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Transposable elements mediate genetic
effects altering the expression of nearby
genes in colorectal cancer

Nikolaos M. R. Lykoskoufis 1,2,3,4 , Evarist Planet5, Halit Ongen 1,2,3,6,
Didier Trono 5,6 & Emmanouil T. Dermitzakis 1,2,3,6

Transposable elements (TEs) are prevalent repeats in the human genome, play
a significant role in the regulome, and their disruption can contribute to
tumorigenesis. However, TE influence on gene expression in cancer remains
unclear. Here, we analyze 275 normal colon and 276 colorectal cancer samples
from the SYSCOL cohort, discovering 10,231 and 5,199 TE-expression quanti-
tative trait loci (eQTLs) in normal and tumor tissues, respectively, of which 376
are colorectal cancer specific eQTLs, likely due to methylation changes.
Tumor-specific TE-eQTLs show greater enrichment of transcription factors,
compared to shared TE-eQTLs suggesting specific regulation of their expres-
sion in tumor. Bayesian networks reveal 1,766 TEs as mediators of genetic
effects, altering the expression of 1,558 genes, including 55 known cancer
driver genes and show that tumor-specific TE-eQTLs trigger the driver cap-
ability of TEs. These insights expand our knowledge of cancer drivers, dee-
pening our understanding of tumorigenesis and presenting potential avenues
for therapeutic interventions.

Understanding the mechanisms underlying tumorigenesis has been
one of the main research questions in cancer biology. While somatic
mutations, chromosomal rearrangements and gene amplification are
the three main hallmarks driving cancer progression, they are unable
to provide a complete explanation of tumorigenesis. Recent dis-
coveries have demonstrated that transposable elements (TEs) have
contributed to the evolution of gene regulation and can alter the
landscape of gene expression in development and disease1–5. Trans-
posable elements (TEs) are interspersed repeats that contribute more
than half of the human genome. TEs, more specifically TE-embedded
regulatory sequences (TEeRS) are broadly active during the phases of
genome reprogramming that occur in the germline and the early
embryo, and then controlled by epigenetic mechanisms that still allow
their finely orchestrated participation in biological events as diverse as

brain development, immune responses, and metabolic control. The
aberrant re-activation of TEeRSs is observed under certain conditions
and disease states, notably cancer6–8. Transcription is defined by the
coordinated activity of regulatory elements which are modulated by
genetic variation. Thus, we speculate that transposable element
expression is influenced by regulatory non-coding variants, also called
expressionQuantitative Trait Loci (eQTLs), known to contribute to the
onset and progression of complex diseases like cancer9,10. To build on
this concept, we set out to analyze the interplay between regulatory
variants (eQTLs), transposable elements and gene expression to
characterize the genetic perturbation of TE and gene expression in
cancer. In this paper, we integrated genome-wide genotyping data
(genotype array) and transcriptomic profiles (bulk RNA-sequencing)
from the Systems Biology of Colorectal Cancer (SYSCOL) cohort
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comprising of 275 and 276 normal and tumor samples, respectively.
We discovered thousands of eQTLs regulating TE expression both in
normal and tumor as well as many tumor specific TE-eQTLs likely
driven by methylation changes. Notably, we observed that tumor-
specific TE-eQTLs show a greater enrichment of transcription factors
compared to shared TE-eQTLs suggesting that TEs more specifically
regulated in tumor. Furthermore, by using Bayesian networks, we
discovered thousands of TEs acting as mediators of genetic effects,
significantly altering the expression of nearby genes, including many
known cancer driver genes and showed that tumor-specific TE-eQTLs
trigger the driver capability of TEs. Overall, we show that TEs are
important mediators of genetic effects onto nearby genes, specifically
in cancer, highlighting, their importance during tumorigenesis.

Results
Quantifying transposable elements (TEs) and gene expression
Tomeasure the expressionof TEs inCRC,we examined transcriptomes
obtained by RNA-seq from 275 normal and 276 CRC samples from the
SYSCOL cohort11. We quantified TE and gene expression using an in-
house curated TE annotation list originating from the RepBase
database12 that contains approximately 4.6 million individual TE loci.
These annotations were merged with gene annotation from ensembl
(v19). Filtering for uniquely mapped reads (Methods) to obtain robust
estimates of TE expression resulted in 50,921 TEs and 17,430 genes

(protein coding and lincRNAs). We observed that the majority of
expressed TEs present in our dataset are SINEs (Alu andMIR), LINEs (L1
and L2) as well as different subfamilies of Long Terminal Repeats
(LTRs) and DNA transposons. However, when we looked at the pro-
portion of expressed TEs per subfamily, SVA and ERVK were most
prominent (Fig. 1a, Supplementary Fig. 1). Additionally, we used
available data from Encode13 and miRbase14 to generate a list of reg-
ulatory regions and discovered that 13,590 expressed TEs overlapped
with at least one previously identified regulatory element. We also
discovered that expressed TEs are significantly enriched for most
regulatory regions, except for enhancers, compared to non-expressed
TEs (Supplementary Data 1; Fig. 1b, Supplementary Fig. 2) highlighting
their potential role in gene expression regulation.

Transposable elements are under strong genetic control
Using TE expression quantifications and genotype data we first sought
to assess the impact of inter-individual genetic variation on TE
expression. We conducted cis-eQTL analysis followed by a forward
backward stepwise conditional analysis (Methods) and discovered a
total of 10,231 and 5199 TE-eQTLs as well as 6955 and 1552 gene eQTLs
in normal and tumoral tissue, respectively (Supplementary Figs. 3 and
4; Supplementary Data 2, 3). Similarly to gene-eQTLs, TE-eQTLs dis-
played stronger effects anddensity closer to the transcription start site
(TSS) in both normal and tumor samples (spearman rho = −0.33,
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Fig. 1 | Description of quantified TEs. a Barplot showing the proportion of
uniquelymapped and quantified TE subfamilies in our dataset. b Pie chart showing
the proportion of TEs with different types of regulatory elements within their
sequence. We uniquely mapped and quantified 50,921 TEs. The majority of them
are SINEs from the Alu and MIR family, L1 and L2 TEs from the LINE family and

different subfamilies of LTRs as well as someDNA transposons. When we looked at
the proportion of expressed TE per subfamily, we observed that SVA and ERVK are
most prominent. Additionally, 13,590 out of the 50,921 TEs contain regulatory
elements within sequence.
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p < 2.2e−16 in normal, spearman rho = −0.25, p < 2.2e−16 in tumor)
(Fig. 2a, b), yet were more proximal to the TSS compared to gene-
eQTLs (two-sidedWilcoxon p = 2.4e−12 in normal; two-sidedWilcoxon
P = 4.8e−07 in tumor; Supplementary Fig. 5). We observed that TEs
displayed fewer independent eQTLsper TE thangenes (Fig. 2c, d)while
theminor allele frequencies of TE- andgene-eQTLvariantswere similar
(Supplementary Fig. 6). Proximal distance of TE-eQTLs to TSS and the
smaller number of independent signals per TE could be due to smaller
evolutionary time of TE regulatory landscapes in the human genome
compared to genes, making proximal effects much more likely.

To corroborate our findings, we used external datasets to repli-
cate our eQTL discoveries. We downloaded available data from GTEx
for colon transverse (N = 174) and TCGA for colon adenocarcinoma
(TCGA-COAD, N = 251). We processed both datasets in a similar way as
we did with the SYSCOL dataset (methods 2-3). Not all variant-feature
pairs were present in the GTEx colon transverse dataset after all fil-
tering steps. Out of the 10,231 TE-eQTLs and 6955 gene-eQTLs dis-
covered in normal, 8380 (82%) and 5930 (85%) TE- and gene-eQTLs,
respectively were present in the dataset and could be replicated. From
the 5199 TE- and 1552 gene-eQTLs discovered in SYSCOL tumor, only
3221 (62%) TE- and 1164 (75%) gene-eQTLs were present in the TCGA-
COAD dataset. We observe a high replication of our original results
(Supplementary Fig. 7A–C; Supplementary Data 4) in normal (pi1 TE-
eQTLs = 0.831 pi1 gene-eQTLs = 0.686) and tumor (pi1 TE-eQTLs =
0.884; pi1 gene-eQTLs = 0.783) (Supplementary Fig. 7D–F; Supple-
mentary Data 5) corroborating our findings.

Given previously established roles of tumor-specific gene-eQTLs
in tumorigenesis11, we aimed next at investigating whether tumor-
specific TE-eQTLs could similarly contribute as cancer driving factors.
To this end, we used linear mix models with an interaction term
between variant and tissue (normal/tumor). We discovered that 429
(8%) of the tumor TE-eQTLs are tumor-specific and 1697 (24%) of the
normal TE-eQTLs are normal-specific, with 525 TE-eQTLs shared
between both settings (Fig. 3a; Supplementary Data 6). For genes, we
found 117 (%) tumor gene-eQTLs to be tumor-specific and 902 (%)
normal gene-eQTLs to be normal-specific, of which 175 were shared
(Supplementary figure 8A; Supplementary Data 7). Shared TE- and
gene-eQTLs were closer to the TSS of TEs/genes compared to tissue-
specific eQTLs (two-sided Wilcoxon p < 2.2e−16) (Fig. 3b, Supplemen-
tary Fig. 8B). Additionally, we observed that shared eQTLs conserved
their effect in both normal and tumor (Fig. 3c, Supplementary Fig. 8C).
These results indicate that TE expression is under strong genetic
control and that non-coding germline variants act as drivers of TE
expression in cancer as similarly observed for gene expression11.

Transcription factors regulate TE expression more specifically
in tumor
To corroborate the biological relevance of the discovered TE-eQTL
variants we performed functional enrichment analysis of TE and gene
eQTLs in normal and tumor using available ChIP-seq data from the
Ensembl Regulatory Build15 for 202 TFs and 29 histonemarks. We then
proceeded with multiple test correction with a given FDR of 5%

Fig. 2 | cis- eQTL discovery. eQTL variant distance to TSS in a normal and b in
tumor. We observe stronger eQTL effect close to the transcription start site of TE
and genes in both normal (two-sided Wilcoxon, p = 2.4e−12) and tumor (two-sided

Wilcoxon, p = 4.8e−7). Number of secondary eQTLs for TEs and genes in c normal
and d tumor. Gene eQTLs have more functionally independent eQTLs per gene
than TEs do. Source data are provided as a Source Data file.
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(methods section 1.6.4). We found significant enrichment for many TF
binding sites overlapping the eQTL loci highlighting the functional
relevance of the variants discovered (Fig. 4a, b; Supplementary Figs. 9
and 10; Supplementary Data 8, 9). At 5% FDR, we discovered 5 sig-
nificant hits (4 TFs and 1 histone marks) and 16 significant hits (12 TFs
and 4 histonemarks) that displayed stronger enrichment for TE eQTLs
compared to gene eQTLs in normal and tumor, respectively. The TF
most enrichedover TE-eQTLs innormal tissueswasZNF274, aKrüppel-
associated box (KRAB) domain-containing zinc-finger protein (KZFP),
whereas the most enriched over tumor TE-eQTLs was TRIM28, the
master corepressor that is recruited by the KRAB domain of many TE-
binding KZFPs and serves as a scaffold for a heterochromatin-inducing
complex capable of repressing TEs via histone H3 Lys9 trimethylation
(H3K9me3), histone deacetylation and DNA methylation16,17. Addi-
tionally, BDP1 and BRF1, two subunits of the RNA polymerase III tran-
scription initiation factor, were more enriched over TE-eQTLs

compared to gene eQTLs highlighting potential transcription of Alu or
MIR TEs of the SINE family18. These results corroborate the biological
relevance of TE eQTLs and point to possible transcription and
repression of certain TEs.

To assess the differential effects of tumor-specific versus shared
eQTLs, we performed functional enrichment analyses using available
ChIP-seq data from LoVo colorectal cancer cells for 220 TFs and 2
histone marks19 (methods section 1.6.4). We observed that in the case
of genes, all tested TFs had a stronger enrichment for shared com-
pared to tumor-specific eQTLs, indicating that these TFs are regulating
gene expression in both the normal and tumor state. (Supplementary
Fig. 11, Supplementary Data 10). In contrast, we found at 5% FDR,
60 significant hits (58 TFs and 2 histone marks) displaying stronger
enrichment for tumor-specific versus shared TE-eQTLs, pointing to
tumor-specific TE regulation (Fig. 4c; Supplementary Fig. 12; Supple-
mentaryData 11). Of these, 23were upregulated and 25 downregulated
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Transcription factors (TFs)

Fig. 4 | Functional enrichmentofeQTLs. aThe ratio betweenTE-eQTLenrichment
and gene-eQTL enrichment in log2 scale discovered in normal. 5 TFs show stronger
enrichment for TE-eQTLs in normal compared to gene-eQTLs. b The ratio between
TE-eQTL enrichment and gene-eQTL enrichment in log2 scale discovered in tumor.
We observed 16 TFs to have a stronger enrichment for TE-eQTLs than gene-eQTLs

in normal. c log2 ratio between tumor-specific TE-eQTL enrichment and shared TE
eQTL enrichment. We observe 60 TFs with a stronger enrichment for the tumor-
specific TE-eQTLs than the shared eQTLs indicating that these TFs regulate TE
expression specifically in tumor. Source data are provided as a Source Data file.
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in tumors (12 were missing from our expression data and could not be
tested for differential expression analysis), but we did not observe any
significant correlation between the tumor-specific TE-eQTL enrich-
ment to shared TE-eQTL enrichment ratio and fold change in the
expression of the corresponding transcription factors (Pearson
R =0.019, p-value = 0.86; Supplementary Fig. 13). Thus, differential
expression of these TFs is not driving the tumor-specific TE-eQTL
effects. However, 61 of the 88 tumor-specific TE-eQTLs overlapping
the binding sites of the 60 aforementioned TFs are not significantly
associated (FDR = 5%) with any nearby (±1Mb from TSS) TE or gene in
normal, indicating that these regulatory regions are inactive in the
normal state (Supplementary Fig. 14). Additionally, we compared
methylation levels between normal and tumor samples for the tumor-
specific and shared eQTLs and observed significantly increased (Wil-
coxon rank sum test p-value = 2.5e−11 for TEs and p-value = 0.0037 for
genes)methylation over tumor-specific compared to shared eQTLs for
both gene and TEs (Fig. 3d; Supplementary Fig. 8D).

Altogether these results suggest that many TFs are regulating TE
expression. The inactivity of some of the TE eQTLs in normal and the
significant changes in methylation between tumor-specific and shared
TE-eQTLs indicate that regulatory switches involving the recruitment
of these TFs might underlie the effects of tumor-specific TE eQTLs.

Transposable elements as mediators of genetic effects
onto genes
Having established that TEs are under genetic control, we next sought
to assess the causal relationship between eQTL variants, TEs and genes
and discover the extent to which TEs act as drivers of gene expression
in tumor. To this end, we focused on regulatory variants affecting both
TEs and genes and detected these in an unbiased manner by first
associating TEs with genes using a similar approach to QTL mapping.
Next, we quantified the identified 20,083 TE-gene pairs found in nor-
mal samples and 140,274 TE-gene pairs found in tumor at 1% FDR and
used this quantified TE-gene pairs to find all eQTL-TE-gene triplets by
performing a standard eQTL analysis (Methods; Supplementary
Figs. 15–17). At 5% FDR, we discovered 11,937 and 9528 triplets in
normal and tumor, respectively, for which we inferred the most likely
causal relationship using Bayesian networks (Methods)20–22. We tested
three models, (i) the causal model where the eQTL variant affects TE
expression and then gene expression, (ii) the reactivemodel where the
eQTL variant affects gene expression and then TE expression and (iii)
the independent model where the eQTL variant affects independently
TE and gene expression (Supplementary Fig. 18). Bayesian Networks
were shown to be an adequate method for testing these three
models23. We observed significantly more causal models in tumor
(47%) compared to normal (23%) (Fisher p-value < 2e−16) indicating that
TEs are causal for gene expression predominantly in tumor and to a
lesser extent in normal (Fig. 5a, b; Supplementary Fig. 19; Supple-
mentary Data 12, 13). We also show that the proportion of causal
models correlated with the genomic position of the TE with respect to
the gene; intronic TEs tend to be reacting to gene expression. whereas
TEs outside the gene body tended to be causal. We believe that the
predominanceof reactivemodel from intronic TEs and downstreamof
genes is a consequence of the transcription of the gene and not the
transcription of the TE via the TE promoter. Interestingly, there were
significantly more causal scenarios when the eQTL variant lied within
the TE, rather than outside (Fisher p-value < 2e−16) pinpointing to direct
regulatory effects of the TE onto gene expression (Supplemen-
tary Fig. 20).

We then proceeded with replicating the causal inference of the
eQTL—TE—gene triplets to corroborate our findings. We tested the
triplets where all three molecular phenotypes were present in either
GTEx colon transverse for the SYSCOL normal colon triplets or in
TCGA-COAD for the SYSCOL tumor triplets, yielding 9577 (80%) tri-
plets and 5893 (62%) triplets in common, respectively. We performed

BNs similarly to the original discoveries. We observe a high replication
of both normal (62% similarity) and tumor (74% similarity) results
(Supplementary Fig. 21; Supplementary Data 14, 15). We believe that
the reason the replication of our normal colon eQTLs is lower than for
the tumor eQTLs is because of sample size differences between SYS-
COL normal colon (N = 275) and GTEx colon transverse (N = 174)
decreasing our statistical power. These results corroborate our find-
ings and highlight that our discoveries are valid.

Altogether, these results show that TEs are significantly more
causal for changes in gene expression in tumor than in normal tissue.

Transposable elements are drivers of gene expression during
tumorigenesis
These results suggested that genetic variations in TE expressionmight
drive tumorigenesis. To test this hypothesis, we considered the union
of all triplets, i.e. the eQTL variant, TE and gene expression, discovered
across tumor and normal tissue and using the same BN approach as
previouslymentioned, we inferred the causal relationship between the
triplets in both states (methods). We similarly looked for shared tri-
plets across the 11,937 normal and 9528 tumor triplets (eQTL-TE-gene
triplets are the same in both states or the eQTL for TE-gene pair is in
high LD (R2 > = 0.9)). In both shared and union triplets, we observed a
significant increase in the causal model in tumor (Fisher Exact Test p-
value < 2.2e−16 for shared and union triplets) mainly due to indepen-
dent models and to a lesser extent reactive model shifting to causal.
(Supplementary Fig. 22; Supplementary Data 16, 17). Focusing on the
9528 tumor triplets, we discovered 2584 (27%) triplets that switched to
a causal model in tumor compared to normal, highlighting regulatory
changes whereby TEs impacted the expression of nearby genes
(Fig. 5c). These 2584 triplets constituted of 1766 unique TEs impacting
1558 unique genes. Interestingly, we observed that TEs switching to
causal were significantly up-regulated compared to TEs that did not
switch models between normal and tumor or that switched but not to
causal (Wilcoxon p-value 2.2e−14; Supplementary Fig. 23). These results
suggest that upregulation of TEs could give rise to their gene expres-
sion driver capability.

While expression of most TEs was positively correlated with the
expression of the associated gene in tumor (n = 2575) (Fig. 5d), only a
few showed negative correlation (n = 9). Of the significant tumor TE-
gene pairs tested in normal colon, we observed that 930 maintained
the same effect (in terms of size and direction) whereas 36 showed an
opposite effect in tumor samples. Interestingly, of the 1558 genes, 55
were cancer driver genes (CDG) (3CRC specific; based onCancer Gene
Census24) but we did not find a significant enrichment of CDGs in
triplets switching to causal compared to all other tumor triplets (Fisher
exact test p-value = 0.2185; odds-ratio = 1.276). For 41 out of the 55
CDGs, we did not find a significant correlation between their expres-
sion and the expression of the corresponding TEs in normal samples
pinpointing that these TEs have no impact on these genes in the nor-
mal state. Taken together, these results suggest an important role of
TEs as drivers of gene expression during tumorigenesis.

Non-coding germline variants activate driver TEs during
tumorigenesis
We investigated whether any of the 9528 tumor triplets were con-
stitutedof anypreviously identified tumor-specific or sharedTE-eQTLs
and assess how the model likelihood changed between normal and
tumor.We identified320and 133 tumor triplets constitutedof a shared
or a tumor-specific TE-eQTL, respectively (Fig. 6a, b) andobserved that
the 133 tumor triplets constituted with a tumor-specific TE-eQTL are
significantly enriched for triplets switching to causal compared to the
320 tumor triplets constitutedwith a sharedTE-eQTL (Fisher Exact test
p-value = 6.6e−4; Odds-ratio = 2.04) (Fig. 6b). Additionally, we observed
that for 120 triplets with tumor-specific TE-eQTLs, the eQTL variant
was not a significant eQTL for the corresponding gene in the triplet
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tumor. This is true also for the reactivemodels in normal but to amuch smaller extent.
cBarplot representing the number of triplets that donot switchmodels, that switch to
a causal model or that switch to reactive/independent from normal to tumor. The

majority of triplets do not switch models between normal and tumor. However, 2584
triplets are switching to a causal model making the corresponding TEs potential
drivers of gene expression. d Each point represents a TE-gene for each of the 2584
tumor triplets. All points are significant in tumor but not in normal (gray points). We
observe that in most cases, TEs are positively correlated with genes except for a few
cases. Most cancer driver genes have no significant correlation with any TE in normal
indicating that for most part, TEs impact them specifically in tumor. Source data are
provided as a Source Data file.
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(Fig. 6c), highlighting that the eQTLs get activated in the tumor state
influencing TE expression that subsequently impact gene expression.
Altogether, these results suggest that tumor-specific TE-eQTLs con-
tribute to tumorigenesis by impacting genes through TEs, adding
additional proof that germline variants can be contributing to
tumorigenesis.

Driver TEs act as alternative promoters for genes in cancer
It has been shown that TEs could impact gene expression by
acting as alternative promoters for nearby genes and creating
chimeric transcripts (transpochimeric transcripts (tcGTs))25,26. To
assess whether any of the tumor triplets with causal TEs were
affected by tcGT events, we looked for cases where transcripts
started from a TE and spliced into a single or multiple nearby
genes (methods). We only kept tcGTs made up of the same TE and
gene as in the 9528 tumor triplets and that were significantly
more abundant in tumor samples compared to normal samples
using a Fisher exact test. At 5% FDR, we discovered 126 tcGTs
present in 147 tumor triplets. Of these, 78 triplets (66 TcGTs)
were causal and 46 triplets (39 TcGTs) switched to causal from
normal to tumor. Interestingly, we detected tcGT events with a
known tumor suppressor gene RNF43 and two oncogenes ETS2
and SLCO1B3 supporting the extensive contribution of TEs during
tumorigenesis.

Discussion
Transposable elements are important contributors to tumorigenesis
and provide supplementary means by which gene expression can be
altered in cancer. While many studies have used a hypothesis-driven
approach and focused at specific TEs or their subfamilies for dis-
covering TEs that alter the expression of nearby genes in cancer27–29,
applying a genome-wide scan could allow to obtain a better picture of
the effects of TEs on gene expression during tumorigenesis.

Here, we present a global profile of tumor drivers and show that
TEs are highly prevalent mediators of genetic effects on genes altering
their expression, specifically in tumor. By combining genome and
transcriptome data together we, show that TEs are under tight genetic
control and discover that transcription factors regulate TE expression
much more in tumor than in normal. By looking at the interplay
between eQTL variants, transposable elements, and gene expression,
we are able to dissect eQTL effects and show that for several genes, the
genetic effect of an eQTL is passed on genes through TEs which act as
mediators and drive gene expression. We observe this to occur sig-
nificantly more in cancer than in normal and show that the majority of
TEs increase the expression of affected nearby genes. Interestingly, we
discover that TEs affecting known cancer driver genes in cancer have
formost part no significant effect on these genes in normal suggesting
a tumor-specific effect of these TEs. Additionally, in our study we show
that alongside predisposing alleles and somatic mutations, germline
variants are crucial contributors to tumorigenesis as these allow for
transcriptional changes to occur at the level of TEs that in turn result in
altered expression of nearby genes in cancer as shown previously11.

It is known thatTEs aremuchmore active in tumor than in normal,
primarily due to a global hypomethylation in cancer driving their
expression26. However, in our analysis we observe a higher number of
eQTLs in normal than in tumor which may sound contradictory. This
has to do with the nature of the tumor tissue being much more het-
erogeneous increasing the variance in the expression data subse-
quently affecting statistical power, leading to fewer eQTLs being
discovered. By increasing sample size we couldminimize this problem
and increase the eQTL discovery in tumor.

To assess the function of these eQTLs, we used functional
enrichment analysis. Even though we discover more eQTLs in normal,
we observe that tumor TE-eQTLs are significantly enriched for more
transcription factors compared to normal TE-eQTLs and the higher

number of TFs significantly associated with tumor-specific TE-eQTLs
indicates that TEs are more active in cancer compared to normal.
Interestingly, we observed that for 61 tumor-specific TE-eQTLs, the
eQTL loci is not an eQTL for any nearby gene or TE (±1Mb) in the
normal state. This indicates that these loci are probably inactive in
normal and get activated during tumorigenesis, driving the expression
of nearby TEs, specifically in cancer. Interestingly, we observed sig-
nificant difference between DNA methylation changes at tumor-
specific TE-eQTLs than shared TE-eQTL loci (eQTL active in both nor-
mal and cancer) which pinpoints that DNA methylation changes at
these specific loci to be one of the causes of the activation of these
eQTLs in cancer.

While we focused on TEs impacting the expression of nearby
genes in an independent manner, it is highly plausible that
synergistic effects occur from both cis- and trans- acting TEs.
Performing such an analysis could give a fuller picture of the
regulatory network behind the regulation of gene expression
through TE effects, requiring, however, a high sample size for
sufficient statistical power. Nevertheless, because of the highly
repetitive nature of transposable element sequences and their
evolutionary relatedness among TE families, mapping short reads
originating from TEs is a real challenge18,30. Our RNA-seq dataset
having a read length of 49 bp, it is highly possible that we did not
map all expressed TEs subsequently leading to missing informa-
tion, as shown previously18,30. Future studies where RNA-
sequencing is performed with longer read lengths could allow
for better mapping of expressed TEs and give us a fuller picture
of the number of these driver TEs in cancer.

It is known that certain TE subfamilies, especially the younger
ones like L1HS get reactivated during tumorigenesis and are able to
retrotranspose creating tumor-specific integrations, perturbing the
human genome. This is also a limitation in our study, as the assessment
of tumor-specific TE integrations require Whole-Genome Sequencing
(WGS) to be assessed. Additionally, our study is focused more on the
effects of older TE subfamilies as these have accumulated sufficient
mutations in their genomic sequence to make the various integrants
distinguishable fromeachother.We believe that long-read sequencing
technologies could be a good approach for studying younger TE
subfamilies.

Altogether, we have outlined that TEs are important mediators of
genetic effects onto genes that could potentially be used as risk factors
or therapeutic targets for future drug development and aid in cancer
treatment.

Methods
SYSCOL dataset
The SystemsBiology of Colorectal cancer (SYSCOL) dataset (accession
number: EGAC00001000204) contains data fromgenotypes andRNA-
sequencing for matched normal-tumor samples (i.e., both tumor and
normal samples originate from the same patient). Samples that had
genotype data and molecular phenotype quantifications from tumor
and normal (normal adjacent to tumor) tissue were analyzed, yielding
275 normal samples and 276 tumor samples. In case of multiple tumor
samples from the samepatient, only sampleswith quantifications from
the most advanced tumor were kept.

Genotypes
We used imputed genotypes and only kept variants with a minor allele
frequency (MAF) ≥5%, yielding a total of 6,132,240 variants that were
used for all downstream analyses.

Transcriptome quantifications
Read mapping. SYSCOL samples were sequenced using 49 bp, 75 bp
and 100bp read lengths using paired-end non-stranded mRNA-
sequencing. We first started by trimming all samples with 75 bp
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(N = 73) and 100 bp (N = 4) reads down to 49 bp to reduce any bias in
downstream analysis stemming from read length. For this we used
cutadapt31 with the following command “cutadapt -u—Nreads -o
<output_file><input_file>”. All trimmed samples were mapped to the
human reference genome (hg37) using hisat232.

Transposable elements (TE) and genes quantifications. Gene and
transposable element counts were generated using the featureCounts
software33. We provided a single annotation file in gtf format to fea-
tureCounts containing both genes and transposable elements. This
prevents any read assignation ambiguity to occur. For transposable
elements, we used an in-house curated version of the Repbase
database12 where we merged fragmented LTR and internal segments
belonging to a single integrant. We only used uniquely mapped reads
for gene and TE counts. Molecular phenotypes that did not have at
least one sample with 20 reads and for which the sum of reads across
all samples was lower than the number of samples, were discarded.
Furthermore, we normalized molecular phenotypes (TEs and genes)
for sequencing depth using the TMMmethodology as implemented in
the limma package of Bioconductor34 and used gene counts as library
size for both TEs and genes. Finally, we removed any molecular phe-
notype that had more than 50% of missing data (zeros) in tumor and
normal samples separately and took the union of molecular pheno-
types, yielding 17,430 genes and 50,921 TEs for a total of 68,351
molecular phenotypes.

Normalization of molecular phenotypes. The observed variability in
molecular phenotypes from RNA-sequencing data can be of biological
or technical origin. To correct for technical variability, while retaining
biological variability, we residualised the molecular phenotype data
for the covariates as described below:
1. To correct for population stratification that is observed between

the SYSCOL samples, we used Principal Component analysis
(PCA) results obtained from genotypes of SYSCOL patients. We
only retained the first three principal components (PCs) as
covariates.

2. In order to capture experimental/technical variability in the
expression data, we performed PCA, centering and scaling, using
pca mode from QTLtools software package35. To ascertain the
number of PCs that capture technical variability, we used QTL
mapping (see method 3.4.1 for the description of QTL mapping)
to identify the best eQTL discovery power in both tumor and
normal samples. To this end, we carried out multiple rounds of
eQTL mapping for tumor and normal samples separately, each
time using the 3 PCs from genotypes and incrementally adding 0,
1, 2, 5, 10, 20, 30, 40, 50, 60 and 70 PCs as covariates. This
approach resulted in identifying 30 PCs in tumor and normal
samples for maximizing eQTL discovery.

In total, 33 covariates were regressed out from tumor and normal
sample expression data using QTLtools correct mode35. We addition-
ally rank-normalized on a per phenotype basis across all samples such
that quantifications followed normal distribution with mean 0 and
standard deviation 1 N(0,1) using QTLtools --normal option35.

DNA methylation data and differential methylation of eQTLs
We used microarray based DNA methylation data from the SYSCOL
project, accession number EGAD00010001888, and a similar
approach to a previous study to find differential methylation of
eQTLs11. In brief, we calculated the absolute value difference of the
medians of normalized methylation probe betas in normal and tumor
that we call median differential methylation. We then compared the
distribution of their medians in tumor-specific TE and genes eQTLs vs.
the shared TE and gene eQTLs and calculated a P-value using the

Mann–Whitney U test. P-values were corrected for multiple testing
using the R/qvalue package with a given FDR threshold of 5%.

Differential TE/gene expression analysis
The DESeq2 R package36 was used in calculating differentially expres-
sed genes and TEs. We normalized the raw TE/gene counts within the
DESeq2 package using the sequencing date, GCmean and insert size as
covariates. The differential expression P-values were corrected for
multiple testing using an FDR threshold of 5%.

Transcriptome QTL analysis
All analyseswereperformed separately for normal and tumor samples.
We used imputed genotypes withMAF ≥ 5%, gene expression data with
normalized counts per million (CPMs) (as described above) for both
eQTL and conditional eQTL mapping.

Expression quantitative trait loci (eQTL) mapping. For eQTL map-
ping, we used cis mode of the QTLtools software package35. For each
molecular phenotype:
1. We counted all genetic variants in a 1Mb window (+/−1Mb)

around the transcription start site (TSS) of the phenotype and
tested all variants within this window for association with the
phenotype.Weonly retained the best hitswhich aredefined as the
ones with the smallest nominal p-value.

2. Next, we used permutations to adjust the nominal p-values for the
number of variants tested. More specifically, we randomly shuf-
fled the quantifications of the phenotypes 1000 times and
retained only themost significant associations. This created a null
distribution of 1000 null p-values. Then, we fitted a beta dis-
tribution on the null distribution and used the resulting beta
distribution to adjust the nominal p-value. Principally, this strat-
egy allows to quantify the chance of getting a smaller p-value than
the nominal one in random datasets.

This effectively gave us the best variant in cis together with the
corresponding adjusted p-value of association for each molecular
phenotype. Finally, to correct for the number of phenotypes being
tested we used False Discovery Rate (FDR) correction approach. More
specifically, we used the R/qvalue package37 to perform genome-wide
FDR correction which ultimately facilitated to extract all phenotype-
variant pairs that are significant at a pre-determined FDR threshold, 5%
FDR in this case.

Conditional analysis for eQTL mapping. The cis mode informs us on
the best phenotype-variant pair only. Given that the expression of
molecular phenotypes can be affected by multiple cis eQTLs, we pro-
ceeded with conditional analysis to discover all eQTLs with indepen-
dent functional effects on a given phenotype. Principally, discoveries
are made after conditioning on previous ones. Again, cis mode in the
QTLtools software package was used35. In brief, after running permu-
tations (method 1.4.1) for each phenotype, we calculated a nominal p-
value threshold of being significant. We first determined the adjusted
p-value threshold that corresponds to the targeted FDR level and then
used the beta quantile function to go from adjusted p-value to a spe-
cific nominal p-value threshold. For conditional analysis, forward-
backward methodology is used to discover all independent QTLs and
to identify the most likely candidate variants, while at the same time
controlling for a given FDR (5% FDR in this case). We only kept the top
variant for each signal.

Tissue-specific and shared eQTL analysis. To discover tissue specific
and shared eQTLs,we used the eQTL results obtained after running the
conditional pass. In total, we tested 17,186 eQTLs to discover normal-
specific eQTLs and 6751 to discover tumor-specific eQTLs. To do that,
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we used linear mix models using an interaction term between dosage
and tissue (i.e tumor or normal) to test whether the slopes in normal
and tumor are significantly different. Linear mix models are needed
herebecausenormal and tumor samples are originating from the same
patient thus genotypes will be identical. We did this for tumor and
normal eQTLs separately. Then we performedmultiple test correction
using the R/qvalue package37 with a given FDR threshold of 5%. Addi-
tionally, for all significant results at 5% FDR, if eQTL slopes (slopes
given from conditional QTL mapping using QTLtools) in normal and
tumor had the same direction, then we only kept the ones where the
SNP-phenotype association in the opposite tissue was not nominally
significant (P > 0.05) as given by the cis nominal pass mode in the
QTLtools package35.

Shared eQTLs are defined as the ones where the P-value for the
interaction term is not significant but need to be significant eQTLs (5%
FDR) in both normal and tumor as assessed by the conditional QTL
mapping.

Functional enrichment analysis. To compare the QTL variants to a
null distribution of similar variants without regulatory association, we
sampled for each eQTL variant 100 random regulatory genetic variants
matching for relative distance to TSS (withing 2.5 kb) and minor allele
frequency (within 2%) and only kept variants that are not eQTLs for any
other TE or gene (nominal p-value > 0.05). The enrichment for a given
category was calculated as the proportion between the number of
regulatory associations in a given category and all regulatory variants
over the same proportion in the null distribution of variants. The p-
value for this enrichment is calculated with the Fisher exact test.
Finally, we corrected for multiple testing using an FDR threshold of 5%
using the “p.adjust” function in theRprogramming language. The code
for performing the functional enrichment analysis can be accessed
here: https://github.com/NLykoskoufis/fenrichcpp38.

Ensembl regulatory build ChIP-seq dataset. ChIP-seq data was
downloaded from the FTP site (http://ftp.ensembl.org/pub/grch37/
current/regulation/homo_sapiens/). The dataset contains ChIP-seq
data from 88 human cell types for a total of 209 transcription fac-
tors and 29 histonemarks (build hg19). For eachof the TFs and histone
marks, we took the union of all peaks together from all 88 cell types.
Overlapping peaksweremerged together using the “merge”options in
the BEDtools software39. This allowed us to create an extensive anno-
tation of peaks for 209 TFs and 29 histones genome-wide.

Colorectal cancer LoVo cell line ChIP-seq dataset. We used publicly
available ChIP-seq data from colorectal cancer LoVo cell line with
accession code GSE49402. The dataset comprises of 202 TFs and 2
histone marks (build hg19). We used BED files containing the coordi-
nates of the peaks for each TF and histone mark for functional
enrichment of our eQTLs.

For gene and TE eQTLs in normal and tumor, we used the peak
annotation generated from the Ensembl Regulatory Buil data to get an
extensive comprehension of which TFs regulate the expression of TEs.
Regarding the tumor-specific vs. shared TE and gene eQTLs, we used
available ChIP-seq data from the colorectal cancer LoVo cell line19. We
used a cancer specific dataset as we were interested in discovering
cancer specific effects.

Testing for associations between TEs and genes
To discover associations between TEs and genes, we proceeded in a
similar way towhatwe did forQTLmapping (method 1.4.1). Effectively,
weusedTEexpression asour “genotypes” andgenes asourphenotype.
Then, we corrected for multiple testing using the R/qvalue package
with a given FDR of 1%. We then estimated the nominal p-value
thresholds for each phenotype being tested as described in (method
1.4.2) with a given FDR of 1%. Given the nominal threshold we get for

each gene, we then extracted all TEs with an association P-value below
this threshold which could give multiple TEs for a gene in some cases.

Quantifying TE-gene pairs
To quantify each of TE-gene pairs that have been found to be sig-
nificant,weused adimensionality reduction approachbasedonPCAas
previously described22. Specifically, for each TE-gene pair, we aggre-
gated gene expression together with TE expression by using the
coordinates on the first principal component. This effectively built a
quantification matrix with rows and columns corresponding to the
number of TE-Gene pairs and individuals, respectively. All quantifica-
tions have been rank-normalized on a per phenotype basis so that the
valuesmatch a normal distributionN(0,1). This prevents outlier effects
in downstream association testing. This is all implemented in the clo-
mics software package22.

Causal inference by Bayesian networks for QTL-TE-gene triplets
Bayesian networks (BNs) are a type of probabilistic graphical model
that uses Bayesian inference to compute probabilities. BNs aim to
model conditional dependencies and therefore causation by repre-
senting conditional dependencies as edges and random variables as
nodes in a directed acyclic graph. Theflowof information between two
nodes is reflected by the direction of the edges, giving an idea of their
causal relationship. BNs have been previously used in a genetic
framework20 to get insight into themost likely network fromwhich the
observed data originates.

In BNs, the joint probability density can be divided into marginal
probability functions and conditional probability functions for the
nodes and edges, respectively. Additionally, BNs satisfy the local
Markov property where each variable is conditionally independent of
its non-descendants given its parent variables. In the context of this
study, we used BNs to learn the causal relationships between triplets of
variables, each one containing a genetic variant, a transposable ele-
ment and a gene. In practice, only three distinct network topologies
where relevant to the hypotheses we wanted to test (Supplementary
Fig. 12). More specifically, we looked at:
1. The causal scenario where the genetic variant affects first the TE

and then the gene.
2. The reactive scenario where the genetic variant affects the gene

first and then the TE.
3. The independent scenario in which the variant affects the gene

and the TE independently.

Of note, we only retainednetwork topologies that assume that the
signal systematically originates from the genetic variant. In practice,
we applied BNs on data that was obtained from running an QTL
mapping using the TE-gene pairs using a similar approach to QTL
mapping described above (Method 1.4.1) and only kept significant
results at 5% FDR which corresponds to 11,937 QTL-TE-gene triplets in
normal and 9528 QTL-TE-gene triplets in tumor.

For each triplet, we build a 275 ×3 matrix in normal and 276 ×3
matrix in tumor containing normalized quantifications and used it to
compute the likelihood of the 3 BN topologies using the R/bnlearn
package (Version 4.5)40. As a last step, we went from likelihoods to
posterior probabilities by assuming a uniform prior probability on the
three possible topologies. Posterior probabilities where used for all
BN-related analyses.

Transpochimeric transcripts analysis
First, a per sample transcriptome was computed from the RNA-seq
bam file using StringTie41 with parameters –j 1 –c 1. Each transcriptome
was then crossed using BEDTools39 to both the ensembl hg19 coding
exons and curated RepBase12 to extract TcGTs for each sample. Sec-
ond, a custom python program was used to annotate and aggregate
the sample level TcGTs into counts per groups (normal, tumor). In
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brief, for each dataset, a GTF containing all annotated TcGTs was
created and TcGTs having their first exon overlapping an annotated
gene or TSS not overlapping a TE were discarded. From this filtered
file, TcGTs associated with the same gene and having a TSS 100 bp
within each other were aggregated. Finally, for each aggregate, its
occurrence per group was computed.

GTEx dataset
We downloaded available data for colon transverse (N = 174) and
germline genotypes from dbGAP (accession code: phs000424.v8.p2).

Germline genotypes. We used the already filtered VCF file provided
by GTEx. The following filters were applied and kept all variants with a
MAF ≥ 5%, yielding a total of 6,494,417 variants.

RNA-seq dataset. The RNA-seq dataset was treated similarly to SYS-
COL RNA-seq data. We first trimmed the reads down to 49 bp using
cutadapt31. Then we mapped and quantified the samples using the
exact sameapproachas for SYSCOL (methods section 1.3.2). Finally,we
combined all samples together into amulti-sample bed file and kept all
features (TEs, genes) that had less than 50% ofmissing expression data
across all samples, yielding a total cd of 167,429 TEs and 18,472 genes.
Then, we corrected our expression data using the first 3 principal
components (PCs) obtained from genotypes, the sex of the samples,
the platform they were sequenced and the first 20 PCs obtained from
the expression data, for a total of 25 covariates used.

TCGA dataset
We downloaded available germline genotypes and RNA-seq data for
colon adenocarcinoma (N = 251) from The Cancer Genome Atlas
(TCGA) database, accession code phs000178.v11.p8.

Germline genotypes. Germline genotypes were downloaded from the
legacy archive GDC portal. We downloaded all germline genotypes for
TCGA-COAD in birdseed format. We used birdseed2vcf python tool
(https://github.com/ding-lab/birdseed2vcf) to convert birdseed to
VCF format. We then combined all samples together creating a multi-
sample VCF file that we spitted per chromosome and uploaded to the
Michigan Imputation Server42 for imputation and phasing using the
Haplotype Reference Consortium (HRC) as reference panel, Eagle
v2.4 software43 for phasing and European (EUR) population. Finally, we
merged all chromosome VCFs into a single VCF file and kept variants
with aMAF ≥ 5%, HWE> 1e−06 and R2 > 0.3, yielding a total of 5,511,779
variants.

RNA-seq data. As the read length of TCGA-COAD samples is the same
as SYSCOL, we did not need to trim the reads. Wemapped, quantified,
and filtered our RNA-seq data in a similar way as for SYSCOL and GTEx
colon transverse samples yielding a total of 19,376 genes and 75,815
TEs. Expression data was corrected using the same approach as for
SYSCOL (methods section 1.3.3) using the first 3 principal components
(PC) obtained from genotypes and the first PC obtained from expres-
sion data for a total of 4 covariates used.

Replication of eQTL findings
For the replication of our normal and tumor eQTLdiscoveries, we used
the “rep”mode in the QTLtools software44.We then used the pi1 metric
to estimate the proportion of significance of our eQTLs in GTEx colon
transverse. Thepi1 is equal to 1—pi0where pi0 is the proportionof true
null p-values obtained using pi0est from the Qvalue R package45.

Replication of the eQTL—TE—gene triplets
We used the same eQTL—TE—gene triplets discovered in normal and
tumor and replicated them in GTEx or TCGA-COAD, respectively. We
used the exact same approach as previously (methods section 1.8). We

then calculate the mean probability of the causal, reactive and inde-
pendent model. Finally, we compared the percentage of triplets with
the samemodel predicted in both SYSCOL and the replication dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated during the current study are available in Supple-
mentaryData 1–17. Supplementary Data 1–17 contains results obtained
from the various analysis performed using raw publicly available
datasets. The RNA-sequencing data and genotype arrays for the 275
normal colon and 276 colorectal cancer samples from SYSCOL is
available in the European Genome-Phenome Archive (EGA) under
accession code EGAC00001000204. This restricted data can be
requested through EGA or cla@ki.au.dk. Questions regarding the
processed data can be emailed to Dr. Nikolaos Lykoskoufis at niko-
laos.lykoskoufis@gmail.com. The microarray based DNA methylation
data from the SYSCOL project is available in EGA under accession code
EGAD00010001888. The RNA-sequencing and germline genotypes
from the GTEx dataset can be obtained through dbGAP under acces-
sion code phs000424.v8.p2. The RNA-sequencing and germline gen-
otypes from TCGA database can be obtained through dbGAP under
accession code phs000178.v11.p8. Both GTEx and TCGA datasets are
restricted data and access can be requested through dbGAP. Color-
ectal cancer LoVo cell line ChIP-seq data can be obtained from Gene
Expression Omnibus (GEO) under accession code GSE49402. Tran-
scription factors and histone marks ChIP-seq data can be downloaded
from the Ensembl FTP site [http://ftp.ensembl.org/pub/grch37/
release-100/regulation/homo_sapiens/Peaks/] where we downloaded
all compressedbedfiles for all cell types. The full list of hyperlinks of all
ChIP-seq datasets from Ensembl used in the current study can be
found in Supplementary Dataset 18. Source data are provided with
this paper.

Code availability
All custom scripts used can be accessed here: https://github.com/
NLykoskoufis/te_project. The code for the functional enrichment
analysis can be accessed here: https://github.com/NLykoskoufis/
fenrichcpp38.
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