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Modelling armed conflict risk under climate change
with machine learning and time-series data
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David Helman 5,6 & Tobias Ide 7

Understanding the risk of armed conflict is essential for promoting peace. Although the

relationship between climate variability and armed conflict has been studied by the research

community for decades with quantitative and qualitative methods at different spatial and

temporal scales, causal linkages at a global scale remain poorly understood. Here we adopt a

quantitative modelling framework based on machine learning to infer potential causal lin-

kages from high-frequency time-series data and simulate the risk of armed conflict worldwide

from 2000–2015. Our results reveal that the risk of armed conflict is primarily influenced by

stable background contexts with complex patterns, followed by climate deviations related

covariates. The inferred patterns show that positive temperature deviations or precipitation

extremes are associated with increased risk of armed conflict worldwide. Our findings indi-

cate that a better understanding of climate-conflict linkages at the global scale enhances the

spatiotemporal modelling capacity for the risk of armed conflict.
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Armed conflict is the intervention of armed forces resulting
from a disagreement over territory, policy and/or
resources between two or more organized armed groups,

governments or non-governments1,2. Among various conceptions
of armed conflict most prominent is the Uppsala Conflict Data
Program (UCDP) georeferenced event dataset (GED) which
defines an armed conflict event as “an incident where armed force
was used by an organised actor against another organized actor,
or against civilians, resulting in at least 1 direct death at a specific
location and a specific date”3. This allows to measure the fre-
quency of armed conflict events in terms of incidence (armed
conflict event in a particular year) and onset (incidence without
armed conflict event in previous year) in spatial and time units
(see the equations in Supplementary Information). In our ana-
lysis, we count the existence of both incidence and onset of armed
conflict events, while other aspects of armed conflict are not
specified such as conflict intensity or consequences, conflict
parties, historical context or other patterns of conflict which are
considered in the literature.

According to UCDP-GED, more than 91,000 armed conflict
events occurred globally between 2000 and 2015, which directly
caused approximately 654,000 deaths, including nearly 144,000
civilians4. In Asia and Africa, the Armed Conflict Location and
Event Data Project (ACLED) reported that more than 23,000
armed conflict events occurred from January to August 2017,
killing approximately 24,000 people5. Although the global trend
of armed conflict events has declined in both number and
intensity over a decade long perspective, with particularly sharp
declines in higher-intensity conflict6,7, the frequency of armed
conflict events in several areas shows an upward trend, becoming
more concentrated in Africa, the Middle East and South Asia5.

In recent years, understanding conflict risk has drawn
increased attention from an interdisciplinary group of scientists
because it is of great significance for human safety and security8.
The term conflict risk has been associated with the probability of
armed conflict events9 which is adapted here to refer to the fre-
quency of armed conflict events which involves armed conflict
incidence and armed conflict onset. Both researchers and policy
makers have recently discussed intensively whether climate
change impacts conflict risks9,10. The United Nations Security
Council, for instance, has conducted discussion on climate
change and security in every year since 2018.

Research on the climate–conflict connection covers a wide
range of climate phenomena as well as conflict dimensions
which makes the diverse outcomes of the different studies
difficult to compare. Although scientists have yet to agree on
the causal climate–conflict connections11–14, there is an
increasing acceptance that climate change or changes in climate
variability increase the risk of armed conflict in certain
circumstances9,15,16. For instance, the fifth assessment report
(AR5) of the Intergovernmental Panel on Climate Change
(IPCC) shows that climate change has the potential to increase
rivalries between countries over shared resources, meaning that
climate change increases the threat of armed conflict17. In
addition, several studies use archaeological excavation data to
address the connection between climate variability and conflict
on a long-term or global scale basis. For example, Kuper and
Kröpelin linked climatic variations with prehistoric occupations
during the past 12,000 years based on radiocarbon data. They
demonstrated that the climate-controlled desiccation and
expansion of the Saharan desert since the mid-Holocene period
may ultimately be considered a driver of Africa’s evolution up
to modern times18. Hsiang et al. conducted a comprehensive
review of the literature from 1986 to 2013 on the intertemporal
associations between climatic variables and conflict and found
that the magnitude of the climate’s effect on modern conflict is

highly statistically significant19. These studies explore the
connection between conflict and climate fluctuations based on
long-term data across the millennium and cannot avoid the
common problem regarding high levels of uncertainty. Com-
pared with these long-term series datasets, climate and armed
conflict data have become more accurate over the last thirty
years. This development can be highly beneficial for research
on climate change and armed conflict20. Schleussner et al.
employed the event coincidence analysis method to test for
statistical interrelationships between climate-related disasters
and conflict risk at the global scale for the period from 1980 to
2010. They revealed that approximately 23% of conflict out-
breaks in ethnically highly fractionalized countries robustly
coincide with climatic calamities21. Likewise, Ide et al. find that
climate-related disasters increase the likelihood of armed con-
flict in contexts of ethnic exclusion, low human development
and large populations14. Bretthauer argues that climate-induced
water and land scarcity increase armed conflict incidence22.
However, the above three studies primarily explored the rela-
tionship between climate change and conflict at the national
level14,21,22, which disregards spatial variations in conflict risk
within countries and assumes that the conflict’s presence is
uniform across large areas. In several studies, there is no clear
evidence of a connection between climate variability and
conflict12. For this phenomenon, Uexkull et al. proposed that
one reason may be the failure to properly specify the appro-
priate time and space ranges within which climatic extremes
can undermine social stability and increase conflict risk.
Therefore, they quantified the drought-conflict relationship on
politically relevant ethnic groups and growing-season periods.
The results showed that the likelihood of a sustained conflict
increased with local droughts between 1989 and 2014 in Asia
and Africa23.
The simulation and prediction of conflict risk at finer

scales are essential for promoting societal stability and peace.
Scheffran et al. presented a systematic analytical framework for
the link between the climate system, natural resources, human
security and society stability24,25. Hegre et al. outlined a
methodological framework and combined several modelling
approaches to evaluate conflict risk at the country and subna-
tional level in Africa26. However, exploring the causal
climate–conflict linkages at the global scale is still a challenging
task. In recent years, simulation- and data-driven approaches
(named machine learning) have been proven to have the
potential to solve many complex problems based on large
amounts of data27–29, including climate-conflict linkages30.
Therefore, we propose the potentially tractable question of
whether the machine-learning approach could be used to dis-
cover patterns between conflict risk and high-dimensional
covariates.

In this research, we combined a machine-learning approach
with high-frequency time-series data to model armed conflict
risk under climate change. We proposed a hypothesis that
where such patterns exist, a machine-learning model fitted from
a single-year dataset should have a certain ability in predicting
armed conflict risk in other years with the pattern we capture.
We adopted a time-cross validation method to prove our
hypothesis at a more detailed scale. We showed that the risk of
armed conflict is primarily influenced by stable background
contexts with complex patterns, followed by climate deviations
related covariates. We further revealed that positive tempera-
ture deviations or precipitation extremes are associated with
increased risk of armed conflict worldwide. We also simulated
the risk of armed conflict worldwide from 2000 to 2015. Thus,
this study provides a novel insight into understanding the
climate–conflict link at the global scale.
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Results
Time-cross validation analysis. Based on the UCDP GED and
high-frequency time-series covariate dataset, we constructed a series
of armed conflict incidence samples and armed conflict onset
samples under the four strategies (See Methods). To verify the
feasibility of machine learning models, we propose a time-cross
validation method in which the boosted regression tree (BRT)
models trained on one-year samples should have good performance
on the samples of other years. Figure 1 shows the performance of
BRT models on the time scale under strategies a and a+, which
illustrate that the area under the receiver operator characteristic
curve (ROC-AUC) of the 20 ensemble BRT models trained on one-
year incidence samples under strategy a+ was higher than that of
strategy a (0.886 ± 0.039 s.e. vs 0.878 ± 0.038 s.e., p < 0.01). The
detailed performances of the 20 ensemble BRT models under four
strategies during time-cross validation process are shown in Sup-
plementary Figs. 2–5 and Supplementary Tables 1 and 2. A pre-
dictor with a ROC-AUC value of 0.5 is a random predictor.
Therefore, the ensemble BRT models are positive predictors. The
time-cross validation results prove the hypothesis that there is a link
between conflict risk and high-dimensional covariates.

Performance assessment of boosted regression tree models. In
order to avoid the models skewing to the single-year sample, we
merged the samples from 2000 to 2015 to train the BRT models.

Based on the 20 simulation processes, pairing stable background
contexts with climate variability (strategies a and a+) can simulate
the spatial-temporal dynamics of armed conflict incidence well, as
evidenced by the 10-fold cross-validation ROC-AUC (0.937 ±
0.001 s.e.). Compared to strategy a, strategy a+ considers 24-month
climate deviations from normal, which provided a higher 10-fold
cross-validation ROC-AUC (0.939 ± 0.002 s.e.) value. The perfor-
mance assessment of the 20 ensemble BRT models trained on all
samples under four strategies are described in Supplementary
Tables 3–6. Illustrated that the significant differences (* means
p < 0.05) that were observed for the performance of the BRT models
trained on all samples under strategy a+ was comparable to those of
strategy a.

The relative contributions of each covariate. For the 20
ensemble BRT models trained on all incidence samples from
strategies a and a+, Supplementary Figs. 6 and 7 reveal that the
main predictors are mean temperature (46.493 ± 1.187 s.e. % and
45.944 ± 1.171 s.e. %, positive association), natural disaster hot-
spots (15.925 ± 0.725 s.e. % and 15.706 ± 0.753 s.e. %, complex
association), mean precipitation (10.609 ± 0.885 s.e. % and 10.545 ±
0.831 s.e. %, positive association), socio-economic covariates
(9.758 ± 0.667 s.e. % and 9.684 ± 0.648 s.e. % for urban accessibility,
negative association; 3.150 ± 0.166 s.e. % and 3.207 ± 0.197 s.e. % for
nighttime lights, positive association), elevation (5.900 ± 0.342 s.e. %
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Fig. 1 Validated performance on a time scale of the boosted regression tree models. The boosted regression tree (BRT) models were trained on one-year
incidence samples under strategies a (a) and a+ (b). Throughout the validation process, the values of area under the receiver operator characteristic curve
(ROC-AUC) range from 0.750 (Dark brown) to 1 (Green). The p value (p= 0.0013) was determined by the two-tailed Mann–Whitney test (n= 256),
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(same as a, but with two-year climate deviations) during the validation process. For each box plot, the ‘×’ indicates the mean; the box indicates the upper
and lower quartiles and the whiskers indicate the 5th and 95th percentiles of the data.
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and 5.578 ± 0.293 s.e. %, positive association), politically relevant
ethnic diversity (2.889 ± 0.191 s.e. % and 2.835 ± 0.189 s.e. %,
positive association) and normalized difference vegetation index
(2.762 ± 0.197 s.e. % and 2.695 ± 0.190 s.e. %, complex association).
Figure 2 and Supplementary Fig. 8 illustrate that the relative con-
tributions of standardized temperature index (1.720 ± 0.167 s.e. %,
positive association; 2.508 ± 0.231 s.e. %, positive association) and
standardized precipitation index (0.794 ± 0.090 s.e. %, positive
association; 1.298 ± 0.133 s.e. %, positive association) are relatively
low when compared with stable background contexts for strategies
a and a+. The relative contributions of each covariate for the 20
ensemble BRT models trained on all onset samples under strategies
a and a+ are shown in Supplementary Figs. 9–12.

Temporal and spatial distribution of global simulated risk level
of armed conflict. Figure 3 depicts the simulated probability of
armed conflict incidence in 2000, 2005, 2010 and 2015 based on
the 20 ensemble BRT models trained on all incidence samples
under strategy a+, showing the changes among the simulated risk

level derived from different years. In 2000, the simulated high-risk
areas for armed conflict incidence were concentrated in Mexico
and Central America, northwestern South America (Venezuela and
Colombia), Africa (Guinea, Algeria, Uganda, Kenya and northern
part of Ethiopia) and several portions of Asia (Iran, Afghanistan,
Pakistan, India, Nepal, Bangladesh, Thailand, Malaysia and Phi-
lippines) (Fig. 3a). Compared with Fig. 3a, Fig. 3b reveals that the
simulated high risk for armed conflict incidence in areas south of
North America extends from southern Mexico to northern Mexico.
In addition, there is increased risk of armed conflict incidence in
eastern Turkey and eastern Afghanistan, while the risks of armed
conflict incidence in northern Algeria were reduced in 2005. The
main differences between Fig. 3b, c occur in Mexico, Colombia,
Morocco, Sudan, Uganda, Afghanistan and India. For example, the
simulated risks of armed conflict incidence in southern Sudan,
Uganda and eastern India in 2010 were higher than those in 2005,
and the risks of armed conflict incidence in northern Mexico and
northwestern Colombia in 2010 were lower than those in 2005. In
2015, the risks of armed conflict incidence in northwestern Mexico,
Afghanistan and eastern part of Ethiopia were higher than the
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simulated results in 2010 (Fig. 3d). The final risk level maps
derived from the mean of 20 ensemble BRT models trained on all
incidence samples or all onset samples are shown in Supplemen-
tary Figs. 13–20, respectively.

Discussion
Previous studies conducted by O’Loughlin et al. suggested that
conflict risk is associated with climate anomalies but is influenced
more by political, socioeconomic, and geographic contexts,
especially in sub-Saharan Africa20,31. Our findings reveal that
there are similar patterns at the global scale. For instance, the
stable background covariates (see Supplementary Information)
greatly contributed to the spatial-temporal distribution of armed
conflict incidence with a mean relative contribution of more than
96.0% (Supplementary Table 7). Compared with the stable
background covariates, the standardized temperature index or
standardized precipitation index had relatively little effect on the
simulated results, but covariates related to climate deviation
cumulatively accounted for more than 2.5% of the simulated
results. This is the reason for why the simulated risk level of
armed conflict incidence in the local regions varies in different
years. We interpret this as evidence of an impact of climate
change on conflict risk. Supplementary Table 3 suggests that
considering the two-year climate deviations can slightly improve
the performance of the BRT models. This result can be seen as
partially supporting other research findings that sequential multi-
year deviations from normal climate conditions (to which
societies are adapted) may in-part or by-whole affect the stability
of societies, both historically32,33 and in the current time period34.
Supplementary Table 7 reveals that the long time period climate
deviations have a greater impact on risk level with the relative
contribution values of 3.806%. This is in the lower range of, but in
line with the diverse disciplines experts’ judgments that 3–20% of
conflict risk are related to climate change9.

While an increasing number of quantitative studies find that
climate change has an impact on armed conflict incidence,
evidence regarding climate change and armed conflict onset is
more scarce and contested10,23,35. Our study thus not only
simulates the likelihood of armed conflict incidence, but also
further explores the feasibility of simulating armed conflict
onset. Based on the definitions adopted by van Weezel36, we
constructed an incidence and an onset indicator to represent
conflict risk and carried out modelling analysis separately. The
findings further suggest that combining machine learning with
high-frequency time-series data has great potential in predict-
ing the risk of armed conflict onset at a global scale (Supple-
mentary Figs. 4, 17 and 18). In addition, our results also
indicate that armed conflict onset is more sensitive to climate
change than armed conflict incidence at a global scale, as shown
in Supplementary Tables 7 and 8.

Our procedure allows for quantifying the relationship between
covariates and armed conflict at a global scale. Overall, the dis-
covered patterns derived from a large amount of data are com-
plex. This is the case because different meteorologic, geographic,
political and socioeconomic contexts may make human beings
adapt differently to environment stress37,38, leading to varying
social stability responses to climate change. However, there are
several universal patterns, as shown in Supplementary Figs. 6, 7, 9
and 10. For instance, the positive association between conflict risk
level and ethnic diversity illustrates that a greater diversity of the
politically relevant ethnicity leads to higher risk of conflict, which
is consistent with several previous studies21,39–41. Meanwhile,
there is a positive link between conflict risk level and urban
accessibility, revealing that transportation hubs can easily become
the outbreak site of conflict since they play a key role for

controlling territories and conflict logistics42,43. For the climate
deviations related covariates, a few studies have suggested that
negative temperature deviation in temperate locations may lead
to various forms of conflict and negative precipitation deviation
coincided with social instability23,44–46. However, modern
humans’ adaptability to climatic changes is much higher than that
recorded in historical studies due to the improvement in tech-
nological adaptability and the increase in complexity of social
structure. It is still likely, however, that climate change exceeds
the adaptive capacities of specific regions (e.g., when they are
remote and agriculturally dependent) or groups (e.g., when they
are poor and politically excluded). This makes inferences drawn
from singular cases (e.g., the Syrian civil war) for the global scale
problematic. Figure 2 and Supplementary Figs. 8, 11 and 12
indicate that positive temperature deviations or precipitation
extremes are associated with increased risk of armed conflict
across the globe from 2000 to 2015. This vindicates the results of
other studies, such as those of Hsiang et al.19, Mach et al.9, and
Helman and Zaitchik47. In addition, our findings reveal that
rising temperature has a greater nonlinear impact on the risks of
armed conflict incidence and armed conflict onset than pre-
cipitation deviation at a global scale.

Based on high-dimensional datasets and large volumes of
occurrence records, we used the BRT models to simulate the
global risks of armed conflict incidence and armed conflict onset
at a grid-year level (0.1° × 0.1°) under four strategies. Globally, the
distribution of conflict risk from 2000 to 2015 shows obvious
spatial agglomeration characteristics, which can be well simulated
by the models. The simulated results depend on the distributions
of the samples. To improve the simulation accuracy and reduce
the impact of low-risk samples, we repeat the process of randomly
selecting the low-risk samples 20 times and constructing the BRT
models based on each sample set. The maps of uncertain level
associated with these simulations are generated based on standard
deviation values calculated for each grid across the 20 ensemble
BRT models, which are presented in Supplementary Figs. 21–28,
respectively. The uncertain level maps illustrate that there is low
simulation uncertainty.

In this study, there are some caveats. First, media reports
represent one source of data for UCDP GED, and well-known
media bias may add uncertainty to our results to some extent.
Although several measures (i.e., triple-checked) were employed
to ensure high quality of final dataset4, UCDP was unable to
resolve the bias in the GED completely and include all armed
conflict events in its dataset. Second, our analysis was based on
the global-scale multi-dimensional spatial-temporal refined
dataset. Due to the lack of refined datasets of cultural and
historical factors, our training of the machine learning models
is limited in quantifying the role for these variables. However,
with more samples for machine learning models to train on, our
global-scale refined analysis can help models capture more
reliable relationships. Third, there is no general theory to
explain the causal mechanism of the climate–conflict link at
the global scale, but our modelling framework may be helpful
for early warning of conflict risk. This is indicated by the
comparative analysis that the predicted risks of armed conflict
incidence in Africa (Supplementary Fig. 29b) are generally
consistent with the risk level estimated by Hegre et al.26. In the
aggregate, our study provides a better understanding of
a climate–conflict link at the global scale and enhances
the spatial-temporal modelling capacity for the risk of armed
conflict worldwide.

Methods
Analysis. We assume that a machine learning model should be able to infer
potential patterns between armed conflict and climate variability based on
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established facts, which may help to simulate the risk of armed conflict. The
potential patterns may be complex. To capture complex responses, the boosted
regression tree (BRT) modelling framework was adopted based on the R version
3.3.3 64-bit statistical computing platform. In the present study, independent
variables are classified into two categories: stable background contexts and cli-
mate deviation related factors. The former is used to reflect various meteor-
ological, geographical, political and socioeconomic contexts, while the latter is
adopted to depict the extent of climate change. Based on UCDP GED, two binary
dependent variables, including armed conflict incidence and armed conflict
onset, were defined for each 0.1° × 0.1° grid on a yearly basis to represent armed
conflict risk. If there are one or more instances of armed conflict event in one
grid in a single year, the armed conflict incidence indicator is coded as one
(high-risk) for the grid. In addition, if a new armed conflict event outbreak
occurs after one calendar year of inactivity in one grid, armed conflict onset is
assigned the value of one for the grid. Both binary dependent variables are
otherwise assigned the value of zero (low-risk). For each year, an equivalent
amount of low-risk samples and high-risk samples are randomly selected to
construct the one-year samples and to train the BRT models. The detailed
description of the BRT modelling framework, of independent variables and
dependent variables can be found in the Supplementary Information.

In this study, we use the term conflict risk which has been associated with the
probability of armed conflict events9, adapted here to the frequency of armed
conflict events according to the UCDP GED database (see Introduction). This
allows to measure the incidence and onset of armed conflict in spatial and time
units (Supplementary Information). We design two strategies to construct the
sample’s dimensional information: (a) the pairing of stable background contexts
with climate deviation related covariates, and (b) combining long-term
precipitation and mean temperature distribution with the climate deviation related
covariates. In addition, we add two strategies named a+ and b+ to analyze the
effects of longer-term climate deviations. More information about these four
strategies are described in Supplementary Information. All covariate layers are
aggregated for each year from 2000–2015 to a common 0.1° global grid using a
unified coordinate system (i.e., WGS-84). This results in a total of 1,443,579 grid
units after excluding grids with missing covariates data. The analytic process
overview is shown in Supplementary Fig. 1.

Data
Armed conflict database. GED 17.1 version data are taken from the UCDP website,
which is an openly available armed conflict dataset with georeferenced
information4. This dataset records three types of armed conflict events (state-based
conflict, non-state conflict and one-sided violence) with at least 1 direct death at a
specific location and with specific data. The maximum spatial resolution of the
UCDP GED 17.1 version is the individual village or town. Therefore, we can
localize armed conflict to 0.1° × 0.1° grid based on latitude and longitude
coordinates.

Precipitation. Studies find that deviations from normal precipitation systematically
increase the risk of various forms of conflict, which is apparent across time periods
spanning 10,000 BCE to the present and across all major world regions19,21. For
instance, a local negative precipitation deviation is found to increase conflict risk
especially for agriculturally dependent regions23. Given the ability to broadly reflect
the drought/humid episodes across the globe48, the standardized precipitation
index is adopted to indicate deviation from the historical average precipitation
(since 1970). The Climate Research Unit TS4.0 global dataset downloaded from the
Climatic Research Unit (CRU) of University of East Anglia was used to construct a
monthly gridded land surface precipitation dataset on 0.5° × 0.5° grids for the
period from 1901 to 2015. Then the monthly precipitation dataset was used to
generate long-term (1970–1999) mean precipitation distribution data, one-year
and two-year standardized precipitation index (2000–2015). To match other cov-
ariates, we resampled these data to 0.1° × 0.1° grids.

Temperature. Temperature variability has been linked to conflict49. For example,
colder temperatures in temperate climates resulted in crop failure, and warmer
deviations introduced agricultural stress in warmer climates20. In the present study,
the standardized temperature index was used to measure the deviation from the
long-term temperature (since 1970). From the CRU website, we acquired the
monthly mean temperature dataset that is arithmetically derived from the Climate
Research Unit TS4.0 global dataset at each 0.5° latitude/longitude grid cell across
the global land surface. Then long-term (1970–1999) mean temperature distribu-
tion data, and the one-year and two-year standardized temperature index
(2000–2015) were produced and resampled to 0.1° × 0.1° grids.

Vegetation index. Previous literature has also illustrated a link between vegetation
index and conflict20. For instance, the vegetation index could be used to measure
food availability for both animals and humans20. In this study, we acquired an
advanced very high-resolution radiometer (AVHRR) normalized difference vege-
tation index dataset with an 8 × 8 km spatial resolution and a 15-day interval
temporal resolution for 1982 through 2015 from the Global Inventory Modelling
and Mapping Studies group. Based on the AVHRR dataset, we produce the mean

normalized difference vegetation index layer with a 0.1° × 0.1° spatial resolution to
reflect the long-term average level of food availability.

Natural disaster hotspots. Based on the event coincidence analysis, there is a
coincidence rate of 9% between the occurrence of disasters resulting from natural
hazards and the outbreak of armed conflict for the period from 1980 to 2010 at the
global scale21. Given that different natural disasters may have different impacts on
human life, we assume that there are some unexplored relationships between
natural disaster hotspots and armed conflict. In the present study, the global multi-
hazard frequency and distribution data downloaded from the Socioeconomic Data
and Applications Center of Columbia University are employed to present natural
disaster hotspots using a simple multi-hazard index.

Topography. The role of terrain in military affairs has been discussed in most
studies regarding the anatomy of organizations in conflict50, such as Sun Tzu’s Art
of War compiled more than two thousand years ago51. There is also a well-
established link among topography, extreme weather (i.e., hail incidence) and the
military52,53. Given these situations, we use the elevation dataset obtained from the
NASA Shuttle Radar Topographic Mission to depict the topography and adopted
this covariate as one of the inputs to the model.

Ethnic diversity. The previous literature has shown a close relationship between
politically relevant ethnic groups and the risk of armed conflict in large parts of
developing countries39,40. Ethnic diversity might play a prominent role in conflict-
prone regions (particularly in Africa and Asia), thus serving as a predetermined
conflict line21. In addition, most contemporary civil wars are found in the vicinity
of ethnic lines41. The Geo-referencing Ethnic Power Relations (GeoEPR) 2014
dataset is adopted in the present research. This assigns every politically relevant
ethnic group to vector polygons and provides their distributions on digital maps54.
Based on the GeoEPR 2014 dataset, we produce a global ethnic diversity layer with
0.1° × 0.1° spatial resolution, which counts the number of different politically
relevant ethnic groups in each grid.

Urban accessibility. Due to the key role in control territories, the transportation hub
is often the target place that strategists must contend for42. Previous research
conducted by Hegre et al. regarded the travel time to the nearest city as a social
covariate in the conflict risk modelling process26. In this study, the travel time to
the nearest city with a population of 50,000 people or more is used to simulta-
neously account for urban accessibility. The urban accessibility dataset is open
access and downloaded from the European Commission Joint Research Center
website, which is derived from land and water-based transportation networks based
on a friction-of-distance algorithm55.

Nighttime lights. A recent expert assessment of the relationship between climate
change and armed conflict shows that several experts from diverse disciplines regard
low socioeconomic development as the key predictor of conflict9. In this study, the
nighttime lights dataset was used, which could provide a potentially global measure of
the changes in socioeconomic development dynamics at certain levels of gross
domestic product (GDP) and population-driven growth56. In contrast to GDP and
other indicators of macroeconomic performance, nighttime lights can reflect the
socioeconomic level at an approximately 1 km spatial resolution, which is less
immediately affected by commodity price fluctuations. Nightlight data are also
increasingly used in climate security research57. The stable type nighttime lights data
from 2000 to 2013 were downloaded from the website of the Defense Meteorological
Satellites Program/Operational Linescan System. Based on the 14-year nighttime
lights dataset, we calculate the mean nighttime lights value for each grid cell and then
resample the average annual nighttime lights layer to 0.1° × 0.1° grids.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study is publicly available. UCDP GED 17.1 version can be accessed
from https://pcr.uu.se/research/ucdp/. The Climate Research Unit TS4.0 global dataset
can be accessed from https://www.uea.ac.uk/web/groups-and-centres/climatic-research-
unit/. The AVHRR normalized difference vegetation index dataset can be accessed from
https://ecocast.arc.nasa.gov/data/pub/gimms/. Natural Disaster Hotspots dataset can be
accessed from https://sedac.ciesin.columbia.edu/. Elevation dataset can be accessed from
https://eospso.gsfc.nasa.gov/missions/shuttle-radar-topography-mission. The GeoEPR
2014 dataset can be accessed from https://icr.ethz.ch/. The urban accessibility dataset is
available on https://forobs.jrc.ec.europa.eu/products/gam/. Nighttime lights dataset was
downloaded from https://ngdc.noaa.gov/.

Code availability
The codes used in the present study are freely available online at https://github.com/
Celyon/ConflictRisk.
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