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The purpose of our publication “A practical solution to pseudor-
eplication bias in single-cell studies”was to address a need to reduce
the number of studies that do not account for within-individual
correlation and report astronomically false associations1. The issue
is a statistical hypothesis testing question, and our perspective is
influenced by the theory underlying the analysis of correlated
data2–4. Both pseudobulk approaches andmixed models account for
the within-sample correlation. Murphy and Skene5 focus on a minor
point in our paper: the relative performance of the pseudobulk
approach in comparison to the two-part hurdle mixed model. We
concluded that pseudobulk methods “are only slightly under-
powered relative to mixed effects models when there is balance in
the numbers of cells per individual, [but] not as well powered as
mixed effects models when the numbers of cells per individual grow
increasingly imbalanced.” While recognizing that pseudobulk
approaches are easy to compute and perform well for basic
hypotheses, we noted that they are less flexible and slightly con-
servative. By definition, a statistical test is conservative if the type 1
error rate is less than the nominal level6. Mixed models directly
model within-individual correlation, are slightly more powerful with
unbalanced samples, and testmore complicated hypotheses, but are
more computationally intensive. We previously recommended the
two-part hurdle mixedmodel because it estimates the proportion of
expressing cells as well as the difference in magnitude conditional
on expression7. Our recommendation was thus not solely based on
power and type 1 error rate. Rather, our intent was to provide the
community with an immediately actionable method, consistent with
robust statistical theory and with great flexibility in modeling a
range of hypotheses. Our recommendation, although not the only
reasonable approach, is consistent with the established standard
approaches of repeated measures and clustered data analysis.

When comparing statistical tests, it is necessary to establish
the size of the test (type 1 error rate) before determining the
comparative power relative to those tests with appropriate size.
Thus, type 1 and type 2 error rates are not treated equally. Neither

the Matthew’s Correlation Coefficient (MCC) nor the receiver
operating characteristic (ROC) curves use this classic statistical
paradigm of maximizing power after first controlling type 1 error.
The MCC is simply the correlation coefficient for a 2 × 2 table and
is commonly used to summarize the performance of binary clas-
sifiers. The MCC can be expressed as:

MCC =
power � type 1 error rate
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where π represents the proportion of hypotheses expected to be
rejected under the null. Clearly, if the type 1 error rates are the same,
then the test with greater powerwouldhave a largerMCCand theMCC
agrees with the classic hypothesis testing paradigm. If two tests have
different type 1 error rates, the MCC can favor a test which fails to
control the type 1 error rate. In fact, as illustrated in Figure 1 ofMurphy
and Skene’s manuscript, failing to account for the within-sample
correlation causes very high type 1 error rates (>0.50) and yet yields
high MCC values5. Conversely, as observed from Eq. 1, a smaller type 1
error rate can also lead to a largerMCC.On the surface, a smaller type 1
error rate seems desirable. In classical statistical reasoning, such a test
should be recalibrated to have the appropriate size in order to (1)
understand the expected number of false rejections and apply
appropriate multiple comparison methods, and (2) balance type 1
error rate and power relative to the specifics of the application (e.g.,
clinical trial, scRNA-seq). Importantly, ranking different methods by
MCC means we are ranking as a function of the unknown proportion
under the alternative hypothesis, power, and type 1 error rate jointly.
However, the proportion and power are dependent on the specifics of
the two-parameter alternative hypothesis, and the resulting relation-
ship need not be monotonic. Although exceptions may exist, we
generally prefer tests with type 1 error as close to the stated nominal
level (e.g., 0.05, 0.001) and do not endorse the application of MCC in
this context.
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Murphy and Skene also use ROC curves to compare the power of
different tests at the same type 1 error rate. Unlike the MCC, ROC
curves can be interpreted in the classic hypothesis testing framework:
a method with a higher AUC tends to be more powerful at any given
level of type 1 error and would be preferred if the rejection threshold
has a known error rate. However, the threshold for a conservative test
to achieve a type 1 error rate of 0.05 may not be known, and this
information is hidden by the ROC curve. In the absence of a systematic
method for selecting the rejection threshold, we prefer tests with
known error.

Importantly, mathematically, the mixed model parameter esti-
mate has variance less than or equal to that of the pseudobulk esti-
mate, with exact equality only if there is an equal number of cells from
each individual. As a result, the power of the mixed model test is no
smaller than that of the pseudobulk test and is slightly greater in the
unbalanced setting. In reality, wenever see a perfectly balanced design
(though in practice the difference in power is small). Our original
simulations and statements are consistent with these theoretical
conclusions1.

In addition to the limitations of MCC and ROC curves for
comparing hypothesis tests, there are several misleading compo-
nents we would like to address5. First, in Supplementary Figure 1 of
Murphy and Skene, the two-part hurdle model is missing and adding
it would reveal how much closer the two-part hurdle model is to the
nominal p-value than the pseudobulk methods. Second, what Mur-
phy and Skene state as a “flaw” in our simulation regarding nor-
malization is not a flaw. Specifically, we explained in our Methods
section that this workflow was implemented to prevent DESeq2’s
normalization method from removing the simulated effects. Con-
trary to Murphy and Skene5, we also note that the pseudobulk test,
which has a type 1 error rate less than nominal level, is by definition a
conservative test. Lastly, Murphy and Skene rightfully point out that
our simulations to obtain type 1 errors for each method were not
completed on the exact same datasets. However, this is again a very
minor issue as both of our simulations are based on random draws
from the identical distributions. The type 1 errors presented in Table
1 of our manuscript are based on 250,000 iterations and are con-
sistent with Murphy and Skene’s results in Supplementary Figure 1
which are based on 20,000 iterations. Thus, our estimates go the
right place, but the bound on error of our estimates is markedly
smaller than Murphy and Skene’s bound on error.

In conclusion, it is of critical importance to account for the
within-individual correlation in scRNA-seq data, which produces
grossly inflated false positives when ignored. The two-part hurdle
mixed model is one powerful and flexible option which controls
type 1 error, is easily implemented with existing software, and is
consistent with statistical literature on the analysis of clustered
data. While aggregate methods are often a suitable alternative, we
do not endorse the use of MCC as the metric for comparing
hypothesis testing methods and we do not believe the differences
observed by Murphy and Skene are sufficient to warrant ignoring
mixed models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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