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Glycopeptide database search and de novo
sequencing with PEAKS GlycanFinder enable
highly sensitive glycoproteomics

Weiping Sun 1,6, Qianqiu Zhang2,6, Xiyue Zhang1,6, Ngoc Hieu Tran 1,2,6,
M. Ziaur Rahman1, Zheng Chen1, Chao Peng3,4, Jun Ma1, Ming Li 2,5 ,
Lei Xin 1 & Baozhen Shan1

Here we present GlycanFinder, a database search and de novo sequencing
tool for the analysis of intact glycopeptides from mass spectrometry data.
GlycanFinder integrates peptide-based and glycan-based search strategies to
address the challenge of complex fragmentation of glycopeptides. A deep
learning model is designed to capture glycan tree structures and their
fragment ions for de novo sequencing of glycans that do not exist in the
database. We performed extensive analyses to validate the false discovery
rates (FDRs) at both peptide and glycan levels and to evaluate GlycanFinder
based on comprehensive benchmarks from previous community-based
studies. Our results show that GlycanFinder achieved comparable perfor-
mance to other leading glycoproteomics softwares in terms of both FDR
control and the number of identifications. Moreover, GlycanFinder was also
able to identify glycopeptides not found in existing databases. Finally, we
conducted a mass spectrometry experiment for antibody N-linked glycosy-
lation profiling that could distinguish isomeric peptides and glycans in four
immunoglobulin G subclasses, which had been a challenging problem to
previous studies.

Protein glycosylation is one of the most prevalent and sophisticated
post-translational modifications (PTMs) that have a large impact on
many biological processes1–3. Glycosylation refers to the process of
attaching carbohydrates of diverse structures, called glycans, to dif-
ferent sites of the proteins. The attached glycans may promote the
folding and stability of the proteins and play an important role in
regulating their functions4. Dysregulation of glycosylation, on the
other hand, may be associated with various diseases, including con-
genital disorders, cancers, autoimmune diseases, etc. Thus, compre-
hensive glycosylation profiling is essential for the development of
diagnostic tests and potential treatments1,5,6, e.g. glycoengineering for
therapeutic antibodies7,8 or spike protein glycosylation for SARS-CoV-2
vaccine development9,10.

The aim of glycoproteomics2 is to provide a detailed character-
ization of glycosylation events in biological samples at a system-wide
level, e.g. cell, tissue, or organism. Recent advances of liquid chro-
matography with tandem mass spectrometry (LC–MS/MS) in glyco-
proteomics have enabled site-specific profiling of intact
glycopeptides, including the protein carriers, the modification sites,
the glycan structures, and their quantifications. However, accurate
identification of intact glycopeptides from tandem mass spectra still
remains challenging and lacks behind the performance of peptide
identification3. The presence of both glycans and peptides make the
fragmentation process, the mass spectra, and their annotations much
more complicated. Different types of fragment ions, including peptide
b/y, c/z or glycan B/Y ions, can be observed in a mass spectrum,
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depending on the fragmentation strategy, such as resonance-
activation collision-induced dissociation (CID), higher-energy colli-
sional dissociation (HCD), electron-transfer dissociation (ETD), or their
hybrid combinations. Ambiguous annotations of fragment ions may
happen even with very high resolutions of modern MS instruments.
Last but not least, it is essential to address the heterogeneity problems
that theremay bemultiple glycosylation sites per peptide andmultiple
structures with the same glycan composition or mass.

In this paper, we propose GlycanFinder, a glycoproteomics soft-
ware package comprising database search and de novo sequencing
solutions for the identification of intact N-linked and O-linked glyco-
peptides. We apply both peptide-based and glycan-based search stra-
tegies in an independent fashion to pick up all possible candidates
from the protein and glycan databases, as long as either their peptide
or glycan ions can be observed in a spectrum. This approach reduces
the chance that some candidatesmay bemissed due to poor signals of
peptide or glycan fragment ions, as opposed to using one strategy
alone11–14. To further improve the identification, a deep learningmodel
is designed to perform N-linked glycan de novo sequencing on the
spectra that cannot be identified by the database search. The tree
structures of glycans certainly complicate the fragmentation process
and the de novo search space, but on the other hand, they can also be
learned to provide valuable features on top of the fragment ions to
assist the de novo sequencing. Here we propose a model that inte-
grates dynamic programming, graph neural network15, and Transfor-
mer neural network16,17 to learn glycan structures and to reconstruct
glycan trees from the mass spectra. While trying to boost the sensi-
tivity, one should pay even more attention to the false discovery rate
(FDR), especially for glycopeptide spectra where several types of
fragment ions are mixed together and increase the chance of obser-
ving random matches. GlycanFinder accurately estimates the FDRs at
both peptide and glycan levels by following the target-decoy approach
and using suitable decoys for those levels.

We performed experiments to evaluate the performance of Gly-
canFinder, including FDR validation and benchmarks proposed in a
recent community-based evaluation study of the HUPO Human Gly-
coproteomics Initiative3. Our results show that GlycanFinder achieved
comparable performance to other leading glycoproteomics softwares
in terms of both FDR control and the number of identifications.
Moreover, GlycanFinder was also able to identify glycopeptides not
found in existing databases. We also demonstrated an N-linked gly-
cosylation profiling of four immunoglobulin G subclasses that could
distinguish isomeric peptides and glycans, which had been a challen-
ging problem to previous studies18–20.

Results
GlycanFinder workflow for intact glycopeptide analysis
Figure 1 illustrates the workflow of GlycanFinder for intact glycopep-
tide analysis. GlycanFinder applies both peptide-based12 and glycan-
based14 searches in order to increase the pool of candidates and hence
its sensitivity. In the peptide-based search, a glycopeptide spectrum is
quickly searched against the protein database to identify candidate
peptides, and candidate glycans are then selected from the glycan
database based on the precursor mass and the respective candidate
peptides. If the spectrum remains unidentified after the peptide-based
search, it proceeds to the glycan-based search which first searches for
candidate glycans and then infers candidate peptides. The combina-
tion of peptide-based and glycan-based searches utilize both peptide
and glycan fragment ions and hence reduces the chance that some
candidates may be missed due to poor fragmentation signals.

Once the candidate glycopeptides are identified, a second-round
scoring is performed using a comprehensive set of peptide-backbone
ions, glycopeptide Y-ions and B ions to evaluate the glycopeptide-
spectrum matches (glycoPSMs) and to estimate their FDRs. For pep-
tide FDR, we use the standard target-decoy approach21 where the

decoy protein database is generated by randomly shuffling the target
protein database. However, for glycan FDR, it is not trivial to generate
decoy glycans due to their non-linear structures2. Instead, we apply
random mass shifts of fragment ions to create decoy spectra, as pro-
posed in Fang et al.22. A glycoPSMpasses 1% FDR filter only if both of its
peptide and glycan FDRs are less than or equal 1%. Supplementary
Fig. 1a shows an example of the score distributions of target and decoy
glycoPSMs for FDR calculation. It should be noted that while this
random-mass-shift approach is commonly used, it may underestimate
the rate of false matches to glycans with shared fragment ions. Better
approaches to generate decoys for glycan FDR estimation will be an
interesting topic for future research.

A common problem in glycopeptide analysis is that there may be
multiple glycosylation sites in a peptide sequence or multiple glycans
with the same composition, which increase the ambiguity of glycoPSM
assignments. If the peptide of a glycoPSM has multiple possible gly-
cosylation sites, their localization scores are calculated inGlycanFinder
using their respective internal fragment ions. The top-scoring site is
then selected and a site-specific localization score, named A-score, is
calculated as the score difference between the best and second-best
sites. Similarly, when multiple glycans with the same composition
match a spectrum, their structure scores are calculated using their
respective glycopeptideY-ions. The top-scoring glycan is then selected
and an S-score is calculated as the score difference between the best
and second-best glycans. TheA-score andS-scoreof a glycoPSMreflect
the confidence of its glycosylation site and glycan structure assign-
ments, as larger differences between the best and second-best scores
imply stronger supporting evidence for the assignments with the best
scores (Methods).

De novo sequencing of intact N-linked glycopeptides with deep
learning
For those spectra in which the peptides are confidently identified yet
nomatchedglycan canbe found from theglycandatabase,weperform
de novo sequencing to identify potentially new N-linked glycans
(Fig. 1c). Several glycan de novo sequencing tools have been proposed
in previous studies14,22,23. For instance, pGlyco314 tried to find a mod-
ification on Hex, e.g. Hex with an ammonia adduct, and to identify
N-linked and O-mannose glycopeptides with that modification. Glyco-
Decipher22 proposed to modify the glycans in an existing database
through a process named “monosaccharide stepping” to reveal a new
composition or modification that could explain the difference
between an observed mass and the mass of an existing glycan.
StrucGP23 reconstructed the structure of a glycan from three pre-
definedmodules, including four core structures, three glycan subtypes
and 17 branch structures. Unlike previousmethods, our glycandenovo
sequencing follows a data-driven approach and applies a machine
learning model to learn glycan structures from the training data.
The trained model is then used to reconstruct glycan trees from
scratch, without imposing predefined rules, structures, or types of
modifications.

In particular, given a spectrum and a glycan mass (deduced from
precursor mass and peptide mass), we use a dynamic programming
algorithm to compute the glycan composition. The glycan tree is then
constructed from root to leaves, starting from the peptide (root) and
iteratively adding monosaccharides (leaves) to the tree. At each
iteration, a deep learning model is used to predict the next mono-
saccharides based on the spectrum and the partial tree obtained from
the previous iteration. Each of five monosaccharides (Hex, HexNAc,
Fuc, NeuAc, NeuGc) or their combinations are added to the partial tree
to create a pool of candidate trees, and then two neural networks are
applied to each candidate tree. The first neural network, a Transformer
neural network for graphs, i.e. Graphormer15–17, captures the structures
of the candidate trees. The second neural network captures the mat-
ched glycopeptide Y and B ions between the candidate trees and the
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spectrum. Their outputs are combined to score the candidate trees
and a number of top-scoring trees are selected and fed to the next
iteration. The iterations continue until all monosaccharides of the
glycan composition computed by the dynamic programming have
been used. The key idea of our model is that the structures of the
candidate trees, captured by the Transformer graph neural network,
can offer additional features on top of the fragment ions to predict the
next monosaccharides, as we have demonstrated successfully for
peptide de novo sequencing24–26.

More details of the database search and de novo sequencing of
GlycanFinder can be found in the Methods section.

Evaluation of peptide and glycan FDR estimation
The first and probably most important test to evaluate proteomics
search engines is how accurate their FDR estimation is. This is even
more critical for glycoproteomics as both glycan and peptide FDRs
need to be accounted for. Herewe applied an FDR validation approach

introduced by Liu et al.27 and Zeng et al.14. N-linked glycopeptide ana-
lysis was performed on a dataset of fission yeast glycoproteome
samples27. The protein database was created by combining fission
yeast and mouse proteomes from Swiss-Prot (Schizosaccharomyces
pombe andMus musculus, respectively). The glycan database contains
1670 glycan compositions that have been used in previous studies14,28

for evaluating this dataset. The peptide FDR was estimated as the
proportion of identified glycoPSMs with mouse peptides. This two-
species entrapment approach has also been used in other studies for
FDR estimation29,30. The glycan FDRwas estimated as the proportion of
identified glycoPSMs with glycans containing NeuAc, NeuGc, or
Fucose, as they are not expected in fission yeast samples14,27,28.

The results of GlycanFinder were compared against three other
tools, including pGlyco314 (build 20210615), MetaMorpheus13 (ver-
sion 0.0.320), and MSFragger12,28 (version 19.0). All tools were run
using the same databases and parameters, including 1% peptide and
glycan FDRs, Cys(Carbamidomethylation) as fixed modification,
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Fig. 1 | Workflow of GlycanFinder. a Example of an N-linked glycopeptide-spec-
trummatch. The glycosylation site is indicated by letterN in the purple color of the
peptide sequence. The glycan is shown at the top-right corner. Peptide backbone
b/y ions are highlighted in blue and red, respectively. Glycopeptide B/Y ions are
highlighted in purple. b Workflow of glycopeptide database search and de novo
sequencing. A glycopeptide spectrum can be processed in three stages: peptide-
based search, glycan-based search, and de novo sequencing. If the spectrum
cannot be identified in one stage, it proceeds to the next stage. Once a candidate
glycopeptide is identified, the false discovery rates (FDRs) at both peptide and

glycan levels are calculated. c N-linked glycan de novo sequencing. An N-linked
glycan tree is constructed from the N-linked core by iteratively adding mono-
saccharides to the tree. At each iteration, a dynamic programming algorithm
coupled with a Graph Transformer neural network are used to predict the next
monosaccharides based on the input spectrum and the partial tree obtained from
the previous iteration. The N-linked core includes two HexNAc (blue squares) and
three Hex (green circles). The symbols at the top-right corner indicate different
types of monosaccharides that can be added to the glycan tree. Source data are
provided in the Source Data file.
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Met(Oxidation) as variable modification. The search results are
provided in the Supplementary Data 1. As shown in Fig. 2a, Gly-
canFinder identified 4035 glycoPSMs, which was 13.6% more than
pGlyco3 (3553) and 17.0% less than MSFragger (4720). MetaMor-
pheus identified the most number of glycoPSMs (5232), but it had a
highly elevated glycan FDR of 51.6%. The estimated glycan FDRs of
GlycanFinder andMSFragger were 0.1% and 0.3%, respectively, while
that of pGlyco3 was 5.0% mainly due to glycans containing Fucose.
The peptide FDRs of all tools were well-controlled below 1%. The
Venn diagram in Fig. 2b shows that GlycanFinder identified 674

glycopeptides, which was 2.7% higher than pGlyco3 (656) and 17.4%
less thanMSFragger (791). Since we noticed that our estimated FDRs
were too tight, e.g. 0.1% for both glycan and peptide levels, we also
attempted to relax the score thresholds so that our FDRs were
comparable to those of MSFragger, i.e. 0.3% and 0.2% at glycan and
peptide levels, respectively. With those comparable FDRs, Gly-
canFinder would identify 4518 glycoPSMs, about 4.5% less than
MSFragger. In addition, it is worth noting thatMSFragger is based on
glycan compositions, whereas GlycanFinder and pGlyco3 report
glycan structures, which provide more comprehensive information

Glycan
Finder pGlyco3 Meta

Morpheus MSFragger

Number of glycoPSMs 4,035 3,553 5,232 4,720

with NeuAc 4 1 2418 11

with NeuGc 0 0 361 0

with Fucose 0 177 2560 1

with mouse pep�des 4 4 45 9

Glycan FDR es�ma�on 0.1% 5.0% 51.6% 0.3%

Pep�de FDR es�ma�on 0.1% 0.1% 0.9% 0.2%

a b

c

d

Fig. 2 | Performance evaluationof glycopeptide database search engines on the
fission yeast dataset from Liu et al.27. a Number of identified glycopeptide-
spectrummatches (glycoPSMs) and the estimated false discovery rate (FDRs). The
glycan FDR was estimated as the proportion of glycoPSMs with NeuAc, NeuGc, or
Fucose, as those monosaccharides were not expected in fission yeast. The peptide
FDR was estimated as the proportion of glycoPSMs withmouse peptides. bUnique

glycopeptides identifiedbyGlycanFinder,MSFragger, andpGlyco3. c,d Supporting
glycoPSMs of the two high-mannose glycans, (HexNAc)2(Hex)11 and (HexNAc)
2(Hex)13, which were reported only by GlycanFinder at the glycosylation site N234
of the protein O13781|YEO3_SCHPO. Peptide-backbone b/y ions are highlighted in
blue and red, respectively. Glycopeptide B/Y ions are highlighted in purple. Source
data are provided in the Source Data file. (H: Hex; N: HexNAc).
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about the glycans as one composition may correspond to multiple
structures.

We also investigated 70glycopeptides thatwere identifiedonly by
GlycanFinder. Figs. 2c, d show the glycoPSMs identified at the glyco-
sylation site N234 on the protein PO13781|YEO3_SCHPO, which had
been reported by Zielinska et al.31 using a deglycosylation approach
(i.e. only the glycosylation site reported but not the specific glycans).
GlycanFinder identified three glycans at this site, including (HexNAc)
2(Hex)11 and (HexNAc)2(Hex)13 with high-mannose structures (Hex-
NAc)2(Hex)n that are commonly observed in the fission yeast species.
We also observed that, for the spectrum scan 56,805 of sample 2 in this
dataset, GlycanFinder identified the high-mannose glycan (HexNAc)
2(Hex)11 with better supporting glycopeptide B/Y ions than pGlyco3’s
identification on this same spectrum (Supplementary Fig. 1, Supple-
mentary Data 1). MSFragger did not report any identification at this
glycosylation site.

We also compared the running times of the four tools on this
fission yeast dataset. The analysis was performed on a Dell Precision
7920 Tower with Intel Xeon and 128G RAM. All four tools support
multiprocessors to accelerate the search speed and 36 processors
were used in this analysis. All tools read in the same raw files and
searched the same protein database and glycan database. Their run-
ning times are reported in SupplementaryData 1. The results show that
MSFragger was the fastest tool and took 30min to finish the analysis.
GlycanFinder and pGlyco3 completed the analysis in 78 and 148min,
respectively, while MetaMorpheus took much longer time.

Evaluation of glycan de novo sequencing
We evaluated our deep learningmodel for glycan de novo sequencing
on a dataset of five mouse tissues (brain, heart, kidney, liver, lung)
published previously by Liu et al.27. N-linked database search was first
run on this dataset and 139,208 glycoPSMs identified at 1% FDR were
subsequently used for training and testing. Fivefold cross-validation
was performed, where the glycoPSMs of four tissues were used for
training and the glycoPSMs of the remaining tissue were used for
testing. For instance,when the lungdatawasused for testing, theother
four (brain, kidney, heart, liver) were used for training. Similarly, when
the brain data was used for testing, the other four (lung, kidney, heart,
liver) were used for training. Furthermore, we excluded all glycans of
the testing set from the training set to make sure that the training and
testing sets did not share any common glycans. Due to this exclusion,
the testing was performed on fractions 1 of the five tissues, as using all
fractions for testing would substantially reduce the training set. More
details of the training process can be found in the Methods section. In
addition, we also compared the performance of our glycan de novo
sequencing model to StrucGP23 on this dataset.

For each glycoPSM, the de novo glycan was compared to the
target glycan (identified from the database search) based on three
levels: composition, fragment ions, and structure. The first level cal-
culated whether the de novo and target glycans had the same com-
position. The second level calculated the number of matched glycan
fragment ions between the de novo and target glycans. The third level
calculated whether the de novo and target glycan trees were exactly
matched. The testing de novo accuracies of GlycanFinder and StrucGP
onfivemouse tissues are summarized inFig. 3a, the detailed results are
provided in Supplementary Data 2. GlycanFinder achieved average
accuracies of 32%, 83%, and 89% at the three levels structure, fragment
ions, and composition, respectively, whereas the accuracies of StrucGP
were 23%, 84%, and 85%. While both tools showed comparable
accuracies of fragment ions and composition, the structure accuracy
of GlycanFinder was substantially higher than that of StrucGP in
average and also across all five tissues. These results demonstrate the
advantage of GlycanFinder’s deep learning model to learn and predict
the tree structures of de novo glycans. Fig. 3b and Supplementary
Fig. 2 further show two examples of different de novo glycans

predicted by GlycanFinder and StrucGP on the same spectra. The
glycans predicted by GlycanFinder matched with the respective data-
base search results. In the first example (mouse brain, fraction 1, scan
39,012), StrucGP predicted a glycan with three Fucoses, which did not
likely represent a correct structure. In the second example (mouse
lung, fraction 1, scan 56,136), the glycan predicted by StrucGP did not
contain NeuAc but its signals were presented in the spectrum (Sup-
plementary Fig. 2). Fig. 3c shows two examples of de novo glycans that
were only discovered by GlycanFinder and were not found in the
database.

We also attempted to provide an FDR estimation for glycoPSMs
identified from the glycan de novo sequencing. A properway to do this
is to add the de novo glycans to the original glycan database and then
repeat the glycopeptide database searchwith the new glycan database
and FDR control. In particular, we combined 922 de novo glycans
identified by GlycanFinder from the testing data and 7884 glycans in
the original database, resulting in a new database of 8806 glycans. A
second-round database search was then performed using the new
database and 1% FDR. We found 1948 additional glycoPSMs corre-
sponding to 389 de novo glycans that passed 1% FDR of the second-
rounddatabase search, i.e. about 6.8%more glycoPSMs and 4.9%more
glycans than the original database search results. Those extra de novo
glycoPSMs are provided in the Supplementary Data 2.

A recent study by Rui et al.26 shows that, for de novo peptide
sequencing, the amino acid accuracy could reach 70–80% and the
peptide accuracy could reach 40–60%. However, it should be noted
that the tree structures of glycans are much more complex than the
linear structure of peptides. During the de novo sequencing of a gly-
can, there are many ways that a monosaccharide can be added to a
partial tree, creating multiple branches, whereas for a peptide, amino
acids are simply added to the sequence one after another. Here we
demonstrated that the tree structures of glycans could be learned by a
graph neural network, whereas previously a long short-term memory
neural network was used to learn the sequence patterns of peptides.
Our results thus reaffirmed that deep learning is essential to learn
intrinsic features of peptides and glycans. It will be exciting to see
future works that can apply deep learning to predict physicochemical
properties of glycopeptides, such as fragment ions, retention times,
collisional cross sections, etc.32–34.

Antibody N-linked glycosylation profiling
Profiling of immunoglobulin G (IgG) glycosylation has been a chal-
lenging problem due to multiple factors18–20. The four subclasses of
IgG, IgG1–4, have different levels of concentration in the serum yet
they share highly similar amino acid sequences, which together sig-
nificantly affect the separation and detection sensitivity of LC–MS/MS.
Here we reported an N-linked glycosylation profiling that could dis-
tinguish the four subclasses IgG1–4, without using any special strate-
gies for sample preparation, labeling, or fragmentation20. An LC–MS/
MS experiment was performed to study the N-linked glycosylation of
IgG1–4 proteins. The IgG sample was analyzed on two different MS
instruments, Orbitrap (Thermo Fisher Scientific) and timsTOF (Bruker
Daltonics), to evaluate the identification and label-free quantification.
The LC–MS/MS data was subsequently imported into GlycanFinder,
pGlyco3, and MSFragger for N-linked glycopeptide analysis. More
details of the sample preparation and the LC–MS/MS analysis can be
found in the Methods section.

Figure 4 shows a summary of GlycanFinder results on the IgG
Orbitrap dataset. The glycoPSMs in Fig. 4a and Supplementary Fig. 3
show an example where GlycanFinder was able to differentiate the
four IgG glycopeptides EEQ[Y/F]N(HexNAc4Hex3Fuc1)ST[Y/F]R,
especially the two isomers IgG3 and IgG4. The glycopeptide B/Y ions
with higher masses and intensities allowed to identify the glycan
structure (Supplementary Fig. 3a), whereas the peptide-backbone
b/y ions with lower masses and intensities helped to identify the
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peptide sequences (Fig. 4a). The key ions b3/b4, y5/y6, b7/b8, and y1/
y2 corresponding to Tyr (Y) and Phe(F) amino acids at the 4th and
8th positions allowed to distinguish the four glycopeptides of
IgG1–4 (Fig. 4a and Supplementary Fig. 3b). Such analysis previously
would require a special chemical labeling strategy plus ETD coupled
with HCD fragmentations to achieve20. It should be noted that, for
the Caucasian population, IgG2 and IgG3 share the same tryptic

N-linked glycopeptides, making it impossible to distinguish
them35,36.

In total, GlycanFinder identified 178 unique glycopeptides on the
four IgG1–4 subclasses. Fig. 4b, c further show the quantification
results of N-linked glycans on the four IgG1–4 subclasses and on two
biological replicates. In particular, Fig. 4b shows the N-linked glycan
quantification profile of IgG1, where the top five most abundant
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glycans are (HexNAc)4(Hex)4(Fuc)1, (HexNAc)4(Hex)5(Fuc)1, (Hex-
NAc)4(Hex)3(Fuc)1, (HexNAc)4(Hex)5(Fuc)1(NeuAc)1, and (HexNAc)
5(Hex)4(Fuc)1. Fig. 4c shows how the abundance, defined as the nor-
malized LC–MSprecursor feature area, of those glycans change across
the four IgG1–4 subclasses. While IgG1 and IgG2 show similar N-linked
glycanquantificationprofiles, IgG3 and IgG4 showsubstantial different
profiles from those of IgG1 and IgG2. We also validated that the glycan
quantificationprofileswere consistent across twobiological replicates.

It should be noted that the observed glycosylation profiles
depend on the source of the sample under investigation2. We also
performed the same analysis on the IgG timsTOF dataset and found
that, while the timsTOF results contained less number of unique gly-
copeptides than the Orbitrap results (121 and 178, respectively), the
top five most abundant glycans and their relative quantifications were
consistent on both datasets (Supplementary Fig. 4, Supplementary
Data 3, Supplementary Data 4). Isomeric glycopeptides of IgG1–4
could also be differentiated in the timsTOF results (Supplementary
Fig. 4). Furthermore,we compared the results ofGlycanFinder to those
of pGlyco3 and MSFragger on the IgG Orbitrap dataset (Supplemen-
tary Fig. 5). GlycanFinder, pGlyco3, and MSFragger identified 178, 254,
and 88 unique glycopeptides, respectively. All glycopeptides of
MSFragger were part of GlycanFinder or pGlyco3 identifications. In
terms of quantification, pGlyco3 reported the same top five most
abundant N-linked glycans and similar quantification profile to that of
GlycanFinder (Supplementary Fig. 5b). MSFragger results were slightly
different, with less amount of (HexNAc)4(Hex)3(Fuc)1 and more of
(HexNAc)4(Hex)5(Fuc)1(NeuAc)1. Overall, we observed consistent
quantification results from the twodifferent instruments and the three
search engines. The IgG glycosylation profiling and label-free quanti-
fication together shall enable comparative analysis across multiple
samples to identify biomarkers for diagnostic tests and potential
treatments of immune diseases associated with dysregulation of
glycosylation1,2,5,6.

Comprehensive performance evaluation based on a community
study from HUPO Human Glycoproteomics Initiative
Kawahara et al.3 recently described a community-based effort of the
HUPO Human Glycoproteomics Initiative (HGI) to evaluate the per-
formanceof 11 glycoproteomics softwares from9developer teamsand
13 user teams for intact glycopeptide analysis. Their study provided
standard glycoproteomics datasets from human serum and compre-
hensive criteria to test the performance of those search engines. Here
we also evaluated GlycanFinder on the same benchmarks and com-
pared to the results reported in Kawahara et al.3, including IQ-GPA
v2.537, Protein Prospector v5.20.2338, glyXtoolMS v0.1.439, Byonic
v2.16.1611, Sugar Qb40, Glycopeptide Search v2.0alpha41, Glycopepti-
deGraphMS v1.042, GlycoPAT v2.043, and GPQuest v2.044. We also
compared our results to those of the best user teams reported in
Kawahara et al.3 (team 15 using Byonic for N-linked and team 13 using
Byonic for O-linked).

The evaluation was performed on the dataset HCD-EThCD-CID-
MS/MS (file B from Kawahara et al.3). N-linked and O-linked glyco-
peptide analyses were performed using the same protein and glycan
databases and the search parameters as in the HGI study (the details
are provided in the Methods section). The N-linked and O-linked

glycoPSMs identified by GlycanFinder are provided in the Supple-
mentary Data 5. The search results of the other tools reported in
Kawahara et al.3 were obtained from that study’s supplementary
materials; this could be a disadvantage to those tools as that study was
published about a year before ours. The search results were further
used to calculate eleven different criteria N1–N6 and O1–O5 proposed
in Kawahara et al.3 to evaluate the tools’ performance. More details of
the evaluation criteria can be found in theMethods section. In addition
to the normalized scores of those criteria, we also reported direct
measurement results according to those criteria (Supplemen-
tary Data 5).

The N-linked evaluation results in Fig. 5 show that, overall, Gly-
canFinder achieved a slightly better performance than the best result
(user team 15) reported in Kawahara et al.3 (0.789 versus 0.777), and
outperformed the other nine softwares. Moreover, GlycanFinder
consistently scored high across five criteria N1–N3, N5, N6
(0.833–0.952), indicating its high level of accuracy in identifying the
expected and consensus N-linked glycopeptides and glycoproteins
while properly controlling the false discovery rate. However, Gly-
canFinder did not perform well on the N4 test in terms of the number
of identified N-linked glycopeptides. We further checked the con-
sensus between the results of GlycanFinder and the other tools. Fig. 5b
shows that 83% of N-linked glycan compositions and 78% of N-linked
glycoproteins of GlycanFinder were also reported by at least three
other tools. Fig. 5c also shows a consistent classification of theN-linked
glycans reported by GlycanFinder to those reported by other high-
scoring tools such as user team 15, Protein Prospector, or Byonic.

Evaluation of O-linked glycopeptide analysis
GlycanFinder also performs peptide-based and glycan-based searches
of O-linked glycopeptides in a similar fashion to that of N-linked gly-
copeptides. However, unlike N-linked glycopeptides which usually have
a N-X-S/T/C (X≠P) motif, O-linked glycans are attached to proteins via
the hydroxyl groups of serine (S) or threonine (T) residues. Thus, there
are often more than one O-glycosylation sites in a peptide sequence.
GlycanFinder allows at most two O-linked glycans per peptide and uses
internal fragment ions to determine the best glycosylation sites and to
calculate the site-specific localization score (A-score) for its glycosyla-
tion site assignments (Supplementary Fig. 6). More details about
O-linked glycopeptide analysis and the A-score can be found in the
Methods section. The benchmark results for O-linked glycopeptide
analysis based on the HGI study are shown in Supplementary Fig. 7.
GlycanFinder achieved an overall score of 0.730 and outperformed the
other nine softwares as well as the best result (0.701, user team 13)
reported in Kawahara et al.3. GlycanFinder performed consistently well
across four criteria O2–O5 (0.780–1.000) while having a low score for
criterion O1 (O-glycan composition). All other tools except IQ-GPA also
scored low on this criterionO1, whichmeasures the Pearson correlation
between the expected and theobservedO-glycandistribution in human
serum. The same results for O1 had also been observed in Kawahara
et al.3, where using a narrow search space and permitting only few
missed peptide cleavages were suggested to improve O1 score. Overall,
the benchmark results based on the HGI study demonstrate that Gly-
canFinder represents a high-performance informatics solution for both
N-glycoproteomics and O-glycoproteomics.

Fig. 3 | Evaluation of the glycan de novo sequencingmodel of GlycanFinder on
the dataset of fivemouse tissues fromLiu et al.27. a Comparison of the glycan de
novo sequencing accuracies of StrucGP and GlycanFinder. The composition accu-
racywas calculated as the proportion of glycoPSMs inwhich the denovo and target
glycans had the same composition. The fragment ion accuracy was calculated as
the proportion of matched glycan fragment ions between the de novo and target
glycans in all glycoPSMs. The structure accuracy was calculated as the proportion
of glycoPSMs in which the de novo and target glycan structures were exactly

matched.bGlycoPSMs of different glycans predicted by StrucGP andGlycanFinder
on the same spectrum. The glycan predicted by GlycanFinder matched with the
respective database search result, whereas StrucGP predicted a glycan with three
Fucoses, whichmay not likely represent a correct structure. c GlycoPSMs of the de
novo glycans that were discovered by GlycanFinder and not found in the database.
Peptide backbone b/y ions are highlighted in blue and red, respectively. Glyco-
peptide B/Y ions are highlighted in purple. Source data are provided in the Source
Data file.
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Fig. 4 | N-linked glycosylation analysis of four immunoglobulin G subclasses
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(IgG4). a Example glycoPSMs of the four isomeric glycopeptides EEQ[Y/F]N(Hex-
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amino acids at the 4th and 8th positions. Peptide backbone b/y ions are highlighted
in blue and red, respectively. Glycopeptide B/Y ions are highlighted in purple. The

original spectra and more details of the matched fragment ions are provided in
Supplementary Fig. 3. b N-linked glycan quantification profile at the glycosylation
site N180 of IgG1. The percentages indicate the normalized areas of the glycans
identified at the site. c Normalized areas of the top five most abundant N-linked
glycans of IgG1-4 (upper) and of IgG1 on two biological replicates (lower). The
quantification of glycans and glycopeptides was based on their MS1 precursors as
described in theMethods section. Source data are provided in the Source Data file.
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Discussion
In this study, we have demonstrated that GlycanFinder offers a highly
sensitive solution for glycoproteomics to boost the identification and
to discover new glycopeptides. This is the result of an effective inte-
gration of peptide-based and glycan-based search strategies to utilize
both peptide and glycan fragment ions to pick up all possible candi-
dates from the databases, mitigating the problem of poor fragmenta-
tion signals. The identified glycopeptides are checked for the FDRs at
peptide and glycan levels, aswell as the accuracies of glycosylation site
and glycan structure. The improvements of sensitivity and quality
control by GlycanFinder shall enable more glycoproteomics applica-
tions in health and diseases, such as therapeutic antibodies or vaccine
development where glycans play a key role in the folding and func-
tioning of antibodies. For instance, we have demonstrated an appli-
cation of GlycanFinder for site-specific glycosylation profiling of four
immunoglobulin G subclasses, which can be used to develop bio-
markers for diagnostic tests.

In addition to the glycopeptide database search, GlycanFinder
also provides a glycan de novo sequencing tool which shall become
valuable for glycoproteomics asmost current glycan databases are still
incomplete. We showed that the tree structures of glycans can be
learned by a graph neural network to predict de novo glycans at a
comparable accuracy to peptide de novo sequencing. Our results also
suggest that deep learning can be applied to predict important fea-
tures of glycopeptides, such as fragment ions or retention times, which
subsequently can be used to improve their identification2,32–34. This
research direction will see significant applications in glycoproteomics
as they can address the difficulties of glycopeptide separation and
detection by LC–MS.

Our de novo sequencing is currently only applied to N-linked
glycans as we found it much more challenging for O-linked glycans.
The O-linked search space is more complicated due to multiple pos-
sible occurrences of O-linked glycans per peptide. Furthermore,
O-linked glycans appear to have less predictable structures than
N-linked and their existing databases are very limited, making it diffi-
cult for machine learning models to learn useful features to assist de
novo sequencing. Thus, de novo sequencing of O-linked glycans still
remains a challenging problem for future research topics.

Our study did not include a comprehensive evaluation of gly-
copeptide quantitative analysis. In addition to the identification,
accurate quantification of intact glycopeptides is essential for dif-
ferential analysis of site-specific glycosylation. For instance, a recent
deep learning-basedmethod, pGlycoQuant45, has been proposed for
intact glycopeptide quantitation and can be used with common
search engines such as pGlyco3, MSFragger, or Byonic for quanti-
tative glycoproteomics.

There are some other limitations in our study that could be
addressed in future works. For instance, the glycoproteome of fis-
sion yeast contains simple high-mannose structures which might be
biased and limited for FDR evaluation. The IgG N-linked glycosyla-
tion analysis included only one sample which was not enough to
account for biological variation. The evaluation benchmarks and
results obtained from the HGI study by Kawahara et al.3 were pub-
lished about a year before our study. Thus, this could be a dis-
advantage to those tools and new updates or progress might have
been made during that period.

Methods
GlycanFinder database search
Potential glycopeptide spectra are separated from non-glycopeptide
spectra based on the presence of glycan signature ions and “ion-lad-
der” patterns. The following oxonium ions are considered: Hex
(163 mz), HexNAc (204 mz), Fuc (147 mz), NeuAc (292 mz), NeuGc
(308mz), HexNAc-H2O (186mz), HexNAc-2H2O (168mz), NeuAc-H2O
(274 mz), and Hex+HexNAc (366 mz). If a spectrum contains

1 signature ion with relative intensity ≥5% or at least 2 signature ions, it
is considered as a glycopeptide spectrum. If there is no signature ion,
we further look for glycan “ion-ladder” patterns, which are defined as
groups of ≥3 continuous glycopeptide Y-ions that are different by 203,
162 or 146mz. If there is no signature ion nor ion-ladder in a spectrum,
it is considered as a native (i.e. non-glycopeptide) spectrum. Glyco-
peptide spectra go through the glycopeptide search illustrated in
Fig. 1b; native spectra go through a standard peptide search.

After the in silico cleavage of the protein database, peptide
sequences arefilteredbasedon the presence of potential glycosylation
sites. Peptides with the sequons N-X-S/T/C (X≠P) for N-linked and S/T
for O-linked glycans are selected for the glycopeptide search with
glycopeptide spectra. All peptides are used for the standard peptide
search with native spectra.

Peptide-based and glycan-based searches are performed to
generate candidate glycopeptides. During the peptide-based
search, possible glycan peaks are first removed from a glyco-
peptide spectrum to avoid the influence on the peptide score
calculation. Fragment ions at the lower end of a spectrum are
quickly searched against peptide-backbone ions, including b/y, b/
y + HexNAc for HCD and c/z for ETD data, to identify candidate
peptides. We also consider the ions with losses of ammonia
(–NH3) or water (–H20), and charge (2+). Each spectrum is mat-
ched with the in silico digested peptides according to a peptide
scoring function, with glycans treated as PTMs. The peptide
scoring function is similar to the normal PEAKS DB search scor-
ing. It uses a linear discriminative function (LDF) score to mea-
sure the quality of a peptide-spectrum match. After a peptide
with a glycan mass offset is selected based on the peptide score,
glycan candidates can be obtained from the glycan database
according to the mass. Glycopeptide Y-ions and B ions are then
used to calculate the glycan score. The glycan scoring function is
obtained by training by an XGBoost regression model on a variety
of published datasets. Tens of features are tuned to evaluate a
glycan-spectrum match. Several key features include “ratio of
observed glycan Y-ions”, “log10 Y-ions intensity”, “observed core
structure”, “ ratio of observed glycan B ions” and etc.

If the spectrum cannot be identified by the peptide-based search,
it proceeds to the glycan-based search. Here the fragment ions at the
higher end of the spectrum are quickly searched against glycopeptide
Y-ions to identify candidate glycans. Subsequently, candidate peptides
are deduced from the precursor mass, candidate glycans, and the
protein database. The peptide mass is further added to glycan frag-
ments when matching glycan Y-ions with the spectrum. Glycopeptide-
spectrum matches are then evaluated using the same peptide and
glycan scoring functions as in the peptide-based search.

The FDR estimation includes both peptide and glycan FDRs. For
peptide FDR, a decoy protein database is generated by randomly
shuffling the target protein database. The combined target+decoy
protein database is then used for the glycopeptide search. The gly-
coPSMs are sorted according to the peptide score and the peptide FDR
is calculated as

peptide FDR=
number of glycoPSMswithdecoypeptides
number of glycoPSMswith target peptides

ð1Þ

For glycan FDR, we apply random mass shifts of 3–30 mz to all
fragment ions in an MS2 spectrum to create a decoy spectrum. The
glycoPSMs are sorted according to the glycan score and the glycan
FDR is calculated as:

glycan FDR=
number of glycoPSMswithdecoy spectra
number of glycoPSMswith target spectra

ð2Þ
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The thresholds for peptide and glycan scores are determined
from the input peptide and glycan FDR filters. A glycoPSM passes 1%
FDR filter only if both of its peptide and glycan FDRs are less than or
equal 1%.

When multiple glycan structures with the same composition
match a spectrum, they are sorted according to their glycan scores.
The top-scoring structure is then selected and the S-score of the gly-
coPSM is defined as

S-score =
topglycan score � secondglycan score

topglycan score
ð3Þ

Site-specific localization score (A-score) and O-linked glycopep-
tide analysis. If the peptide of a glycoPSM has multiple possible
glycosylation sites, a site-specific localization score, named A-score,
is calculated by comparing those glycosylation sites and their
respective internal fragment ions. In order to distinguish the ambi-
guity between potential glycosylation sites, fragment ions exclusive
to a specific site need to be identified in order to assign a glycan to
the residue. In this study, by “internal fragment ions” we refer to
those ions that were fragmented more than once, such as a peptide
ionwith a glycan fragment attached, or a peptide internal ionwith an
intact glycan attached. In practice, GlycanFinder considers peptide
ions with one monosaccharide attached (i.e. the glycan root) or with
an intact glycan attached when calculating the glycopeptide score
and the A-score. The ion types depend on the fragmentation meth-
ods. For example, b/y ions + glycan fragments for HCD, b/y/c/z/z’
ions + glycan fragments for EThCD, and c/z ions + glycan fragments
for ETD fragmentation.

The A-score in GlycanFinder is calculated as −10 × log10 P, where
the P value indicates the likelihood that the glycan site is assigned by
chance. We adopted this idea from a previous study of phosphoryla-
tion site localization by Beausoleil et al.46, and also from Zhang et al.47.
More specifically, the probability of the correct glycosylation site is
calculated based on the likelihood of identifying site-determining
internal fragment ions compared to random chance. An A-score of
42.89 would represent a probability of less than 1 in 15,000 of
matching a difference by random chance. If a glycan site can be
inferred confidently, for instance, if there canbeonly oneN-glycan site
in a peptide, then the A-score would be 1000.

O-linked glycans are attached to proteins via the hydroxyl groups
of serine (S) or threonine (T) residues. There are often more than one
O-glycosylation sites in a peptide sequence. GlycanFinder allows at
most two O-linked glycans per peptide, it is also recommended to
provide a glycoprotein database (less than 500 entries) instead of a
large, entire proteome database. GlycanFinder considers internal
fragment ions to determine the best glycosylation sites and calculates
the site-specific localization score (A-score) to reflect the confidenceof
its glycosylation site assignments as described above (Supplemen-
tary Fig. 6).

GlycanFinder de novo sequencing
Dynamic programming algorithm to determine the glycan com-
position. If a glycopeptide spectrum has its peptide identified but
no matched glycan can be found from the glycan database, glycan

de novo sequencing is performed to identify potentially new
glycans. The glycan mass is first deduced from the precursor mass
and the peptide mass. A dynamic programming algorithm is then
used to compute the glycan composition based on the glycan
mass and the spectrum. Five common classes of monosaccharides
are considered: Hex, HexNAc, Fuc, NeuAc, and NeuGc. All peaks
with mass values greater than the peptide mass (i.e. potential
glycopeptide Y-ions) in the spectrum are used to compute the
composition. The dynamic programming algorithm is designed to
avoid recomputation. A table of length L is initialized with 0 for
the first cell and –inf for all others to store the cumulative
intensity and the class of monosaccharide residues in the path
from peptide mass to precursor mass. Each cell in the table is
denoted as T ½m� where m represents mass value.

L=
precursormass � peptidemass

tolerance
ð5Þ

with error tolerance of 0.01 Da.
Finally, we tracebackover the table to obtain the best path (i.e. the

path has the highest intensity) from precursor mass to the peptide
mass and extract the monosaccharides selected at each cell as the
glycan composition. The algorithm can run efficiently when using the
broadcast behavior to extract peaks within error tolerance in popular
Python frameworks such as Numpy.

Deep learning model to construct the glycan tree. Once the com-
position is determined, the glycan tree is constructed from the
asparagine (Asn) residue of the peptide, i.e. the root, to leaves by
adding various monosaccharides iteratively. At each iteration, a com-
bination of monosaccharides is selected by a deep learningmodel and
attached to a leaf node of the sub-tree obtained from the previous
iteration. It should be noted that Fig. 1c only shows a simple example
where only one monosaccharide is attached to a leaf node. When a
combination consisting of two or more monosaccharides is attached
to a leaf node, it will create a branch at that node. The iterative process
of adding such combinations will result in a branched topology of the
glycan tree where multiple monosaccharides can be linked to any
nodes in the tree. The set of all possible combinations of mono-
saccharides are derived from the training data. The training data in this
study consists of twenty-one combinations of five monosaccharides
(Hex, HexNAc, Fuc, NeuAc, NeuGc), along with a unique token indi-
cating that no additional monosaccharide could be appended to the
leaf node. The monosaccharides and their combinations can be
updated when the training data is updated.

The deep learning model consists of two neural networks (Sup-
plementary Fig. 8). The first neural network is applied to encode
topologic knowledge of the sub-tree. We use the Graphormer
architecture17 which inherits from the Transformer16 and is designed
for graphs. The glycan structure is represented as a graph with nodes
as monosaccharides and edges as linkages, and each of these nodes
and edges is assigned a vector embedding. We encode each node in
breadth-first search order with derived compositions from dynamic
programming without the accumulated monosaccharides. The repre-
sentations are then passed through two layers and four attention
heads to enable themodel to learn the relationships between different
nodes and edges in the graph. The positional-embedding layer is also

T m½ �= � inf , if T m�mmono

� �
<0 for allmonosaccharides

Intensity m½ �+max T m�mmono

� �� �
for allmonosaccharides, otherwise

(

ð4Þ
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included to allow themodel to learn the relative positions of the nodes
and edges. The output of this component is a 512-dimensional vector
as graph embeddings, which captures the encoded glycan structure.

The second neural network captures the matched glycopeptide
Y-ions between the candidate trees and the spectrum. The theoretical
spectrum is formed by attaching all candidates to the previously pre-
dicted substructure at each time step. The observed spectrum is
represented by a set of m/z values and intensity pairs. Similar to
PointNovo26, the pairs are encoded with respect to the mass gap
between theoretical m/z and observed m/z. The differences between
observed peaks and theoretical peaks are obtained as input features to
the point-cloud model named T-Net. The permutation of its mono-
saccharides is used for each candidate combination as features. For
example, the last child monosaccharides of the bisect core structure
(Hex2HexNAc1) will have features of Hex, HexNAc, HexHexNAc, Hex-
Hex, Hex2HexNAc. At each prediction step, we obtain the theoretical
m/z values for candidates and their permutations to compute the m/z
difference tensor (D) for the observed peaks. We adopt the activation
function from PointNovo to extract features from the spectrum:

σðDÞ= exp½�∣D∣ � c� ð6Þ

The spectrum features are also encoded into 512-dimensional
vectors to ensure a fair concatenation of results from the two neural
networks.

Finally, representations learned by the two neural networks are
concatenated together and fed into a fully-connected layer which
adjusts the weights between the two networks. The total number of
parameters is 10,939,134. During training, a batch size of 256 and 10
epochs are used with 8-1-1 train-valid-test ratio. The best model is
selectedbasedon the least validation error. Themodelwas trained and
tested on 25 fractions, with each tissue (mouse brain, lung, liver, kid-
ney, and heart) containing five fractions, in a fivefold cross-validation
fashion: the data of four tissues were used for training and the data of
the remaining tissue were used for testing. The training loss decreased
from 0.220–0.105, while the validation loss also decreased to 0.251.
During prediction (de novo sequencing), the two neural networks are
used to sort candidates at each time step and the candidate that has
the highest rank and contains only the monosaccharides found in the
composition (predicted by dynamic programming approach) is
selected. The candidate is then attached to the sub-tree and fedback to
the neural networks for the next iteration. The iterations continue until
the constructed tree includes all monosaccharides in the composition.

Data and model training. To train the neural networks, we ran Gly-
canFinder database search on the dataset of five mouse tissues (brain,
heart, kidney, liver, lung) and identified 139,208 glycoPSMs at 1% FDR.
However, we found that the number of unique glycan structures was
limited, e.g. the mouse brain tissue only contained 1155 unique glycan
structures. Learning topologic knowledge on a thousand structures is
not sufficient to generalize to other tissues. As a result, we divided the
training process into twophases. Thefirst phase is to take advantageof
the glycan database and select 5012 unique structures to train the first
deep learning model. To guarantee fair comparison, we excluded all
glycan structures that exist in the testing set from the training set. For
each glycan structure, we iteratively removed all leaves attached to its
parent monosaccharides from the first parent node to the root (i.e. in
the opposite direction to that of the de novo sequencing). At each
iteration, the partition created a sub-tree and the candidate (i.e. a set of
monosaccharides) that had been removed. The second phase used the
trained parameters from the first deep learningmodel and trained the
second neural network on the spectrum to obtain the next mono-
saccharides group from 21 candidates. The predicted and the target
monosaccharides were used to calculate the training loss, which was

then back-propagated to update the parameter weights of the two
neural networks.

GlycanFinder quantification of glycopeptides
For each identified glycopeptide, the sum of the areas of its MS1 pre-
cursor featureswith different charges is used for its quantification. The
label-free approach is applied for glycopeptide quantification among
different samples. Given a glycosylation site of a glycoprotein, the
glycanprofile is calculated basedon the normalized areas of the glycan
forms at that site. First, the area of each glycan form at each glycosy-
lation site is calculated by summing the areas of all glycopeptides
containing that glycan at that site. Then, the normalized area of each
glycan form is obtained by dividing its area by the sum of the areas of
all glycans forms at that site.

Evaluation of peptide and glycan FDRs on the fission yeast
dataset
The dataset was downloaded from the PRIDE Consortium database.
The proteomes of fission yeast and mouse, S. pombe andM. musculus,
respectively, were downloaded from Swiss-Prot (August 19th, 2022) in
fasta format. The fasta files were concatenated to create the protein
database. The glycan database containing 1670 glycan compositions
was obtained fromZeng et al.14 N-linked glycopeptide database search
was performed using GlycanFinder, pGlyco3 (build 20210615), Meta-
Morpheus (version 0.0.320), and MSFragger (version 19.0) with the
following parameters: HCD fragmentation, trypsin cleavage, Cys(Car-
bamidomethylation) as fixed modification, Met(Oxidation) as variable
modification, precursor error tolerance of 10 ppm, fragment error
tolerance of 0.05Da, glycan fragment error tolerance of 20 ppm. The
peptide and glycan FDRs were set at 1%. The search results are pro-
vided in Supplementary Data 1. glycoPSMswith peptides coming from
mouse proteins were counted as false identifications and were used to
estimate the peptide FDR. glycoPSMswith NeuAc, NeuGc, or Fucose in
their glycan compositions were counted as false identifications and
were used to estimate the glycan FDR.

LC–MS/MS analysis of N-linked glycosylation in the four
IgG1–4 subclasses
The IgG sample was purchased from Solarbio Life Sciences (cata-
log SP001).

IgG purification and desalting. IgG was isolated using Protein G col-
umn by affinity chromatography, and desalted using Hi-trap Desalting
column according to the molecular weight of substances. Serum
(20 µL)was diluted in loading buffer (0.1M,pH7.4) followedbyfiltered
through a 0.22-µm filtrate with 96-well-plate. Equilibrium buffer and
binding buffer are the same as the loading buffer, and 0.1M formic
acid (FA, pH 2.5) was used as the elution buffer. Sample solution was
injected into the loop valve and processed following the certain
method template of step elution formonoclonal antibody contained in
the instructions of AKTAplus. Thedetailed procedures can be found in
the template description of User Manual (AKTA prime plus). Notably,
the neutralizing buffer (1M Tris–HCl, pH 9.0) was suggested to be
initially added into the collection tube to maintain the purified IgG
fractions stable. According to the principle of molecular sieve, the
collected IgG protein solution was further desalted using the desalting
column by the application template. IgG desalting was conducted
using 50mM ammonium bicarbonate (pH 8.0) solution due to labile
property. Desalting IgG protein solution was automatically collected,
and evaporated under a vacuum concentrator at 60°C. Finally, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was
conducted to test the purity of IgG fractions.

Tryptic digestion andglycopeptides enrichment. All the IgG samples
were subjected to proteolytic cleavage using trypsin. The samples
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were dissolved in 150μL 8M urea, 0.1M Tris–HCl (pH= 8.5). Then,
1.5μL of 0.5M Tris-(2-carboxyethyl) phosphine (TCEP) was added and
incubated at 37 °C and 600 rpm for 30min. After that, 5.1μL of 0.3M
iodoacetamide (IAA) solution was added and incubated at 25 °C in the
darkness for 30min. The samplewas dilutedwith 0.1M Tris (pH 8.5) to
4 times volume of solution. Next, 10μg of trypsin was added by
enzyme to substrate ratio at 1:50 and incubated under 37 °C and
600 rpm for 12 h, and then 5μg of trypsin was added and incubated
under 37 °C and 600 rpm for 4 h. Then, the digestion was stopped by
added 1% formic acid and desalted by Sep-Pak 50mg tC18 column. The
peptides mixtures were used for glycopeptide enrichment experi-
ment. Briefly, the column containing 100mg MCC was pre-washed
with 3mL of ultra-water four times, and equilibrium with 3mL of 80%
acetonitrile (ACN) containing 0.1% trifluoroacetic acid (TFA) four
times. The sample was diluted with equilibrium buffer to five times
volume of tryptic digestion solution, subsequently loaded onto the
SPE columnby gravity twice. After washingwith 3mL of 80%ACN/0.1%
TFA six times in more than 1min each time, IgG glycopeptides were
collected by 1mL of ddH2O twice.

LC-MS/MS experiment. Subclass-specific IgG glycosylation was ana-
lyzedwith a nanoElute UHPLC system coupled to a timsTOF Pro2mass
spectrometer equipped with Captive Spray source (Bruker Daltonics).
Solvent A and B were 0.1% FA in ultra-water and 0.1% FA in ACN,
respectively. Tryptic IgGglycopeptidesweredissolved in solvent A and
selected for MS analysis. 100 ng of sample was injected and the ana-
lytes were separated using a 60min binary gradient at a flow rate of
300 nL/min. Glycopeptides were separated on a homemade C18 col-
umn (75μm×20 cm, 1.9um C18 Beads). The LC gradient used was as
follows: 0–45min, 4–22% B; 45–50min, 22–35% B; 50–55min, 35–80%
B; 55–60min, 80% B.

For the timsTOF Pro2 settings, the following parameters were
adapted, starting from the PASEF method for standard proteomics.
Stepping CE was applied for glycopeptides analysis. The values for
mobility-dependent collision energy ramping were set to 75 eV at an
inversed reduced mobility (1/k0) of 2.0 V s/cm2 and 20 eV at 0.60 V s/
cm2. Collision energies were linearly interpolated between these two 1/
k0 values and kept constant above or below. For efficient glycopeptide
dissociation, TIMS stepping was applied with two collision energies:
35–131.25 eV was utilized following 20–75 eV. 5 PASEF MS/MS scans
were triggered per cycle (2.06 s). Target intensity per individual PASEF
precursor was set to 100,000. The scan range was set between 0.70
and 1.74 V s/cm2 with a ramp time of 200ms. Precursor ions in an m/z
range between 100 and 4000 with charge states 2–5 were selected for
fragmentation. MSwas operated in the positive-ion mode, andMS/MS
was acquired under the Data dependent acquisition (DDA) mode.
Active exclusion was enabled for 0.4min (mass width 0.015 Th, 1/k0
width 0.015 V s/cm2).

LC-MS/MS data analysis. The LC–MS/MS data was imported into
GlycanFinder, pGlyco3, and MSFragger for N-linked glycopeptide
analysis. The data was searched against an IgG protein database of 9
entries and an IgGN-linked glycan database of 247 entries. The protein
and glycan databases and the raw data have been deposited to the
PRIDE repository (see “Data availability” section). The following search
parameterswere used for all three searchengines:HCD fragmentation,
trypsin digestion, C(Carbamidomethylation) as fixed modification,
M(Oxidation) and NQ(Deamidation) as variable modifications, pre-
cursor error tolerance of 10 ppm, fragment error tolerance of 0.02Da,
glycan fragment error tolerance of 20 ppm. The peptide and glycan
FDR filters were set at 1%.

Evaluation based on the HGI benchmarks
The evaluation was performed on the dataset HCD–EThCD–CID–MS/
MS (file B from Kawahara et al.3). N-linked and O-linked glycopeptide

analyses were performed as follows. The protein database was
obtained from the HGI study, which included 20,201 human proteins.
The HGI study also provided two default glycan databases that con-
tained 309 mammalian N-glycan compositions and 78 mammalian
O-glycan compositions. Since GlycanFinder is a glycan structure based
search engine, we collected all the glycan structures from our internal
glycan database that had the same compositions as that of the HGI
study. As a result, 494 N-glycan structures and 298O-glycan structures
in GlycoCT format were used to perform the HGI analysis with Gly-
canFinder. The protein and glycan databases are provided in the
Supplementary Data 6. Other search parameters are as follows: EThcD
fragmentation for N-glycan analysis and HCD fragmentation for
O-glycan analysis; trypsin cleavage, semi-specific digestion with at
most one missed cleavage; Cys (Carbamidomethylation, +57.02Da) as
fixed modification, Met (Oxidation, +15.99Da) and Asn/Gln (Deami-
dation, +0.98Da) as variable modifications; precursor error tolerance
of 10 ppm, fragment error tolerance of 0.02Da, glycan fragment error
tolerance of 20 ppm.

The search results were further used to calculate eleven different
criteria proposed in Kawahara et al.3 to evaluate the tools’ performance.
Six criteria N1–N6 were used to evaluate the N-linked glycopeptide
performance. The N1 test measures the tools’ accuracy to identify
glycoPSMs of a synthetic N-glycopeptide that had been included in the
dataset as a positive control. The N2 test calculates the Pearson corre-
lation between the expected and the observed N-glycan distribution in
human serum. TheN3 testmeasures the accuracy of identifyingN-linked
glycoproteins expected in human serum. The N4–N6 tests respectively
calculate the number of unique N-linked glycopeptides identified, the
commonly reported N-linked glycopeptides, and the possible false dis-
coveries containing NeuGc and multi-Fuc that are not expected in
human serum. The six criteria were combined and normalized to obtain
an overall score from 0 to 1. Similarly, five criteria O1–O5 were used to
evaluate the O-linked glycopeptide performance: O-glycan composition
(O1), source O-glycoprotein (O2), O-glycoproteome coverage (O3),
commonly reported ‘consensus’ O-glycopeptides (O4), and absence of
NeuGc and multi-Fuc O-glycopeptides (O5). A Python script of how to
calculate them is provided in the Supplementary Data 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thefission yeast andmousedatasets fromLiu et al.27 weredownloaded
from the PRIDE48 repository with accession numbers: PXD005565
(yeast), PXD005411 (mouse brain), PXD005412 (mouse kidney),
PXD005413 (mouse heart), PXD005553 (mouse liver), PXD005555
(mouse lung). The HGI dataset HCD-EThCD-CID-MS/MS (file B) from
Kawahara et al.3 was downloaded from the PRIDE repository with
accession number: PXD024101. The IgG datasets generated in our
study have been deposited to the PRIDE repository with accession
number: PXD039787. Source data are provided with this paper.

Code availability
The Python implementation, training and testing datasets of the deep
learning model for glycan de novo sequencing is available on our
GitHub repository GlycoNovo49 and can be accessed via the following
link: https://github.com/zqq66/GlycoNovo. GlycanFinder is available
at https://www.bioinfor.com/peaks-studio/, its documentation is pro-
vided in the Supplementary Data 7. Our glycan de novo sequencing
tool GlycoNovo uses the Python glypy library50.
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