
ARTICLE

Photoredox catalytic radical fluorosulfonylation of
olefins enabled by a bench-stable redox-active
fluorosulfonyl radical precursor
Peng Wang1, Honghai Zhang1, Xingliang Nie1, Tianxiao Xu1 & Saihu Liao 1,2✉

Sulfonyl fluorides have attracted considerable and growing research interests from various

disciplines, which raises a high demand for novel and effective methods to access this class of

compounds. Radical flurosulfonylation is recently emerging as a promising approach for the

synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types

are severely restricted by limited known radical reagents. Here, we introduce a solid state,

redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium

triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox

conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are

bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins

with before challenging substrates. The advantage of FABIs is further demonstrated in the

development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges

a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus

benefit the related study in the context of chemical biology and drug discovery in the future.
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S ince Sharpless and co-workers introduced sulfur (VI)
fluoride exchange (SuFEx) reactions as a new generation of
click chemistry1, the popularity of sulfonyl fluorides has

grown dramatically over the recent past1–4, with applications in a
wide range of fields, including organic synthesis5–10, polymer
preparation11–14, materials science15–17, chemical biology
etc18–20. Particularly, unique and appealing properties were often
observed, which has attracted a fast-growing research interest on
sulfonyl fluoride being a privileged warhead in chemical biology
and drug discovery1,4,18, and successful examples keep emerging
in the past years18–27. Remarkably, enhanced activity was often
observed when the SO2F moiety was introduced, resembling, to
some extent, the common beneficial effect of trifluoromethyl and
fluorine groups in pharmaceuticals18–20,28–33. For example,
Sharpless, and co-workers recently found that fluorosulfonylated
Resveratrol showed a potent agent against resistant bacteria,
higher than that of the parent compound by over 200-fold
(Fig. 1)33. Accordingly, novel and efficient synthetic protocols to
broaden the scope of available sulfonyl fluorides are
desirable1–4,19–21.

Among the most common methods for the synthesis of sul-
fonyl fluorides1–4,34–46, direct fluorosulfonylation45–48 undoubt-
edly represents a concise and effective approach, and could be
particularly useful in the late-stage modifications of drugs and
biomolecules1–4. Most of the fluorosulfonylating reagents repor-
ted so far belong to the FSO2+ -type of synthons, including the
well-known sulfuryl fluoride gas (SO2F2)1 and other solid
reagents (such as FDIT, recently reported by Sharpless, Dong
et al., which exhibited high reactivity in the fluorosulfonylation of
phneols and amines47,48. In contrast, fluorosulfonylation with the
corresponding fluorosulfonyl radical (FSO2•) remains less
investigated4, likely due to the instability and challenging
preparation49. Recently, we used sulfuryl chlorofluoride (FSO2Cl)
as a radical precursor and we reported the radical fluor-
osulfonylation of alkenes50,51, affording an effective method for
the preparation of important alkenyl sulfonyl fluorides50–56.
However, when we applied this reagent to the development of
other transformations, e.g., the alkoxy-fluorosulfonylation reac-
tion of styrene (Fig. 2a), we failed to obtained any desired product
even after extensive optimization. Instead, undesired chloro- and
styryl-sulfonyl fluorides were obtained, which were supposed to the
products from a radical chain mechanism (Path I, Fig. 2b)50. The
weak S-Cl bond in FSO2Cl with a highly reactive chloride renders a
fast chloride atom transfer (k estimated >106M−1s−1)50,57 from
FSO2Cl to the radical intermediate Int-A; this rapid radical chain

propagation (Path I) makes it difficult to trap this radical with
other reagents or by single electron transfer (SET) oxidation to
establish a photoredox reaction pathway (Path II). Given this
challenging issue and also other limitations with FSO2Cl, such as:
chlorination side-reactions and low/no yields with electron-rich
substrates (as the chloride in FSO2Cl is highly electrophilic due to
the electron-withdrawing effect of the FSO2-group)50, incon-
venience in storage and handling due to the gaseous (b.p. 7 °C)
and moisture-sensitive nature, the development of a new and
convenient FSO2 radical precursor (X ≠ Cl) is highly desirable.
Here, we report our efforts toward this goal, and the introduction
of a solid-state, bench-stable type of reagents, 1-fluorosulfonyl
2-aryl benzoimidazolium triflate (FABI) salts, which can serve as
effective redox-active FSO2 radical precursors and enable the
development of radical fluorosulfonylation of olefins via a pho-
toredox catalytic pathway. FABI is compatible with many sub-
strates that were not compatible or low yielding when FSO2Cl is
used, such as electron-rich alkenes and triaryl ethylenes. More-
over, a cascade alkoxy-fluorosulfonyl difunctionalization of ole-
fins with FABI is presented, by trapping the postulated cationic
intermediate Int-B with alcohols via a photoredox pathway
(Fig. 2b, c).

Results
Reaction optimization. We commenced our study with the
screening of suitable FSO2 radical precursors in the form of
imidazolium salts under photoredox conditions (Table 1). In the
beginning, we tried a sample imidazolium salt, 2a47,58, but it was
found that 2a was unable to generate the FSO2 radicals under this
photoredox condition, delivering no any detectable formation of
the desired product (entry 1). This is unexpected, as the excited
fac-Ir(ppy)3 should be reducing enough (−1.73 V vs SCE) to
reduce 2a (−1.03 V vs SCE) via single electron transfer (SET). We
guess the extrusion of FSO2 radicals after accepting one electron
from excited fac-Ir(ppy)3 requires a good driving force of re-
aromatization (for details, see the mechanistic discussion later).
Therefore, we tested the imidazolium salt 2b and 2c58, with a
2-substitued or a fused phenyl group, respectively. Encouragingly,
we could observe a trace amount of 3aa (entry 2 and 3) Then, we
combined the effects, and synthesized two 1-fluorosulfonyl 2-aryl
benzoimidazolium triflate (FABI) salts: 2d and 2e. To our delight,
2d afforded a substantial improvement in the reaction efficiency
(entry 4), and the yield of the desired product 3aa can be further
improved to above 90% by using 2e as the precursor, together

Fig. 1 Applications of sulfonyl fluorides. Examples of biologically active molecules containing a SO2F moiety.
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with a high E/Z ratio (94%, entry 5). In this case, the desired
product can be isolated in 90% yield. For more details about the
reaction optimizations, please see the Supplementary Table 1 and
2. In addition, control experiments indicated that both the pho-
tocatalyst and light are crucial to the reaction (entry 7 and 8).

Substrate scope. Having the optimized reaction conditions in
hand, we moved on to investigate the reaction scope. As shown in

Fig. 3, this protocol could readily accommodate a variety of
styrenes (3aa-3ap) and showed a good tolerance of various
functional groups, including halides (F, Cl, Br, 3ae-3ai), ester
(3an), and nitrile (3ao), etc. Notably, 4-methoxystyrene is com-
patible with the current conditions with FABI 2e, the desired
sulfonyl fluoride 3ad can be obtained in 66% yield. In sharp
contrast, the previous method with FSO2Cl as the FSO2 radical
precursor afforded a messy reaction, and no desired product was
obtained50. Aliphatic alkenes were less favored by this system

a The development of radical alkoxy-fluorosulfonylation of styrene with alcohol as a nuleoplile
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(3aq-3ar), in line with the photoredox mechanism and the higher
difficulty in oxidizing simple alkyl radicals than benzylic
radicals59. Nevertheless, to our great pleasure, this FSO2 radical
reagent (2e) is well compatible with electron-rich olefins, allowing
for a facile access to β-O- or N-substituted vinyl sulfonyl fluorides
(3as-3bb). As shown in Fig. 3, alkyl vinyl ethers (3as-3av), phenyl
vinyl ether (3aw), vinyl acetates (3ax), vinyl thioether (3ay), and
N-vinyl amides (3az-3bb), were all well tolerated, which further
demonstrated the usefulness and advantages of FABI reagents
over FSO2Cl.

The direct radical fluorosulfonylation of cyclic, di- and tri-
substituted olefins enables the preparation of multi-substituted
vinyl sulfonyl fluorides. As shown in Fig. 4, the current protocol
with FABI 2e as the FSO2 radical reagent was found very effective
for the diaryl and triaryl olefins (4ad, 4ae, and 4ag-4an),
delivering the corresponding products in much higher yield than
that of reactions with FSO2Cl. For example, indene and 1,2-
dihydronaphthalene readily underwent the functionalization to
give 5ab and 5ac in 91% and 86% yield with FABI 2e,
respectively, while the yields were 68% and 63% when using
FSO2Cl as the radical precursor50. In the reactions of stilbene and
1,1-diphenylethylene, 2e also exhibited good reactivity (Fig. 4, 5ae
and 5af). The superiority of this reagent was further manifested in
the direct fluorosulfonylation of triarylethylenes (4ag-4an), and
the desired sulfonyl fluoride products (5ag-5an) can be obtained
in good to high yields (41–92%). In contrast, the previous method
with FSO2Cl gave 5ag in a quite poor yield (18%)50. The low E/Z
ratios in some cases probably resulted from the E/Z isomerization
of the starting olefins, suggested by the tracking experiment with
4aj and 4ak (Fig. 4, b), in which both starting olefin 4aj & 4ak
was found rapidly isomerized into Z/E 1:1 ratio in 10 min.
Further, more examples of triarylethylenes also afforded the

products (5ay-5ba, in the Supplementary Methods) in ~1:1 Z/E
ratios. Moreover, as shown in Fig. 4c, biorelevant molecules, such
as cinnamic alcohol, menthol, ciprofibrate, thymol, galactose,
abietic acid, chromene, tyrosine, estrone, and febuxosate-derived
alkenes, can all be readily modified with this reagent, affording
the corresponding sulfonyl fluorides (5ao-5ax) with a good
functional group compatibility and high structural diversity.

To our delight, this reagent (2e) could finally allow the
development of the alkoxy-fluorosulfonyl difunctionalization
reaction of olefins with alcohols as a nucleophile. As shown in
Fig. 5, in the presence of EtOH as nucleophile, this alkoxy-
fluorosulfonyl difunctionalization protocol could readily accom-
modate a variety of styrenes (7a-7l) and electron-rich olefins
(7m-7p). Reactions with other alcohols including methanol,
isopropanol also proceeded well (7q, 7r). Further, formic acid
(7 s) and acetic acid (7t) were also suitable nucleophiles, affording
the corresponding ester product in 72% and 55% yield,
respectively. It is worth mentioning that many β-hydoxy or
alkoxyl sulfonic acids, sulfonamides, and related compounds were
found showing various biological activity60–62, while the
corresponding β-alkoxyl sulfonyl fluorides could server as
precursors to access these molecules via SuFEx reactions1–4.

To gain some mechanistic insight into the reaction, the radical
scavenger 2,2,6,6-tetramethyl-1-piperidinoxyl (TEMPO, 2.0
equiv.) was added to the reaction mixture of 1a and 2e under
standard conditions. The reaction was found completely
inhibited, and no fluorosulfonylation product 3aa was observed
(Fig. 6 and Eq. 1). To further examine the involvement of FSO2

radical in the reaction, a radical-clock experiment was conducted
with cyclopropylstyrene (8), a well-known radical probe63,64, and
the cyclization product 9 can be isolated in 21% yield. This is in
accord with a redox mechanism, and suggested that

Table 1 Reaction optimization for the radical fluorosulfonylation of styrene with FABI salts as a radical precursora.

Entry Radical
Precursor

E1/2red (V
vs SCE)

Photocatalyst Yield of
3aab (%)

E:Z of
3aac

1 2a −1.03 fac-Ir(ppy)3 0 –
2 2b −1.08 fac-Ir(ppy)3 Trace –
3 2c −1.08 fac-Ir(ppy)3 Trace –
4 2d −1.09 fac-Ir(ppy)3 72 90:10
5 2e −1.07 fac-Ir(ppy)3 94 (90)d >20:1
6 2e −1.07 4CzIPN 43 85:15
7 2e −1.07 / 0 –
8 in dark −1.07 fac-Ir(ppy)3 0 –

LEDs light-emitting diodes, fac facial, ppy 2-phenylpyridyl, 4CzIPN 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile.
aOn 0.1 mmol scale.
bDetermined by 19F NMR analysis using 4-fluoriodobenzene as an internal standard.
cDetermined by 19F NMR.
dIn parenthesis is isolated yield.
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fluorosulfonyl radical addition to the double bond, followed by a
subsequent radical ring-opening of the three-membered cycle and
radical cyclization, should be involved (Fig. 6 and Eq. 2)50,63,64.
On the other hand, as demonstrated in Fig. 5, carbocationic

species can be trapped by alcohols. For comparison, we also
performed the reaction with FSO2Cl, in which no formation of 7a
was observed under the same reaction conditions (Fig. 6b). In
contrast, with FABI 2e as the radical precursor, the desired ether
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product 7a can be isolated in high yield, which further manifested
the superiority of the newly developed FABI agents.

According to these results, a possible reaction mechanism for this
radical fluorosulfonylation reaction using FABI 2e as the radical
precursor is proposed in Fig. 6c. First, under the irradiation of blue
LEDs, the photocatalyst (IrIII) is excited (E1/2IV/III*=−1.73 V vs
SCE)65 and then undergoes a single electron transfer (SET) to the
redox-active radical precursor 2e (E1/2red=−1.07 V vs SCE). Upon
the acceptance of one electron, 2e′ would undergo a homolytic
fission of the N-S bond, and give the desired FSO2 radicals.
Subsequently, the addition of FSO2• to styrene furnishes the key
radical intermediate Int-1. Oxidation of Int-1 by IrIV affords the
cationic species Int-2, which can be deprotonated to give 3aa, while
trapping Int-2 with alcohols (R’OH) could afford the difunctiona-
lization product 7. It is worth mentioning that when FSO2Cl was
used as FSO2• precursor, it was found unable to establish this redox
cascade difunctionalization reaction as shown in Fig. 6B, probably
due to the fast radical chain mechanism (Fig. 2B, path I) preventing

the SET oxidation of the radical intermediate Int-150,51. Further,
considering the other reagents 2a-c have similar redox potentials
(E1/2red=−1.03−1.09V vs SCE, see the Supplementary Informa-
tion) as 2e, the presence of both a benzo-moiety and 2-aryl group in
the reagents (FABI 2d and 2e) could probably facilitate the
extrusion of the desired FSO2 radicals by enhancing the driving
force of re-aromatization in the step from 2e′ to 2e″.

Discussion
In summary, 1-fluorosulfonyl benzoimidazolium triflate (FABI) salts
have been demonstrated as an effective redox-active fluorosulfonyl
radical precursor, featuring its solid state, bench-stable characters,
convenience to handle, and good tolerance of functional groups.
This radical fluorosulfonylation method allows for a facile access to
various vinyl sulfonyl fluorides from olefinic substrates, with
remarkable good compatibility to electron-rich substrates and triaryl
ethylenes, in comparison with the methods established with the
known FSO2 radical precursor. In particular, FABI could allow the
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radical fluorosulfonylation proceding through a photoredox pathway
and thus make it possible to develop the alkoxy-fluorosulfonylation
reaction of olefins via trapping the carbocationic intermediates. We
expect that the FABI reagents66 serving as a convenient and effective

radical precursor would bring about the design and development of
many radical fluorosulfonylation reactions, and further benefit the
related study in the context of chemical biology and drug discovery
in the future.
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Methods
General procedure. The fac-Ir(ppy)3 (1 mol%) and FABI 2e (2.0 or 3.0 equiva-
lents) were weighed into an oven-dried Schlenk tube, followed by the addition of
anhydrous 1,4-dioxane (4.0 mL, 0.025 M) and olefin substrate (0.1 mmol) under
argon. The reaction mixture was allowed to stir at room temperature under irra-
diation with blue LEDs for 12 h. Purification by column chromatography or pre-
parative thin-layer chromatography on silica gel gave the desired pure product. Full
experimental details and characterization of new compounds can be found in
the Supplementary Methods and Supplementary Figs. 11–238.

Data availability
The authors declare that all data generated in this study are provided in the article and
the Supplementary Information file, and are also available from the corresponding author
upon request.
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