m’, = (Oiesi)m — (Ot,ain)m (first column) and models, A(F)
model biases in the training and testing periods, AB,, . = Biect » — Byrainm -

— (Otest) o Row e is the difference in climatologies between the training and testing periods for observations,

= <Ftest)m,r -
Row g is a bar plot for the month of March (month 3 above) of the observed

(Firain)m.. (remaining columns). Row f is the difference between the

change in climate, A(O)march (blue bars), the change in model biases, ABmarch . (red bars), and the sum of these, which is the change in model

climatology, A(F)march= (black outlines).

ENSO onset

Thus far we have treated every month’s forecast as a forecast
comparison point in the assessment of ENSO skill, irrespective of
what state ENSO is in. That means that we include forecasts of
many times when ENSO is in its (relatively less interesting)
neutral state (about 40-50% of the time, depending on the data
used to measure it). For this full set of forecasts we find that the
dynamical models are generally no better than simple regression
models. One might expect that the dynamical models come into

their own when ENSO itself changes state, such as during the
onset and decay of El Nifio and La Nifa events. We now restrict
our evaluation of the ENSO forecasts to just those forecasts
relating to onset.

For onset we discuss hindcasts using the fair method here,
since this is more indicative of actual forecast skill. We use the
onset case study to further highlight variability in apparent skill
that results from different hindcast periods. This is explored by
considering the standard case where the reference period is
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1982-1998 and the testing period is 1999-2016, and a switched
case where the reference period is 1999-2016 and the testing
period is 1982-1998. In the switched case, the change in bias with
lead time of the model climatologies is in the opposite sense to the
standard case. The models tend to cool with increasing lead time
in the switched case, and the change in observed climatology is
now a warming. That is, rows e and f in Fig. 4 are of the opposite
sign for the switched case.

The skill scores for El Nifio onset at 6 months lead relative to
the linear regression model are shown in Fig. 5 panels a-c. The
random walk score only changes when there is an onset forecast,
and there are only about half a dozen onset forecasts during the
testing period. The final random walk scores in panel b indicate
that the dynamical models are more skillful than the regression
model at all leads. In this standard case, the tendency of the
dynamical models to develop warm biases with increasing lead
time in the testing period works in their favour. El Nifio onset
involves a warming of sea surface temperature with lead time
from the pre-onset state. The tendency of the dynamical models
to warm with lead time from a given initial state in the standard
testing period is fortuitous for warm event onset forecasts. We
can test this by reversing the training and testing periods, and
repeating the onset forecast comparisons on the first half of the
record (1982-1998). The results for this switched case are shown
in panel c. In this case the dynamical models now only do about
the same as linear regression at all leads. In other words, there is a
dramatic change in relative performance just by switching
training and testing periods. In the switched case, the models now
generally have a cold bias with increasing lead time in the swit-
ched testing period, which works against their forecasts of the
warming associated with onset.

We now turn to forecasts of La Nifia onset. Since La Nifna onset
represents a cooling of sea surface temperatures with lead time,
we might expect the opposite behaviour here to the El Nifio onset
case. That is, we’d expect the dynamical models to be about the
same (or a bit worse) than the linear regression model for La Nifa
onset at all leads for the original training and testing periods,
because the models’ increasing warm bias with lead works against
onset of a cold event. Moreover, we’d expect the dynamical
models to be better than the regression model at most leads for
the switched periods, where the model cold bias with lead assists
their forecasts of cold event onset. That is precisely what we do
see in Fig. 5 panels e and f for the original periods and switched
periods.

We now have the conundrum that if we choose our original
training and testing periods, the dynamical models are better/
worse for El Niflo/La Nifia onset than regression models, and if
we switch the periods the reverse is true. This result highlights the
interaction between model biases, the underlying ENSO time
series, and the nature of the event tested. Where the sign of an
event onset (warming/cooling) lines up with lead-dependent
change in climatological bias in the dynamical models, it is
possible to substantially enhance (when in the same direction) or
degrade (when in the opposite direction) apparent skill for onset.
To guard against this, we would ideally have many periods over
which to test onset, though that is not possible with our limited
observational record. As such, it is important to be aware how the
model biases change from training to testing periods, and how
they interact with the event tested. Otherwise, conclusions about
the relative skill for onset of El Nifio and La Nifia may sub-
stantially reflect the periods chosen.

The sensitivity of skill results to the choice of period applies to
fair forecasts, because they retain lead-time-dependent change in
bias across periods. For the unfair method, these biases are
removed and the sensitivity of results to choice of period is
attenuated (see Supplementary Note 7).

Impact of bias correction on skill

The manner in which bias correction methods can affect hindcast
skill can be understood from the set of hindcasts assessed here.
Hindcast skill will typically be inflated if the reference period used
to form ENSO anomalies overlaps with the testing period in which
hindcast skill is assessed (the unfair method). When the reference
period does not overlap the testing period (the fair method), then
there will inevitably be some difference between the climatology of
forecasts made in the testing and reference periods. This difference
in forecast climatology changes the skill of fair forecasts relative to
unfair forecasts. The difference in forecast climatology results from
any climate shift in observations from the reference to the testing
period, and from changes in model bias (the difference between the
model and observed climatology) between the reference and testing
period. At short lead times (1 or 2 months), the change in model
bias is typically small, and the shift in observations is the dominant
contributor to the change in forecast climatology here. At lead times
beyond 3 months, the change in model climatological bias is the
dominant contributor to the change in model forecast climatology
between the reference and testing periods, and is thus also the main
contributor to degradation of skill of fair forecasts relative to unfair
forecasts.

The magnitude of the change in bias (between the reference
and testing periods) increases with lead time for all of the models
here. That means that unfair bias correction methods progres-
sively inflate skill (relative to fair methods) as lead time increases.
This is true for even the best performing models here (cm3, cm4i,
nemo, seas5). The best performing models have low initial con-
dition error and low change in bias between the reference and
testing periods, but their change in bias also grows with lead time
such that unfair forecasts progressively beat fair forecasts.

As such, assessments of ENSO seasonal hindcast skill can be
sensitive to the method used to define the reference climatology
and associated forecast anomalies. Any method that uses the
forecast testing period as a basis for the reference climatology (the
unfair method here) may reflect some amount of artificial skill
not realisable in real forecasts where the future is unknown.
unfair method forecasts remove both the contributions of climate
drift?® and change in model bias from the forecast anomalies.
They provide an indication of what skill could be if the model
biases were eliminated in the forecast models. For any fair fore-
cast, the changes in model bias from the period in which the
reference climatology is formed to the period in which the fore-
cast is evaluated, constitute the dominant enduring contribution
to skill degradation for the dynamical model forecasts tested here.

Lessons for forecast skill assessment
Progress towards the goal of improving climate forecasts needs to
be quantified by fair skill assessments. At present, seasonal
forecasts are typically assessed by the institutions that produced
them and are not easily comparable across institutions. In many
papers and hindcast/forecast archives the bias correction method
is not clearly stated or not consistent across models!?, rendering
any subsequent skill assessment or comparison of dubious use. To
remedy this, skill assessments should be performed by open
communities on open platforms. Model groups need to provide
the raw hindcast outputs so that all models can be subject to
identical bias-corrections and so be meaningfully compared.
The forecast assessment literature sometimes implies that
forecast anomalies calculated using the unfair method can be
made fairer by performing a form of cross-validation in con-
structing the reference climatology. The WMO guidelines for
forecast assessment state that It is generally considered to be best
practice to calculate the bias correction in a ‘cross-validated’
manner where the particular forecast to be corrected does not
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Fig. 5 Skill scores for El Nifio and La Niiia onset using the fair method. Random walk skill score (RWSS) at 6 months lead relative to linear regression for
El Nifio and La Nifia onset (a and d). The dashed lines in the panel represent forecast comparison periods that do not correspond to “onset' comparisons.
The final random walk skill score, RWSS,, is shown as a function of lead time for El Nifio and La Nifia onset in panels b and e. Panels ¢ and f are the same as
panels b and e, except that the training and testing periods have been switched.

contribute to the forecast average’’. Our results with the NMME
and C3S model forecasts show that cross-validation does little to
change the results obtained using the pure wunfair method.
Applying cross-validation to the reference climatology formed
from the testing period still removes most of the bias from the
model hindcasts, thereby retaining most of the artificial skill in
the hindcast assessment.

We have emphasised the importance of processing and com-
paring hindcasts in the same way. However, even if all hindcasts
are compared using the same wunfair method, that does not
uniquely determine how different forecasts will rank relative to
one another using a different (fair) method. The relative rankings
of models change depending on the nature of the biases in the
different forecast systems. For example, some of the models tested
here (cm3, cmdi, seas5) have relatively low bias changes across
different reference periods, and thus their skill scores are not too
sensitive to the way the model biases are processed. The other
models tested have larger bias changes across different climate
periods and perform much better when their forecasts are pro-
cessed with the unfair method than with the fair method. This
means that the relative model rankings change depending on how
they are bias corrected.

The prevalence of unfair-based methods in hindcast assess-
ments is widespread and perhaps understandable. Resources to
develop long hindcast databases are often lacking, and the user
faced with limited hindcast data needs to use all hindcast runs to

get a more stable estimate of model biases?8. However, the use of
unfair-based methods in hindcast assessment is sometimes
rationalised on the basis that if all models are processed similarly,
then that maintains a level-playing field to assess models relative
to one another?>30. Unfortunately, that is not the case, as we
showed that the relative rankings of models can change in going
from an unfair to fair-based method.

The use of unfair-based methods in hindcast assessment con-
tinues to be recommended for use in climate forecast guidance
and standards documents?!-27:28, The pitfalls around this may be
transparent in the climate forecast community. However, those
who use hindcast databases to assess forecast utility for applica-
tions are often not aware that their assessments could be based on
artificial skill (if the hindcasts have been processed using unfair-
based methods). For example, much of the assessed value of
seasonal climate forecasts for Australian agriculture is based on
hindcasts processed using wunfair methods®!, which therefore
contain artificial skill. This can be misleading for farmers who
must make tactical decisions using real forecasts, not hindcasts,
and thus are likely to have lower forecast skill than expected.

Path ahead

When the assessment of model skill is fair, the skill of the NMME
and C3S dynamical forecast models for ENSO is generally not
demonstrably better than simple regression models. We tested
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whether dynamical models would perform better if forecast
comparisons were restricted to just the more dynamically chal-
lenging onset aspects of El Nifio and La Nifia events. We drew no
clear conclusions in this regard because the results for onset are
critically sensitive to the direction of the change in forecast cli-
matological bias in the models from calibration to testing periods.
If this change in bias is toward warming, then warm event (EI
Nifio) onset skill is high, and conversely if toward cooling, then
cold event (La Nifa) onset skill is high. However, since the
change in climatological bias in the models is a function of the
periods assessed (warm to cold, or cold to warm), then so too is
the perception of relative skill for El Nifio and La Nifia onset.

From the comparison of hindcast skill of fair and unfair methods
here, we can deduce that the skill of actual forecasts of ENSO will be
limited by the growth with lead time of climate-state-dependent
biases in the dynamical models. A partial solution to this problem is
to use more sophisticated bias-reduction schemes that take into
account the state of ENSO?233, the underlying trends in the
observed and model hindcast climatologies’>34, and the extension
to multivariate processes3. That will reduce, but not eliminate, the
effects of climate-state-dependent biases. The long-term goal
remains to diagnose the reasons for climatological biases and to
reduce their magnitudes and effects on forecast skill.

Methods

Observational data. The observations used in the analysis cover sea surface
temperature (sst) in the Nino3.4 region (5°S-5°N; 170°W-120"W). The sst data
used are from OISST v23¢. All analysis was repeated with HadISST?7, which does
alter some of the details of the results, but not the more general conclusions drawn.
We define El Nifio/La Nifia events when the 3-month running mean of Nifio3.4
anomalies is above or below + 0. 5°C, respectively. The general results presented
here are unchanged if Nifio3 or Nifio4 are used instead of Nifi03.4.

Dynamical models. The models used here are from the North American Multi-
model Ensemble (NMME)!¢ and the Copernicus Climate Change Service (C38)38,
The advantage of the NMME archive is that it contains a rich set of runs from
many CGCMs over a relatively long period from 1982 to the present. Another
advantage is that the NMME archive has been the source of a number of prior
ENSO skill assessments!>1629:30,39-41 ‘We selected models from these two archives
that satisfied the criteria of: raw (uncorrected) hindcast data available, lead-time
forecasts out to at least 6 months, at least 10 ensemble members per forecast, and
hindcasts/forecasts span the period 1982-2015. The subset of models satisfying
these criteria are CMC1-CanCM3 (cm3), CanCM4i (cm4i), COLA-RSMAS-
CCSM4 (cola), GEM-NEMO (nemo), GFDL-CM2.1-aer04 (aer04), GFDL-CM2.5-
FLOR-A (florA), GFDL-CM2.5-FLOR-B (florB), NASA-GMAO-062012 (gmao),
and CDS-C3S-ECMWE-SEAS5 (seas5). The only qualifying model from C3S is
seas5. All other models are from NMME. All models contain leads to 12 months,
except GMAO to 9 months, and seas5 to 6 months. The cola model has a docu-
mented discontinuity in initial conditions (see Supplementary Note 2).

Though we refer to the NMME outputs as ‘forecasts’, the archive contains a mix of
hindcasts and forecasts. The hindcasts all commence in 1982 and switch over to
forecasts in 2011 for the CanCM models and GFDL-aer04, and in 2014 for the
remaining models. Some of the hindcasts commence on the first of each month,
whereas forecasts may commence after the first of each month!6. The model forecasts
have exchangable members (with similar statistical properties and skill), except for
COLA-RSMAS-CCSM4, which employs a lagged atmosphere!®. We use the first 10
ensemble members from each model. As the forecasts may start after the first day of
the first calendar month, the first calendar month in principle contains some
assimilated observations and some period of pure forecast. This month thus
represents in part the initial state and in part some forecast, but is not strictly either.
As such, we denote the lead time for the calendar month in which the forecast
commences as lead 0", where the * indicates that the lead is in fact not well defined
here. The forecasts for the second calendar month span leads of roughly half a month
to one and a half months, and thus have an average lead time of 1 month. We
designate these as lead 1 (month), and so on for subsequent lead times.

Regression models. We use two simple regression models as skill baselines. The
first follows DelSole and Tippett! in using ordinary linear regression on observa-
tions of Nifio3.4. The regression provides a fit between Nifio3.4 values in the
calendar month, m, where the forecast is initiated, Nino,,, and values in the target
calendar month at lead time 7 being forecast, Nino,,, .. The forecast value of

b

lead values on the basis of the current initial value as Nino,, . = a,, ,Nino,, +b,, .

Nifo3.4 then uses the regression coefficients, a,, ,,b,, ,, from these fits to predict

The second regression model is an ordered logistic regression®* based on the
categories La Nifa, neutral, El Nifio from Nifi03.4 values.

Random walk skill. The method used to compare forecasts here is the random walk
sign test introduced by DelSole and Tippett!”. This test provides an intuitive way to
visualise the difference between two forecasts, f;, and a reference forecast f,, with an
assessment of confidence that does not depend on particular distributional assump-
tions about the forecast errors. A sequence of instances, i, of n matched forecasts, f;
and f,; are compared at a given lead time. The sequential comparisons are ‘walked’
with a count, RW; incrementing/decrementing by one whenever the squared error of
the model being tested, (f,; — 0;)’, is greater/less than that of the reference model,
i — 0,)>. The scoring is binary and does not scale the score by the relative mag-
nitude of the forecast errors, since that form of scoring is more likely to be biased when
the forecasts tested are not independent!>#2, Serial correlation among the forecasts is
an issue for many skill scores, including this one!”. Binary scoring will reward a model
that is closer to observations more often, even if it does sometimes have large forecast
errors. The binary count traces a random walk, which can be compared with an
envelope encompassing the range of counts that would be observed 95% of the time by
chance under independent Bernoulli trials for p = 1/2. The envelope expressing this
range is approximated by 1.96(—./7;, \/7i;)!>. We develop and apply here a stan-
dardised version of the random walk as a random walk skill score: RWSS; = (1/i)RW,,
i =1, n] forecast comparisons. The chance envelope for this score is also (1/i) times
the RW envelope. For any comparison, i, the RWSS sits between 1 (reflecting a forecast
that beats the reference every time for forecast comparisons [1,1]) and —1 (reflecting a
forecast that loses to the reference every time).

To compare results for the random walk sign test as a function of lead time, at
each lead time (for lead months 1-11) we take the value of RWSS; for the last
forecast comparison (i = n). This value, RWSS,,, represents our final estimate of the
relative skill of the two models tested at each lead time. The score for RWSS,, ranges
from 1 (always beats reference) through 0 (model ties with reference) to —1 (always
loses to reference). The plots of RWSS,, also include the 95% chance envelope,
where the bounds of the envelope are those that pertain to the last forecast
comparison for RWSS.

Categorical random walk. The random walk score described above uses a distance
test (squared error) to reward the model lying closest in distance to the observa-
tions at each forecast comparison. In principle, any test can be used for each
forecast comparison in the random walk framework. The random walk score can
easily be adapted to categorical forecasts, and we do that here for use with the
categorically based logistic regression forecasts. In the categorical forecast tests, all
forecasts are translated in terms of ENSO category (El Nifio, neutral, La Nina). If
one model forecasts the correct category but the other model doesn’t, then the
correct model scores one for that test. If the models forecast the same category
(right or wrong), no score increment is made for that forecast comparison. No
increment to the score is made if both models forecast the wrong category. In
particular, no credit is given if one model lands closer to the observed category than
the other model if neither are in the correct category. Thus, with the categorical
random walk scores, there will be many ‘draws’ where no increment is made,
unlike the case for the distance-based random walk score, where draws are unusual.
In other respects though, the categorical random walk scores are identical to those
described above for the conventional distance-based random walk skill scores.

Bias correction and anomaly calculation. We use several different methods to
generate anomalies for the model forecasts. The methods are represented sche-
matically in Fig. Box 2. The schematic shows a time series of the observed variable
at the top, with the time series divided in half to give a training period and a test
period. The training period is typically reserved for generation of a climatology to
serve as a baseline reference for the forecasts, and the test period is used to test the
anomalised forecasts. For each anomaly calculation method, the calculation is
performed by developing a reference climatology, r, for the forecast as a function of
both calendar month, m, and lead time, 7, denoted (r),, . where ( - ) indicates
temporal averaging. The reference climatology is then subtracted from the fore-
casts, F, (as a function of m and 1) to produce an anomaly forecast, f. All results in
the paper were repeated with the training and testing periods reversed (train on
testing period, test on training period). For the analysis of ENSO onset the ordering
matters and both sets of results (standard and switched) are presented. For all other
forecast assessments here the results are qualitatively similar either way, and so
only results for the standard periods are presented.

Biased. The first method used here we refer to as the ‘biased” method as it retains
model bias in forming the anomalies. The reference climatology is built from
observations in the training period, Oyain, (Fig. Box 2, purple box), (r) = (Oyrin) -
Then the biased anomaly forecast is given by f — (Oyain) > Where the
superscript °P$train indjcates that the anomalies are based on a reference clima-
tology from observations in the training period.

obs,train __ F

Unfair. In the second method, the reference climatology is based (inappropriately)
on model forecasts in the test period (Fig. Box 2,pink box), (r) = (Fye),, .- Since
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Fig. 6 lllustration of El Nifio and La Nifia onset forecasts. For the 2010/11
El Nifio/La Nifia events we show some example forecasts from the cm4i
model. The El Nifio and La Nifia events are defined from observations and
denoted by red and blue shading respectively. To qualify as an El Nifio/La
Nifia onset forecast, the forecast must have been initiated before the event
occurred in observations (prior to and outside the red/blue area) and
contain lead times that land during the period of the observed event (red/
blue area). The model forecasts that land in the El Nifio event time window
are denoted by upward triangles and constitute the set of forecasts used to
assess onset for the El Nifio event shown. These may or may not
correspond to El Nifio events in the models. The set of forecasts that qualify
for La Nifia onset here are denoted by downward triangles.

this is unfair to real-time forecasts, we refer to this as the unfair method. unfair
forecasts are given by fett = F — (Fiest) .+ In practice, the model reference
climatology for the unfair method is usually calculated from the entire hindcast
period covering both the training and testing periods in the schematic in Fig. Box 2;
(r) = (Firainttest) o~ This yields very similar results to using the test period only.
We restrict the definition of unfair to the more restricted test period here so that
the length of the reference climatology is equivalent in both the fair and unfair
methods, and only the period varies.

Unfair cross-validated. In the unfair-cv method the reference climatology in the
test period is calculated in a cross-validated sense, where a segment of the set of
forecasts is removed from Fie in the period surrounding the time at which each
flesttest js calculated. Here, we remove the year in which the anomaly is calculated
and an additonal set of years either side of that year. We test variants of this with 1,
3, 5, and 7 years total removed in a centred window on the year in which the
anomaly is calculated. This cross-validated unfair method is denoted as unfair-cv
and is represented by the dashed red lines in Fig. Box 2. The results for unfair-cv
are not very sensitive to the window length used here, so we show results for the 7-
year window to maximise any potential affect of cross-validation.

Fair. For this method the reference forecast climatology is based appropriately in
the training period. We refer to this method as fair. The fair reference climatology,
(r) = (Fiygin) . corresponds to the green box in Fig. Box 2. The fair anomaly

forecasts are "™ — F —(F_.

Fair-sliding. In one variant of fair tested here (fair-sliding), we maintain the same
number of years in the reference climatology as fair, but the reference climatology is
allowed to slide along behind each forecast (represented by dashed blue lines in Fig.
Box 2), and thus does extend into the testing period for some forecasts (but still uses
only observations available at the time the forecast is started). The reference clima-
tology for fair-sliding always contains 17 years up to the year of the current forecast, y,

such that the fair-sliding anomaly forecasts are f» =167 = F — (Fy_t6my) .

Fair-all. In another fair variant, (fair-all), the reference climatology includes all years
in the training and testing period that precede the forecast, and thus the number of
years in the reference climatology grows as the forecasts step through the testing

period (Fig. Box 2, dashed orange lines). The first year of the training period is 1982,
so the reference climatology for fair-all extends from then to the year of the current

forecast, y. The fair-all anomaly forecasts are given by f01%2~Y = F — (F 1982530, -

A comparison of the performance of the fair variants relative to one another is given
in Supplementary Note 4. The forecast anomalies generated for each of the fair
variants are shown in Supplementary Note 5.

Consistency of reference periods. When the forecasts are verified against
observations, the observed anomalies use the same periods for the reference cli-
matology as the forecasts. For example, for the unfair forecasts the observed
anomalies are 0°*'*t = O — (Oy),,- For the fair forecasts the observed anomalies
are 0° M = O — (O i), Similarly, the regression model forecasts are trained
using consistent observed anomalies and periods as used by the model forecasts to
which they are compared.

Onset definition. Forecasting onset of ENSO events involves issuing a forecast of
the event before the event has begun. We represent onset forecasts schematically
for El Nifio in Fig. 6. An onset forecast is any forecast that was initiated prior to an
event and terminates during the event (where the event is defined in observations).
We consider here only onset where the event occurs in observations and may or
may not occur in models (true positives/false negatives). We do not examine
forecasts of onset where the event occurs in models but not observations (false
positives), for which the models may perform differently again.

Data availability

All data used here is available to the public. NMME forecasts are available from https://
www.cpc.ncep.noaa.gov/products/ NMME/. C3S forecasts are available from https://iridl.
ldeo.columbia.edu/SOURCES/.EU/.Copernicus/.CDS/.C3S/. The Optimum Interpolation
Sea Surface Temperature (OISST) data were downloaded from https://www.esrl.noaa.
gov/psd/data/gridded/data.noaa.oisst.v2.html.

Code availability

The analysis in this paper was carried out using the following open-source Python
packages: doppyo (https://github.com/csiro-dcfp/doppyo), xskillscore (https://xskillscore.
readthedocs.io/en/stable/), xarray (http://xarray.pydata.org/en/stable/), numpy (https:/
numpy.org/), dask (https://dask.org/), scipy (https://www.scipy.org/), scikit-learn
(https://scikit-learn.org/), and matplotlib (https://matplotlib.org/).
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