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Automated design of protein-binding
riboswitches for sensing human biomarkers
in a cell-free expression system

Grace E. Vezeau1, Lipika R. Gadila2 & Howard M. Salis 1,2,3,4

Cell-free genetically encoded biosensors have been developed to detect small
molecules and nucleic acids, but they have yet to be reliably engineered to
detect proteins. Here we develop an automated platform to convert protein-
binding RNA aptamers into riboswitch sensors that operate within low-cost
cell-free assays. We demonstrate the platform by engineering 35 protein-
sensing riboswitches for human monomeric C-reactive protein, human inter-
leukin-32γ, and phage MS2 coat protein. The riboswitch sensors regulate
output expression levels by up to 16-fold with input protein concentrations
within the human serum range. We identify two distinct mechanisms gov-
erning riboswitch-mediated regulation of translation rates and leverage com-
putational analysis to refine the protein-binding aptamer regions, improving
design accuracy. Overall, we expand the cell-free sensor toolbox and demon-
strate how computational design is used to develop protein-sensing ribos-
witches with future applications as low-cost medical diagnostics.

Synthetic biologists have created a wide variety of sensor systems to
detect small molecules and nucleic acids1–13. Several of these sensors
have been developed for usage in cell-free expression systems, where
there is no barrier between the expressionmachinery and exogenously
added bulky macromolecules that would otherwise be unable to pass
through a cellular membrane14–16. Cell-free sensors are particularly
useful as low-cost, portable diagnostic and field assays as they
genetically encode their owndetectionmachinery anddonot require a
cold chain during storage and distribution14,15,17–22. However, even
though protein detection is a cornerstone of both modern medical
diagnostics and biological research23, there are only a few cell-free
sensors that utilize gene regulation to detect proteins of interest24–26.

Currently, measuring protein titers is widely carried out using
immunoassays (e.g., enzyme-linked immunosorbent assays) or liquid
chromatography–mass spectrometry analytics, which can offer high
sensitivity and specificity across a diverse range of protein targets27,28.
More recently, another class of nucleic acid-based recognition ele-
ments, called aptamers, havebeenharnessed forprotein detection and

diagnostics29,30. Protein-binding aptamers are now available for spe-
cific binding to a wide variety of targets, including human proteins31–34,
HIV viral proteins35,36, and bacterial toxins37. However, these assays
require expensive detection reagents (e.g., purified antibodies or
synthesized aptamers), expensive and bulky instruments, sample cold
chain storage and distribution, and trained personnel. Instead, it is
possible to utilize RNA-based aptamers to develop low-cost, geneti-
cally encoded riboswitch biosensors that carry out in situ protein
detection within cell-free expression systems (TX-TL)38. Past efforts to
engineer such riboswitch sensors have largely relied on trial-and-error
experimentation, for example, constructing and characterizing large
random libraries to identify riboswitchvariants thatwork best. Instead,
it is possible to apply biophysical modeling and computational design
to engineer riboswitch sensors to directly couple protein binding to
gene regulation, thereby creating a sense-and-respond capability
without trial-and-error experimentation.

Here, we applied biophysical modeling and computational design
to engineer protein-detecting riboswitches that directly regulate the
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expression of a desired output protein within the TX-TL cell-free
expression system, utilizing our Riboswitch Calculator algorithm to
automatically convert RNA aptamers into designed riboswitch
sequences39. We initially engineered riboswitches to detect the phage
MS2 coat protein as a proof-of-principle, followed by engineering
riboswitches to detect human monomeric C-reactive protein (mCRP)
and interleukin-32 gamma (IL-32γ) as examples of medically relevant
biomarkers. The best riboswitch sensors regulated reporter expres-
sion levels by 13.8, 15.9, and 2.5-fold when sensing theMS2, mCRP, and
IL-32γ proteins, respectively, at biomarker concentrations of 1.25μM
mCRP and 0.78μM IL-32γ. We demonstrated that these riboswitches
controlled gene expression levels via two distinct mechanisms: (i)
protein-induced conformational changes to RNA structure, which
modifies the ribosome’s ability to initiate translation; and (ii) protein-
dependent steric repression, which blocks the ribosome from binding
to the 5′ untranslated region. We critically tested the accuracy of the
Riboswitch Calculator model predictions and found that improving
the specification of the protein-aptamer interaction led to higher
model accuracy. Overall, our automated design approach can be
applied to convert any protein-binding RNA aptamer into a protein-
detecting, cell-free biosensor with potential applications as portable,
low-cost diagnostics.

Results
Riboswitch design and characterization platform
We created protein-binding riboswitch sequences using a biophysical
model of translation-regulating riboswitches called the Riboswitch
Calculator, which combines statistical thermodynamics with compu-
tational optimization to design synthetic riboswitches according to
inputted specifications39. The design specifications include (i) the
sequence of an RNA aptamer that binds to the protein of interest; (ii)
the secondary structure of the RNA aptamer when it is bound by the

protein; (iii) the protein’s binding free energy (or binding affinity) to
the RNA aptamer; and (iv) the coding sequence of the protein whose
expression level is regulated by the riboswitch (Fig. 1A). The Ribos-
witch Calculator then identifies synthetic pre-aptamer and post-
aptamer sequences that maximize the riboswitch’s dynamic range,
utilizing a genetic algorithm to carry out computational multi-
objective sequence optimization. Together, these pre-aptamer and
post-aptamer sequences vary in length from 44 to 55 nucleotides,
creating an overall searchable sequence space of 1026 to 1033 sequen-
ces. When designing riboswitches that activate translation (ON
switches), the activation ratio is Rmax = TIRbound/TIRunbound, where
TIRbound and TIRunbound are the mRNA’s translation initiation rates in
the protein-bound and unbound states, respectively. When designing
riboswitches that repress the translation rate (OFF switches), the
repression ratio is Rmax = TIRunbound/TIRbound. Multiple equally optimal
riboswitch sequences are plausible. The Riboswitch Calculator identi-
fies the Pareto-optimal set of synthetic riboswitch sequences that are
all predicted to maximize Rmax with varying magnitudes of TIRbound

and TIRunbound.
To do this, the Riboswitch Calculator uses a statistical thermo-

dynamic model, called the RBS Calculator, to calculate the interaction
energies between the ribosome and mRNA that control its translation
initiation rate40,41. The strengths of these interactions are determined
by a 5-term Gibbs free energy model, including (i) conformational
distortions when ribosomes initially bind to upstream standby sites in
the mRNA; (ii) hybridization between the last 9 nucleotides of the 16S
rRNA and the mRNA at the Shine–Dalgarno (SD) sequence; (iii) the
unfolding of inhibitory mRNA structures that overlap with the ribo-
some’s footprint, spanning the region from the 5′ end of the SD
sequence to 13 nucleotides past the start codon; (iv) base pairing
between the start codon and the initiating tRNAfMet; and (v) ribosomal
stretching or compression due to non-optimal spacer sequences

Fig. 1 | Design of protein-sensing riboswitches and cell-free riboswitch char-
acterization. A A model of translation-regulating riboswitches takes as inputs the
sequence, structure, and binding free energy of a protein-binding RNA aptamer.
The model designs candidate riboswitch sequences that maximize activation or
repression of translation initiation in response to changing protein concentrations.
B The riboswitch sensor is tested in a cell-free expression system (TX-TL), adding
either protein expressionplasmidor purified protein.CRiboswitch sensor function
is characterized by measuring reporter protein expression levels in response to
changingprotein-ligand concentrations alongside the samemeasurements onano-

aptamer control. The riboswitch activation or repression ratio is determined by
comparing reporter expression levels, including the no-aptamer control measure-
ments, to exclude non-specific interactions. Example cell-free assaymeasurements
include (light blue), an MS2-sensing riboswitch without added MS2 protein; (dark
blue) an MS2-sensing riboswitch with added MS2 expression plasmid; (light red)
the no-aptamer control without addedMS2 protein; and (dark red) the no-aptamer
control with added MS2 expression plasmid. Lines are the mean mRFP1 fluores-
cence levels at each time point. Shaded regions are the 95% confidence interval at
each time point (N = 6 biological replicates).
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between the SD and start codon. The overall result is the binding free
energy of the ribosome to the mRNA (ΔGtotal). By convention, a
stronger interaction is denoted by a more negative binding free
energy. According to Boltzmann’s relationship, themRNA’s translation
initiation rate is proportional to exp(−β ΔGtotal), where beta is a con-
stant that relates free energies to state probabilities40.

To predict the riboswitch function, the Riboswitch Calculator
carries out free energy calculations on the protein-bound and
unbound states of the mRNA (ΔGtotal,bound and ΔGtotal,unbound). In the
unbound state, the RNA aptamer is indistinguishable from other parts
of themRNA and is allowed to form any secondary structure as part of
the overall free energy minimization procedure, which utilizes the
ViennaRNA suite of RNA folding algorithms42. In the protein-bound
state, the RNA aptamer is locked into its protein-bound structure,
which can alter the accessibility of the standby site, the folding free
energies of inhibitory mRNA structures, and the overall binding free
energy of the ribosome to themRNA. The switching free energy is also
calculated to determine the thermodynamic stability of the protein-
bound state, using the protein’s binding free energy to the RNA apta-
mer (ΔGligand). The model predicts that the maximum fold-change in
the mRNA’s translation rate is exp(−β [ΔGtotal,bound −ΔGtotal,unbound])
when the protein-bound state is stable and when an excess amount of
protein is added. Riboswitch Calculator predictions were previously
applied to engineer 62 synthetic riboswitches that detected a variety of
small molecules (theophylline, tetramethylrosamineluoride, dopa-
mine, thyroxine, 2,4-dinitrotoluene) and activated a protein reporter’s
translation rate by up to 383-fold39. However, the model has not yet
been applied to convert protein-binding RNA aptamers into cell-free
biosensors.

We characterized riboswitch function using the cell-free TX-TL
expression system43, adding plasmid-encoded genetic circuits that
utilize each riboswitch to regulate the expression of the mRFP1 fluor-
escent protein reporter (Methods). We used two different approaches
to add varying concentrations of protein ligands to the cell-free
expression system: (i) co-expression or (ii) co-addition. For co-
expression, we added varying amounts of a second expressionplasmid
to the cell-free expression system to constitutively produce the pro-
tein of interest. For co-addition, we directly added the purified protein
of interest to the cell-free expression system. mRFP1 fluorescence
levels were measured every 10min using spectrophotometry (TECAN
Spark), followed by endpoint analysis to quantify the overall change in
reporter expression levels (Fig. 1B).

Prior work has demonstrated that gene expression in both the
cellular and cell-free context is sensitive to added components or
additional genetic load44–49. We carried out two types of controls to
eliminate such confounding factors. In the first set of no-mRFP1 con-
trols, we measured red fluorescence levels without any mRFP1
expression to quantify the autofluorescence of the cell-free assay and
protein ligands. During endpoint analysis, we subtracted no-mRFP1
autofluorescence from all measurements. In the second set of no-
aptamer controls, we measured red fluorescence levels from a genetic
circuit that expresses mRFP1 using a standard 5′ UTR without any
protein-binding aptamer (UTR-13641). According to the RBS Calculator
v2.1 model, UTR-136 binds to the ribosome with a moderately high
translation initiation rate (36,400 au or ΔGtotal = −7.52 kcal/mol). The
purpose of this no-aptamer control is to measure any non-specific
changes in red fluorescence levels when co-expressing or co-adding a
protein-ligand at varying concentrations. If we detect non-specific
activation or repression from the no-aptamer control, we remove this
confounding factor by dividing the riboswitch’s measured activation
or repression ratio by the no-aptamer control’s activation or repres-
sion ratio, respectively (Fig. 1C). If these riboswitch sensors are to be
used as sensors in a future device, it would be expected that the same
controls would be performed on the device, in parallel, to carry out
these same measurements and analysis.

Design and characterization of MS2, mCRP, and IL32γ
Riboswitch Sensors
For thefirstproof-of-principle example, we engineered riboswitches to
detect the phageMS2 coat protein, utilizing an RNA aptamer that folds
into a well-defined hairpin structure and binds to MS2 protein with
very high affinity (Kd = 0.7 nM)50,51 (Fig. 2A). We then selected two
medically relevant protein biomarkers, engineering riboswitches to
detect changes in the levels of monomeric C-reactive protein (mCRP)
and interleukin-32 gamma (IL-32γ). CRP is found in human plasma and
natively forms a homopentameric complex, but will irreversibly dis-
sociate into its monomeric form during a pro-inflammatory response
(e.g., tissue damage, heart disease, cancer, or bacterial infection)52,53.
An mCRP concentration of 10mg/L (430 nM) is considered elevated,
and depending on the disease severity, mCRP concentrations can
readily exceed 100mg/L (4.3μM). To develop mCRP-sensing ribos-
witches, we harnessed a hairpin RNA aptamer that binds specifically to
the monomeric form of CRP (mCRP) with high affinity (Kd = 187.7 nM)
and does not bind to pentameric CRP54. IL-32 is a cytokine that reg-
ulates the NF-κB pathway and acts during early host defense against
pathogen infections55–57. IL-32γ is the longest and most pro-
inflammatory isoform of IL-32. Elevated levels of IL-32γ in human
serum have been found to be associated with heart failure, COPD, and
multiple myeloma58 (up to around 61 pM or 1.6 ng/ml). To develop IL-
32γ sensing riboswitches, we utilized a highly structured RNA aptamer
that binds specifically to the gamma isoform with a high affinity
(Kd = 78 nM)59. Altogether, we initially designed, constructed, and
characterized 30 riboswitches to detect MS2, mCRP, and IL-32γ pro-
tein, including ON switches that activated mRFP1 expression and OFF
switches that repressed mRFP1 expression (Fig. 2A). All sequences,
model calculations, experimental and control measurements, and
statistical significance tests (two-tailed t-tests with unequal variances)
are available in the Source Data.

We first designed and tested five MS2-sensing riboswitches to
activate mRFP1 expression (ON switches) and carried out TX-TL
assays using the co-expression approach to produce the MS2 pro-
tein.When adding 8 nMpFTV1-MS2, we found that the designedMS2-
sensing ON switches all increased mRFP1 fluorescence levels by sig-
nificant amounts (between 10.8- to 27-fold). We carried out the same
measurements using our no-aptamer control and found that co-
expression of MS2 non-specifically increased mRFP1 fluorescence
levels by 1.9-fold (Source Data). We then used the no-aptamer control
measurement to remove the non-specific effect of MS2 on mRFP1
expression (Methods). After removing the non-specific effect, we
found that all five MS2-sensing ON switches activated mRFP1
expression between 5.5- and 13.8-fold (Fig. 2B). These results show
that the Riboswitch Calculator was able to design MS2-sensing ON
switches that significantly activated output protein expression with
the highest activated ratios reported to date, compared to prior
efforts26, though the dynamic ranges varied across the small number
of designs tested.

We then designed and tested ten MS2-sensing riboswitches to
repress mRFP1 expression (OFF switches), now adding 16 nM pFTV1-
MS2 plasmid to the cell-free expression system as translation-
repressing riboswitches are predicted to require higher protein con-
centrations to achieve a similar fold-change in output as compared to
translation-activating riboswitches (Methods). Under the same condi-
tions, the no-aptamer control increased mRFP1 fluorescence levels by
2.3-fold. In this scenario, a non-functional OFF switchwould also cause
mRFP1 fluorescence levels to increase by 2.3-fold due to this non-
specific effect. Instead, we found that adding 16 nM pFTV1-MS2 plas-
mid caused all of the 10MS2-sensingOFF switches to produce reduced
mRFP1 fluorescence levels. After removing the non-specific effect, we
found that their repression ratios varied from 2.5- to 5.3-fold (Fig. 2C).
These results show that the Riboswitch Calculator can design MS2-
sensing OFF switches by simply flipping its objective function during
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sequence optimization while utilizing the same biophysical
calculations.

We next designed ten mCRP-sensing riboswitches and char-
acterized their ability to repressmRFP1 expression (OFF switches). We
initially added 16 nM of a plasmid expressing mCRP (co-expression),
but observed no significant change inmRFP1 regulation. Instead, when
we directly added 1250nM of purified mCRP (co-addition), we found
that the OFF switches decreased mRFP1 fluorescence levels by up to
6.7-fold. As the purified mCRP was produced using HEK 293 cells, it is
possible that chaperone-assisted protein folding or glycosylation is
needed to produce anmCRP that binds to the RNA aptamer. Similar to
the MS2 protein, we found from our no-aptamer controls that the
addition of 1250nM mCRP non-specifically activated mRFP1 expres-
sion by about 2.3-fold (Source Data). Once we removed this non-
specific effect, we found that 90% of the mCRP-sensing OFF switches
successfully repressed mRFP1 expression with repression ratios from
2.8-fold to 15.9-fold (Fig. 2D).

Finally, we designed five IL32γ-sensing riboswitches and char-
acterized their ability to repressmRFP1 expression (OFF switches). We
directly added 780 nM of purified IL32γ to the cell-free expression
system (co-addition). Using our no-aptamer controls, we found no
significant non-specific effect on mRFP1 expression levels (Source
Data), precluding the need to remove any non-specific effect. After
characterizing the OFF switches, we found that 4 out of the 5 ribos-
witches were able to significantly repress mRFP1 fluorescence levels
from 1.4- to 2.5-fold (Fig. 2E). These results show that the Riboswitch
Calculator was able to harness RNA aptamers that bind to human
protein biomarkers to successfully design translation-repressing
riboswitches.

Structural and energetic contributions to riboswitch function
We next investigated the mechanisms responsible for riboswitch
function to explain how protein binding to an aptamer domain can

cause the riboswitch’s translation rate to be either activated or
repressed. As examples, we focus on an MS2-binding ON switch (M2
riboswitch) and anMS2-bindingOFF switch (M7o riboswitch), applying
the Riboswitch Calculator model’s structural and thermodynamic
calculations to visualize and quantify the process39. In Fig. 3A, we show
the sequence, structure, and interactions of the M2 riboswitch in its
free state (state 1) and in its ribosome-bound state (state 2) in the
absence of the MS2 protein. Before the ribosome has bound, the
riboswitchmRNA is predicted to fold into a stable structure where the
aptamer domain and SD sequence are both partly sequestered by base
pairing. After the ribosome has bound to form a pre-initiation com-
plex, there are significant structural re-arrangements, including
unfolding an inhibitory structurewithin theN-terminalCDS region40,60.
While the structures provide visual cues, the ribosome’s ability to bind
to the mRNA and initiate translation rate is actually controlled by the
difference in Gibbs free energy between the initial and final states. In
the absence of MS2, this difference is −3.7 kcal/mol.

We then illustrate how the mRNA’s structure and ribosomal
interactions are altered when the riboswitch is bound by MS2. When
MS2 binds to its aptamer domain, the model predicts a substantial
refolding of the 5′ UTR, almost completely exposing the SD sequence
and creating a highly accessible standby site for ribosome binding
(Fig. 3A, state 3). This structural re-arrangement requires an input of at
least 5.2 kcal/mol energy to push the transition forward, which is
provided by the −13.2 kcal/mol energy released when MS2 binds to its
aptamerdomain. TheMS2-boundmRNAcannowbind to the ribosome
to form a more stable pre-initiation complex (Fig. 3A, state 4) with a
more negative binding free energy (−8.1 kcal/mol), leading to activa-
tion of the translation rate. Like all models, the calculations provide a
simplified version of reality that nonetheless enable riboswitch pre-
diction and design. For example, the model considers only the four
most predominant states of the riboswitch, though there exists an
ensemble of states with varied mRNA structures and MS2 binding

Fig. 2 | Design and function of protein-sensing riboswitches. A Riboswitch
sequences designed for detecting theMS2,mCRP, and IL32γprotein ligands.BMS2
ONswitches, inducedwith 8 nMMS2CDS.CCharacterization ofMS2OFF switches,
induced with 16 nM MS2 CDS. D Characterization of mCRP OFF switches, induced
with 1.25μM of mCRP. E IL32γOFF switches, induced with 780nM IL32γ. Gray bars

are the mean activation or repression ratios for designed riboswitches. White cir-
cles are mean mRFP1 fluorescence levels in the OFF state. Red circles are mean
mRFP1 fluorescence levels in the ON state. Error bars are the 95% confidence
intervals (N = 6biological replicates forMS2ONswitches;N = 8biological replicates
for mCRP and IL32γ OFF switches).
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Fig. 3 | Sequence, structure, and interactions controlling riboswitch function.
The model-predicted mRNA structures and ribosome-mRNA binding free energies
for the A MS2 ON switch (M2 riboswitch) and the B MS2 OFF switch (M7o ribos-
witch) across its four most relevant states. State 1 shows the initial mRNA structure
and its Gibbs free energy of folding (ΔGinitial) when the MS2 coat protein is not
bound. State 2 shows the change inmRNA structure and the final Gibbs free energy
(ΔGfinal) when the ribosomebinds to themRNA in State 1. The free energymodel for
calculating ΔGfinal includes hybridization between the mRNA and ribosomal RNA
(ΔGmRNA-rRNA), base pairing between the tRNA and start codon (ΔGstart), and ener-
getic penalties for non-optimal spacing (ΔGspacing) and an inaccessible standby site

(ΔGstandby). State 3 shows how the mRNA structure changes when the MS2 coat
protein binds to its cognate RNA aptamer with binding free energy ΔGligand, which
results in a change inmRNA folding free energy (ΔGinitial). State 4 shows the change
in mRNA structure and final Gibbs free energy (ΔGfinal) when the ribosome binds to
the mRNA in State 3. The translation initiation rates are predicted based on the
difference in initial and final Gibbs free energies (ΔGtotal) according to Boltzmann’s
relationship. Nucleotides are colored according to their interactions, including
(blue) the RNA aptamer domain, (red) the last 9 nucleotides of the 16S ribosomal
RNA, (green) the Shine–Dalgarno sequence, (purple) the start codon, and (orange)
the standby site. The brown bar is the ribosomal footprint for initiation.
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occupancies. Notably, MS2 binds to its aptamer while the mRNA is
being transcribed, which can eliminate kinetic traps.

We next focus on the mechanism of an OFF switch, illustrating
how MS2 binding triggers refolding of the mRNA to make it more
energetically unfavorable for the ribosome to bind. In the absence of
MS2, the model predicts that the initial state of the M7o riboswitch
folds into highly stable mRNA structures that sequester the aptamer
domain and the SD sequence (Fig. 3B, state 1). This mRNA structure
does not favorably bind to the ribosome (2.8 kcal/mol), particularly
due to the short distance between the SD and starts codon and the
presence of mRNA structures that lower the accessibility of the
standby site (Fig. 3B, state 2). However, once MS2 binds to the mRNA,
the model predicts that the mRNA will bind even less favorably to the
ribosome, due to a reconfiguring of both the initial and final mRNA
states (Fig. 3B, states 3 and 4). TheMS2-boundmRNA contains a highly
stable structure that occludes the ribosome’s standby site41 and adds a
penalty of 3 kcal/mol to the ribosome’s total binding free energy
(6.2 kcal/mol). Overall, using the model, we can quantitatively under-
stand howMS2 binds to the aptamer domain and causes large-scale re-
arrangements in the riboswitch’s mRNA structure to control ribosome
binding free energies and translation initiation rates.

Dose–response characterization of designed riboswitch sensors
We next selected high-functioning riboswitches (M2, C5, and I2)
and measured how systematically increasing the MS2, mCRP, and
IL32γ concentrations affected their output expression levels
(dose–response) as compared to theno-aptamer control (UTR-136). All
measurements and statistical tests are available in the SourceData.We
first reconfirmed that the cell-free expression system had sufficient
capacity to express large amounts of mRFP1 in proportion to the
mRFP1 expression plasmid across a wide range (0–32 nM plasmid
added) (Supplementary Fig. 1). We then characterized the
dose–response of the M2 riboswitch by keeping the riboswitch plas-
mid concentration constant and systematically increasing the con-
centration of the MS2 expression plasmid from 0 to 16 nM. The M2
riboswitch activatedmRFP1 fluorescence levels with a dose-dependent
sigmoidal behavior, increasing mRFP1 expression levels by up to 26.6-
fold (Fig. 4A). Under the same conditions, the mRFP1 fluorescence
levels from the no-aptamer control increased by up to 1.86-fold. When
correcting for this non-specific effect, the M5 riboswitch activated
mRFP1 expression levels by 15.9-fold. Activation of mRFP1 expression
was detectable with statistical significance (p =0.0008, two-tailed t-
test) using only 0.5 nM of expression plasmid. These results confirm
the expected sigmoidal dose response for a translation-activating
riboswitch, consistent with previously engineered riboswitches39.

We then carried out the same dose–response characterization on
the C5 riboswitch, directly adding up to 2500nM of purified mCRP to
cell-free assays. We found that the C5 riboswitch lowered mRFP1
fluorescence levels by 1.74-fold at 1250 nM mCRP and by 237-fold at
2500 nM mCRP (Fig. 4B). However, we found that the no-aptamer
control exhibited a non-linear dosage response such that mRFP1
fluorescence levels were non-specifically increased by 2.37-fold at
1250nM mCRP and non-specifically decreased by 11-fold at 2500nM
mCRP. Based on thesemeasurements,mCRP non-specifically activates
mRFP1 expression at lower concentrations, but then interferes with
cell-free expression at higher concentrations. After taking into account
these non-specific effects, the C5 riboswitch was found to repress
mRFP1 expression by 4.1-fold at 1250nM mCRP and by 21.5-fold at
2500 nM mCRP, though the interference with the cell-free assay at
2500 nM mCRP substantially increased the variability of the mea-
surement. Repression was detectable with statistical significance at
156 nM mCRP, which is the lowest tested concentration above zero
(p = 0.0005, two-tailed t-test), while half-maximal repression was
achieved at 403 nMmCRP. These results show that theC5 riboswitch is
sensitive enough to detect and quantify mCRP concentrations across

the physiological range from normal levels (100–430 nM) to elevated
levels (above 430nM), though levels above 2500nM will inhibit cell-
free expression.

We repeated the same cell-free assays using the I2 riboswitch,
directly adding up to 780nM of purified IL32γ. We found that the I2
riboswitch lowered mRFP1 fluorescence levels by 2.6-fold at the high-
est IL32γ concentration (Fig. 4C). In comparison, the no-aptamer
control exhibited non-specific repression of only 1.09-fold, which was
statistically indistinguishable from the baseline (p =0.18, two-tailed t-
test). Using the I2 riboswitch, repression of mRFP1 expression levels
wasdetectablewith statistical significanceat a concentrationof 195 nM
IL32γwith half-maximal repression taking place at about 548 nM IL32γ
(p = 0.015, two-tailed t-test). However, using the current IL32γ aptamer
(Kd = 78 nM), the I2 riboswitch could not sense IL32γ levels within the
picomolar range, which would be needed to distinguish between
normal and elevated levels in human serum.

Translation repression by steric hindrance and structural
switching
We next investigated themechanisms responsible for protein-induced
translational repression with the goal of distinguishing between two
types of interactions. When a protein binds specifically to the aptamer
region of the mRNA, we anticipate that translational repression could
be exerted by steric hindrance alone; a stably bound protein could
prevent the 30S ribosomal subunit from associating with the mRNA,
for example, at upstream standby sites, or it could block the 30S
ribosomal subunit’s 16S rRNA from hybridizing to the SD sequence to
forma stable ternary complex. As a secondmechanism,when aprotein
binds specifically to the aptamer region, it can induce changes in the
mRNA structure, including the formation or removal of inhibitory
mRNA structures that the ribosome must unfold prior to initiating
translation. These mechanisms are layered on top of any non-specific
interactions when adding protein to the cell-free system. Using a learn-
by-design approach todistinguish thesemechanisms,wedesigned and
characterized several mCRP-binding riboswitches that employ either
the first mechanism alone (“steric switches”) or a combination of both
mechanisms together (“OFF switches”) alongside no-aptamer controls
that measure the effects of non-specific interactions. For these
experiments, we began using a second batch of purified mCRP that,
through comparative testing on the same riboswitch (C10), exhibited
about 4.1-fold less activity, though the cell-free composition remained
the same (Source Data).

For the steric switch designs, we inserted the mCRP-binding
aptamer upstream of a consensus SD sequence at varying distances
(0–20 nt upstream of the 5′ ends of the SD sequence). We also
designed the pre-aptamer and post-aptamer so that the mRNA’s
structure remained the same in both the free andmCRP-bound states,
eliminating the second mechanism as a source of translation regula-
tion (Fig. 5A). We then characterized how well these riboswitches
regulate mRFP1 expression levels, adding either 0 or 1250nM mCRP.
We found that placing themCRP-binding aptamer directly upstreamof
the SD sequence lowered mRFP1 fluorescence levels by 3.2-fold. After
using our no-aptamer controls to remove the effect of the non-specific
interactions (1250nM mCRP activated mRFP1 fluorescence levels by
1.65-fold), we found that specific binding of mCRP repressed mRFP1
expression by 5.3-fold, showing that steric hindrance alone is greatly
contributing to protein-induced translational repression (Fig. 5B).
When the aptamer was placed farther upstream of the SD sequence (5
or 20 nt), mRFP1 expression was repressed by smaller, but similar
magnitudes, of 3.0 and 3.4-fold, respectively, again removing the non-
specific interactions’ contributions. These results show that steric
hindrance can repress translation even when the aptamer is farther
from the SD sequence.

In the second set ofOFF switchdesigns,we applied theRiboswitch
Calculator algorithm to design 5 additional mCRP-binding
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riboswitches (Co1 to Co5) while varying the distance between the
aptamer region and the SD-like sequence from 4 to 13 nt. We found
that mRFP1 expression levels were repressed by 3.2- to 13.6-fold
(Fig. 5C) while taking into account the no-aptamer controls. Two of the
OFF switches (Co1, Co2) had repression ratios far greater than the
steric switches, showing that some of the designed riboswitches are
utilizing both mechanisms to regulate translation rate. Overall, these
results show that translation repression can take place by either steric

inhibition alone or through a combination of both steric inhibition and
protein-induced structural re-arrangements that block ribosome
binding.

Accuracy analysis and improvement by modifying aptamer
structural constraints
Wenext critically analyzed theRiboswitchCalculator’smodel accuracy
for protein-sensing riboswitches. We first considered the riboswitches’

Fig. 4 | Dose–response of MS2, CRP, and IL32γ riboswitches. The measured
mRFP1 fluorescence levels, normalizedmRFP1 expression levels, and activation or
repression ratios of the A M2, B C5, and C I2 riboswitch sensors (blue dots) in
response to varied concentrations of the MS2 expression plasmid, purified
human mCRP protein, and purified human IL32γ protein, respectively. The

measured mRFP1 fluorescence levels and normalized mRFP1 expression levels
of the no-aptamer control (UTR-136) under the same conditions (red dots).
Dots and bars are the mean and standard deviation of replicate cell-free
assays (A N = 8 biological replicates, B N = 8 biological replicates, C N = 6 biolo-
gical replicates).
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OFF states where no protein-ligand is added. The Riboswitch Calcu-
lator predicts how well the ribosome binds to the mRNA as quantified
by a change in binding free energy (ΔGtotal), which is expected to be
related to the mRNA’s translation initiation rate according to the
log–linear Boltzmann relationship. We compared the riboswitches’
model-predicted ΔGtotal free energies to the natural logarithm of the
end-point mRFP1 expression levels and found statistically significant
and quantitative agreement (R2 = 0.47, p = 5.8 × 10−6, N = 34) (Supple-
mentary Fig. 2). However, we noticed that the expected dynamic range
in translation rates was compacted in TX-TL assays as compared to
equivalent in vivo assays. In other words, changing the ribosome’s
binding free energy to anmRNA had a smaller-than-expected effect on
its translation rate. Quantitatively, the apparent Boltzmann factor for
these TX-TL assays was β =0.23 as compared to β = 0.45 in equivalent
in vivo assays. This phenomenonhas beenpreviouslyobserved in prior
comparisons between cell-free and in vivo assays49,61,62.

We then analyzed how well the Riboswitch Calculator predicted
the activation or repression of mRFP1 expression levels, using three
related calculations39: Rmax, Rconc, and Ractual. Rmax is the maximum
possible fold-change in translation rate when an excess amount of
protein is added, and 100%of the riboswitch is boundby protein, while
Rconc is the fold-change in translation rate when a specified con-
centration of protein is added. Ractual is an extension of the Rconc cal-
culation that additionally takes into account the thermodynamic
stability of the riboswitch’s protein-bound state; if the protein’s bind-
ing free energy is insufficient to stabilize that state, the riboswitch can
spontaneously transition back to its free state. The Rmax and Rconc
calculations make simplifying assumptions, whereas the Ractual calcu-
lation is the complete version of the current model. In the first com-
parison, the Rmax prediction had a measurable but weaker correlation
with the measured activation or repression ratios (R2 = 0.38,
p = 9.3 × 10−9, N = 34, linear regression) with only 15% of riboswitch
variants regulating expression levels to within 2-fold of the predicted
ratios (Fig. 6A). However, when we consider the proteins’ concentra-
tions using the Rconc prediction, we find that the model more accu-
rately predicted the riboswitches’ activation or repression ratios
(R2 = 0.46, p = 1 × 10−5, N = 34, linear regression) with 38% of variants
regulating expression to within 2-fold of the predicted ratio (Fig. 6B).
Finally, using the Ractual prediction to account for differences in the
proteins’ binding free energies to their respective RNA aptamers, the
model accuracy increased even further (R2 = 0.48, p = 4.7 × 10−6,N = 34,
linear regression) with 44% of the riboswitch variants falling within the
2-fold tolerance (Fig. 6C).

A key input into the model calculations is the mRNA structure of
the aptamer region when it is bound to the protein. When calculating
the translation initiation rate of the riboswitch’s protein-bound state,
this mRNA structure is “locked” into place, which we call the aptamer
structural constraint. In our initialmodel predictions, we extracted the
aptamer region from the studies that developed it and assumed that
the entire region is important to protein binding. However, it is pos-
sible that only a portion of the aptamer binds to its protein. For
example, only 13 nucleotides of the 19-nt long MS2 aptamer are fully
resolved in a crystal structure of the aptamer in complex with a MS2
coat protein dimer50. Considering that the mCRP and IL32γ aptamers
have longer sequences (44-nt and 90-nt, respectively), it is likely that
only a portion of these aptamers is truly “locked” into place when
bound by protein.

We therefore investigated how changing the aptamer structural
constraint alters the model’s calculations and its predictive accuracy.
To do this, we systematically varied the portion of the aptamer region
that is “locked” in the protein-bound state, leaving a shorter con-
tiguous region (Fig. 6D). For eachof these shorter aptamer subregions,
we recalculated its mRNA structure and used that structure as the
aptamer’s structural constraint. Here, any flanking unpaired nucleo-
tides were left as unconstrained positions (dots) in the structural
constraint, allowing them to refold with adjacent mRNA regions in the
riboswitch’s protein-bound state. We then repeated the model’s Ractual

calculations. Throughout, all other riboswitch sequences and model
parameters remain the same. Overall, changing the aptamer structural
constraint varied the model’s predicted Ractual by up to 385-fold with a
very rugged response surface, indicating that small changes to this
input could have large effects on the model’s predictions (Fig. 6D,
Supplementary Fig. 3). We then identified the structural constraint for
the mCRP and IL32γ aptamers that achieved the highest overall model
accuracy across all riboswitches (Methods). Higher model accuracies
were achieved by allowingmore of the 5′portion of themCRPaptamer
to freely fold and by only “locking” a single bulged hairpin structure of
the IL32γ aptamer. When inputting these aptamer structural con-
straints into the model (Source Data), we found that overall accuracy
greatly improved (R2 = 0.64, p = 1.2 × 10−8, N = 34, linear regression)
with 56% of the riboswitch variants achieving less than 2-fold predic-
tion error (Fig. 6E). Altogether, this analysis shows that accurately
predicting riboswitch function requires correctly inputting the con-
centration of the protein-ligand, the binding free energy of the protein
to its respective aptamer, and the actual aptamer structure that
becomes “locked” when in its protein-bound state.

Fig. 5 | Placement of mCRP aptamer in the standby site of the 5′UTR represses
gene expression. A The sequence and structure of the mCRP-binding steric
switches, showing the spacer length (X) separating the mCRP aptamer and a con-
sensus Shine–Dalgarno sequence. B The repression ratios of the designed mCRP

OFF switches (Co1–Co5) andmCRP steric switches (+0, +5, +20) are compared. Gray
bars are mean repression ratios. White circles are mean mRFP1 fluorescence levels
in theOFF state. Red circles are themeanmRFP1 fluorescence levels in theONstate.
Error bars are the 95% confidence intervals (N = 8 biological replicates).
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Discussion
We engineered 35 protein-sensing riboswitches that operate within
cell-free expression assays, demonstrating an automated model-
predictive workflow for converting protein-binding RNA aptamers
into high-performance sensors with potential medical diagnostic
applications. As demonstrations of our approach, we developed sen-
sors for two human biomarkers—monomeric C-reactive protein and
interleukin-32γ protein—that have been previously used as serum-
accessible proxies for cardiovascular disease, pro-inflammatory con-
ditions, and pathogen infection. As RNA aptamers can be developed to
bindmany proteins of interest, our design platformprovides a reliable
and versatile route to developing larger toolboxes of protein diag-
nostic assays using a variety of low-cost input and output formats.

We designed these genetically encoded protein sensors using a
forward engineering approach, applying our Riboswitch Calculator
algorithm to predict the riboswitches’ sequence–structure–function
relationship and computationally optimizing riboswitch sequences

toward maximum translation activation or repression. Our use of
computational design enabled us to reduce the large riboswitch
sequence space to just a few designs that have a high chance of suc-
cess. This approach yielded protein-sensing riboswitches with high
activation or repression ratios—13.9-fold, 15.9, and 2.6-fold when
detecting theMS2,mCRP, and IL-32γ proteins, respectively—at protein
concentrations within the relevant physiological range. Notably, the
biophysical model equations and parameters were fixed and constant
throughout this study, demonstrating that a quantitative & predictive
knowledge of biophysics from one realm can be applied to solve
challenges in another realm without requiring new training or valida-
tion datasets.

We also investigated the key determinants of protein-sensing
riboswitch function and identified two distinct mechanisms respon-
sible for translation regulation. We began by engineering MS2-binding
riboswitches that act as either ON and OFF switches, changing only
their pre-aptamer and post-aptamer sequences, to show that protein-

Fig. 6 | Optimizing Riboswitch Calculator predictions for in vitro protein
riboswitches. Model predictions were compared to measured riboswitch regula-
tion (activation or repression) ratios, utilizing three different equations that take
into account additional interactions for improved accuracy. Model predictions
includeA themaximumpredicted regulation ratio,Rmax,B thepredicted regulation
ratio when considering the protein concentration,Rconc, andC the predicted actual
regulation ratio, Ractual, when considering both the protein concentration and the
thermodynamics of the mRNA-protein complex. D Model predictions were

recalculated while systematically varying the length of the aptamer subconstraint
region, showing riboswitch Co1 as an example. E The optimal aptamer sub-
constraints for the MS2, mCRP, and IL32γ aptamers were identified and utilized to
predict the actual regulation ratio, Ractual, for all riboswitches. Overall accuracy is
R2 = 0.64, with 56% of riboswitches predicted to be within 2-fold of their measured
activation ratio. Dots and error bars are the mean and standard deviation of data
with 6–8 biological replicates.

Article https://doi.org/10.1038/s41467-023-38098-0

Nature Communications |         (2023) 14:2416 9



induced changes to mRNA structure can be harnessed for either
translation activation or repression. However, when designing mCRP-
sensing OFF switches, we found that steric hindrance alone could
explain how mCRP could bind, block the ribosome binding site, and
repress the translation rate. While it was possible to engineer mCRP
OFF switches that combined both steric inhibition and protein-
induced structural inhibition at the same time to repress translation
rate, we were not able to engineer mCRP ON switches after testing a
small number of candidate designs. Inpractice, whendeveloping anew
protein-sensing riboswitch, it is worthwhile to design bothONandOFF
switches to best determine how each protein interacts with the ribo-
some and whether steric inhibition plays an overriding role.

With our automated platform, it is now feasible to design large
toolboxes of riboswitch sensors able to detect small molecule and
protein ligands across a range of medical applications. For example,
rather than using a fluorescent protein reporter, protein-sensing
riboswitches can regulate the expression of enzymes, such as glucose
oxidase, enabling electrical current generation as ameasurable output
signal22. Notably, cell-free expression systems have already been har-
nessed for such medical diagnostic applications. Though the addition
of complex sample matrices (plasma, serum, urine, saliva) has been
found to inhibit cell-free expression due to the presence of RNases, it
has been shown that co-expression of RNase inhibitors can mitigate
this inhibition, unlocking their potential63. A platform combining
genetically encoded biosensors and cell-free expression could finally
enable multiplexed protein detection in a compact, low-cost device
that would provide longitudinal biomarker measurements in non-
clinical settings for data-driven medicine.

Methods
Construction of riboswitch and protein-expressing plasmids
To construct riboswitch and CDS plasmids for this study, we started
with the pFTV1 vector backbone, which contains mRFP1 modified to
contain an N-terminal SacI restriction site41. We used the Riboswitch
Calculator to design candidate riboswitch sequences and the Operon
Calculator to codon-optimize theMS2 coat protein CDS and design an
optimal RBS sequence (Source Data)39,64. We designed and ordered
gBlocks, containing primer binding sites and additional restriction
sites, and PCR primers for both the riboswitches andMS2 coat protein
CDS (Integrated DNA Technologies). We PCR amplified the gBlocks
using Phusion or Q5 DNA polymerase (New England Biolabs). For the
riboswitches, we digested the riboswitch amplicons and pFTV1 vector
backbone with XbaI and SacI-HF (New England Biolabs). For the MS2
coat protein CDS, we digested the CDS amplicon and pFTV1 vector
backbone with XbaI and NotI-HF (New England Biolabs). For both the
riboswitches and CDS, we ligated the digested inserts with digested
backbone using T4 DNA ligase (New England Biolabs), and heat-shock
transformed the ligation product into chemically competent DH10B.
We then performed Sanger sequencing to verify that the insert had
been cloned correctly.

Crude cell lysate preparation
The crude cell lysate was prepared using the following protocol43.
Twenty liters of Escherichia coli BL21 with the Rosetta2 plasmid
encoding rare tRNAs were cultured in a Micros 30-l fermentor (New
Brunswick) in 2XYT + P medium until the cells reached an OD600 of
1.5–2.0. The cell pellet was then collected in a T-1-P Laboratory
continuous flow centrifuge (Sharples) and resuspended in 1mL S30A
buffer per gram of cell pellet. The resuspended cells were run
through an M110-EH-30 microfluidizer (Microfluidics Corp.) at
20,000 PSI twice to ensure complete lysis. The lysate was clarified by
centrifugation at 12,000 × g for 30min at 4 °C. The clarified lysate
was then incubated for 80min at 37min while undergoing orbital
shaking to perform the runoff reaction. After incubation, the lysate
was centrifuged again at 12,000 × g for 30min at 4 °C. Following

lysis, clarification, and the runoff reaction, the lysate was diafiltered
with a Pellicon Biomax 10 kDa MWCO 0.005m2 ultrafiltration mod-
ule. Six retentate volumes of buffer S30B were run against the lysate
at 4 °C. After diafiltration, the retentate was centrifuged for 30min at
12,000 × g at 4 °C. The protein concentration of the retentate was
quantified using a Bradford BSA Protein Assay Kit assay (Bio-Rad).
The retentate was aliquoted and flash-frozen in liquid nitrogen and
stored at −80 °C.

Cell-free expression reactions
Cell-free expression reactions were assembled on ice using the fol-
lowing protocol43,46. Amino acid and energy solutions were prepared
separately and combinedwith crude cell extract to reach the following
final concentrations: 7.4mg/mL protein (1/3rd total reaction volume),
1.5mMeach amino acid (except for leucine at 1.25mM), 50mMHEPES,
1.5mMATP and GTP, 0.9mMCTP and UTP, 0.2mg/ml tRNA, 0.26mM
CoA, 0.33mM NAD, 0.75mM cAMP, 0.068mM folinic acid, 1mM
putrescine, and 30mM PEP. 4mM additional magnesium glutamate
(8.67mM total), 80mM additional potassium glutamate (100mM
total), and 2% w/v PEG-8000 were added to each reaction. Plasmid
DNAwas eitherminiprepped and ethanol precipitated ormidiprepped
and isopropanol precipitated and added to the reaction to a final
concentration of 2 nM. Where protein was directly added to the reac-
tion, mCRP (R&D Systems) or IL-32γ (Biotechne) was added at the
specified concentration. Five microlitre reactions were incubated at
29 °C for 16 h in a 96-well polypropylene conical bottom plate sealed
with aplate storagemat (Corning) in aTECANSparkmicroplate reader.
mRFP1fluorescencewasmeasured every 10min, using 584 nm/607 nm
ex/em with a 5 nm bandwidth.

Endpoint mRFP1 data analysis
The endpoint was taken as the average of the last approximately 15
mRFP1 fluorescence data points of each reaction, during which active
mRFP1 production had ceased. The following corrections were
applied: the background for each reaction was calculated as the
average of the first 15 data points, approximately, of each reaction,
prior to the onset of mature mRFP1 accumulation. We observed that,
even in the absence of plasmid DNA, there was a slight increase in the
fluorescence between the beginning and end of each reaction, so each
reaction was also corrected for the non-specific fluorescence increase
byperforming the sameendpointfluorescent calculationas aboveon a
no-DNA reaction, and subtracting that non-specific fluorescence
increase.

Design of protein-detecting riboswitch sequences using the
Riboswitch Calculator
We obtained the sequence and binding affinity for each aptamer used
in this study from the literature. Aptamer secondary structures were
determined using RNAfold (Vienna RNA v2.5), using the Turner 2004
nearest-neighbor parameter set, with no dangling end free energies42.
To design the riboswitches, we used the design mode of the Ribos-
witchCalculatormodel of translation initiation regulation (Python v2.7
and v3.7.7), which builds on the RBS Calculator v2.1 model to predict
the translation initiation states of each riboswitch in the uninduced
and induced states39,40. From the output list of riboswitch sequences,
we sub-selected sequences based on their predicted maximum reg-
ulation ratios and on- and off-state expression levels. Structural sche-
matics were partly made using Forna diagrams65.

Alternate constraint analysis
To perform the alternate constraint analysis on the selected ribos-
witches, we iterated through every possible aptamer substring and
re-calculated the predicted Ractual for each substring. Briefly, for
subconstraints i (first subconstrained nucleotide position) and j
(last subconstrained nucleotide position), we re-folded the aptamer
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subconstraint from position i to j using RNAfold as described above.
We then appended the sequence from the beginning of the full
aptamer constraint to i to the existing pre-aptamer sequence to
generate a new pre-aptamer sequence and prepended the sequence
from the end of the subconstraint to the end of the full aptamer
sequence to the existing post-aptamer sequence to generate a new
post-aptamer sequence. With the new pre-aptamer, post-aptamer,
and aptamer sequences and structural constraint, we then calculated
the predicted Ractual at maximum induction using the Riboswitch
Calculator.

Statistical analysis
For pairwise comparisons, we used two-tailed, two-sample t-tests. For
determining correlations, we used linear regression to calculate the
Pearson squared correlation coefficient (R2) and a hypothesis test to
calculate the test statistic and p-value for the regression slope. All
sample means standard deviations, replicate numbers, t-values, and p-
values are provided in Source Data. For all tests, the significance level
was set to α =0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequences, model calculations, experimental & control measure-
ments, and statistical significance tests are available in the Source
Data. Source data are provided in this paper.
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