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Longitudinal development of category
representations in ventral temporal cortex
predicts word and face recognition

Marisa Nordt 1,2,3 , Jesse Gomez 4, Vaidehi S. Natu 1, Alex A. Rezai1,
Dawn Finzi 1,5, Holly Kular1 & Kalanit Grill-Spector 1,6,7

Regions in ventral temporal cortex that are involved in visual recognition of
categories like words and faces undergo differential development during
childhood. However, categories are also represented in distributed responses
across high-level visual cortex. How distributed category representations
develop and if this development relates to behavioral changes in recognition
remains largely unknown. Here, we used functional magnetic resonance ima-
ging to longitudinally measure the development of distributed responses
across ventral temporal cortex to 10 categories in school-age children over
several years.Our results reveal both strengthening andweakeningof category
representationswith age,whichwasmainly drivenby changes across category-
selective voxels. Representations became particularly more distinct for words
in the left hemisphere and for faces bilaterally. Critically, distinctiveness for
words and faces across category-selective voxels in left and right lateral ventral
temporal cortex, respectively, predicted individual children’s word and face
recognition performance. These results suggest that the development of dis-
tributed representations in ventral temporal cortex has behavioral ramifica-
tions and advance our understanding of prolonged cortical development
during childhood.

Recognizing faces andwrittenwords is important for our everyday life.
While extensive experience with faces starts from birth1, extensive
experience with written words typically begins around the age of 5–6
with the onset of formal reading education. Nonetheless, both skills
continue to improve throughout childhood and adolescence2,3. Visual
recognition is thought to involve the end stage of the human ventral
visual processing stream – that is, ventral temporal cortex (VTC).
Indeed, VTC contains both (i) clustered regions that are selective to
and causally involved in the perception of ecologically relevant
categories4–6 such as faces7, limbs8,9, places10, and words11, as well as (ii)
distributed representations that are reproducibly unique to each

category12–14. That is, stimuli from different categories generate dis-
tinct patterns of response across VTC, even stimuli that are not asso-
ciated with clustered regions and even when excluding category-
selective regions altogether. However, it is unknown if and how dis-
tributed category representations in VTC develop longitudinally dur-
ing childhood and if these developments are linked with behavioral
improvements in visual recognition.

Understanding the longitudinal development of distributed
representations during childhood is important for threemain reasons.
First, to date, examinations of the development of distributed VTC
responses have been largely confined to cross-sectional studies which
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compared representations in children to adults using a limited number
of categories with inconsistent results15–18. While some studies have
reported that distributed responses to faces, objects, and places in
children are similar to adults15,17, other studies have reported that own-
age face representations17 and word representations18 are enhanced
from childhood to adulthood. Thus, to understand how distributed
VTC representations change during childhood it is necessary to mea-
sure the longitudinal development of distributed representations
within the same children and with many categories. Second, much of
the prior developmental research has examined the development of
category selectivity within clustered regions selective to ecologically-
relevant categories16,19–25. However, the development of distributed
responses may be different than the development of category repre-
sentations in clustered regions as different signals contribute to dis-
tributed compared to clustered responses. That is, the distributed
pattern of response is determinedby all values of responses (both high
and low) across VTC, whereas in clustered regions the selectivity is
driven by the highest responses26. Third, examining the relation
between the development of distributed VTC responses and the
development of face recognition and reading abilities will address a
key debate in the field. Researchers argue whether the entire dis-
tributed pattern of response across VTC13 or specific distributed
responses over the selective voxels18,27–29 gives rise to developmental
improvements in visual recognition behavior.

How may distributed category representations in VTC develop
during childhood?

Prior research has found that clustered regions selective to faces
and words become larger and more selective to their respective
categories from childhood (4–7 years old) to adolescence (13–17 years
old) to adulthood (>18)16,19–25. Recent longitudinal research in children
has surprisingly found that these increases in face- and word-
selectivity in lateral VTC are coupled with decreases in limb-
selectivity and, in fact, regions that are limb-selective earlier in child-
hood become selective to faces and words by adolescence23. These
findings suggest that changes in category selectivity may affect the
nature of distributed VTC representations. One possibility is that
developmental increases in category-selectivity would lead to increa-
ses in the distinctiveness of distributed responses for categories
associatedwith a clustered region in VTC. For instance, developmental
increases in word- and face-selectivity would increase the distinctive-
ness of distributed responses to words and faces, making distributed
responses both more consistent across items of their respective
category and more different from distributed responses to items of
other categories. This hypothesis also predicts that developmental
decreases in limb-selectivity would lead to decreases in the distinc-
tiveness of distributed responses to limbs. A second possibility is that
distributed responses in VTC develop for many categories beyond
faces, limbs, andwords, and also across voxels that don’t have a strong
preference for any category. This hypothesis predicts that develop-
mental changes will be observed also for categories, such as numbers,
for which there is no clustered region in VTC, and also across voxels
that have no specific selectivity to any category. A third possibility is
that because clustered regions selective to faces,words, and limbsonly
constitute a minority of VTC voxels18, changes in these regions will
have little effect on large-scale distributed patterns of response. Thus,
this hypothesis predicts no significant development of distributedVTC
responses during childhood, consistent with cross-sectional data
reporting adult-like distributed responses to faces, objects, and scenes
by age 715,17.

These hypotheses alsomake different behavioral predictions. The
first hypothesis predicts that if distributed representations of faces
and words become more distinct over childhood development, then
face recognition and reading performance will concurrently improve.
This hypothesis also predicts that behavioral changes in face recog-
nition and reading will be coupled with specific increases in the

distinctiveness of distributed responses over the category-selective
voxels. The second hypothesis predicts that developmental increases
in the distinctiveness of distributed responses across the entire VTC
rather than over category-selective voxels will be coupled with beha-
vioral improvements in face recognition and reading, and this rela-
tionship may hold even when voxels of category-selective regions are
excluded from the distributed response across VTC. In contrast, the
third hypothesis does not predict a relationship between the devel-
opment of face recognition and reading performance and their
respective distributed representations in VTC as the latter are pre-
dicted to stay stable during childhood development.

Here, we test these predictions using longitudinal measurements
of distributed responses tomany visual categories aswell as behavioral
assessments of face recognition and reading in the same school-age
children over several years. These longitudinal measurements are
crucial not only for tracking the development of brain and behavior
within the same child over several years but also for evaluating the rate
of development of distributed responses both for categories with and
without clustered regions of strong selectivity in VTC. Thus, we col-
lected longitudinal functional magnetic resonance imaging (fMRI) and
behavioral data in 29 school-age children over a span of 1 to 5 years
(mean± SD: 3.75 ± 1.5 years, 4.4 ± 1.92 sessions per child) totaling 128
fMRI sessions and 146 behavioral datasets (Fig. S1A). During the fMRI
experiment, children viewed 1440 images from 10 categories spanning
5 domains of ecological relevance (Fig. S1B). These include characters
(pseudowords, numbers), faces (adult faces, child faces), body parts
(headless bodies, limbs), objects (cars, string instruments), and places
(houses, corridors). Wemeasure in each session distributed responses
for each of the 10 categories across VTC and examine if they change as
children aged. To relate brain development to visual recognition per-
formance, we measure in the same children their face recognition and
reading performance outside the scanner (face recognition: 29/29
children, 2.83 ± 1.0 sessions per child collected over 3.38 ± 1.5 years,
reading: 26/29 children, 2.21 ± 1.1 sessions per child collected over
2.86 ± 1.19 years). Then, we test if there is a relationship between
behavioral and brain development. We find that distributed category
representations, especially across category-selective voxels of VTC
both strengthen and weaken across childhood development. Notably,
distinctiveness for words and faces across category-selective voxels in
left and right lateral VTC, respectively, predicts children’s word and
face recognition performance.

Results
How do category representations in VTC develop
longitudinally?
To assess the nature of distributed category representations in chil-
dren, we computed the distributed pattern of responses for each
category. As face-, limb-, and word-selective regions are located in the
lateral aspect of VTC7,8,11,30, we divided VTC into its lateral and medial
partitions and because the development of word- and face-selectivity
varies across hemispheres16,18,21,31, we measured in each child and ses-
sion distributed responses to each of the 10 categories, separately for
lateral and medial VTC in each hemisphere. Vectors of distributed
responses to each category – also called multivoxel patterns (MVPs) –
were computed independently for each of the two functional runs in
each session in which participants viewed different images. We then
calculated correlations between all pairs of MVPs (run-1 to run-2),
resulting in a 10×10 representational similarity matrix (RSM14, for each
child and session (Fig. 1a). On-diagonal values in the RSMquantify how
similar distributed responses are across different images of the same
category, and off-diagonals quantify how similar distributed responses
are to images of different categories. Examining individual RSMs
revealed that even in young children there is category structure in
distributed VTC responses as on-diagonal values are positive and
higher than off-diagonal values (Fig. 1a).
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Fig. 1 | Differential longitudinal development of category representations in
children’s ventral temporal cortex (VTC). a Representational similarity matrices
(RSM) of left and right lateral VTC in individual sessions of two children at different
ages. Gray box: Schematic illustrating how distinctiveness is computed for each
category. b Left lateral (green) and medial (yellow) VTC on the ventral inflated
surfaceof anexampleparticipant.cScatter plots illustrate the relationshipbetween
distinctiveness and age. Gray line: Linear mixed model (LMM) prediction of dis-
tinctiveness by age (random intercept model with participant as a random effect).
Shaded gray: 95% confidence interval (CI) of the slope. Participants are coded by
color. Each dot is a session. Note that the statistics in the text and the data in (d)

report developmental results from a LMM that includes two factors: age and tSNR.
d LMM slopes indicating a change in distinctiveness per year in lateral VTC (LMM
relating distinctiveness to age, with tSNR as an independent factor, and participant
as random effect, n = 128 sessions, 29 children) for each category; for space, we
refer topseudowords aswords. Error bars: 95% confidence interval (CI) of the slope.
If the CI does not cross the y = 0 line, the change in distinctiveness is significantly
different than 0. Asterisks: significant development (p <0.05). Circles around
asterisks: significant development after FDR-correction to adjust for multiple
comparisons. e same as D but for medial VTC. Full statistics are reported in
Tables S1–2.
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To quantify category information, we used the RSM to measure
the distinctiveness of distributed responses for each category. The
distinctiveness of a category is defined as the difference between
within-category similarity and between-category similarity (Fig. 1a,
gray box); distinctiveness ranges from −2 to 2. Higher distinctiveness
indicates that distributed responses to a category are highly similar
across different images of the category and highly dissimilar from
distributed responses to other categories. We measured distinctive-
ness separately for each category and hemisphere in each of the 128
sessions. Then, we tested if category distinctiveness develops over
childhood using linear mixed models (LMMs) relating category dis-
tinctiveness and age, with the participant as a random factor (Fig. 1c).

To ensure that developmental effects are not driven by differ-
ences in scan quality across age, we first testedwhethermotion during
scanning and time-series signal-to-noise ratio (tSNR) contribute to
measures of distinctiveness. Checking for effects of motion was
included after our data had already been corrected for motion (see
Methods) to further ensure that our results are not impacted by
motion-related artifacts that are missed by motion correction algo-
rithms. Adding motion as a predictor to the LMM did not significantly
contribute to the model fit except for distinctiveness for string
instruments (no evidence for a significant contribution of age to the
distinctiveness of string instruments with or without adding motion).
Adding tSNR as a predictor to the LMM contributed to the
model independent from age for several categories. Thus, we include
tSNRas anadditional predictor in the LMM(Tables S1–2) andwe report
age-related changes in distinctiveness that are independent
from tSNR.

Example scatter plots show the distinctiveness for pseudowords
(Fig. 1c-left) and adult faces in lateral VTC (Fig. 1c-right) as a function of
a child’s age. As you can see in these examples, distinctiveness for
pseudowords in the left lateral VTC and distinctiveness for adult faces
in the right lateral VTC steadily increases from age 5 to 17. The slope of
the LMM summarizes the development of category distinctiveness
with age. A positive slope indicates that category distinctiveness
increases from age 5 to 17 and a negative slope indicates that category
distinctiveness decreases across childhood.

Results reveal differential development of category distinctive-
ness inVTC that varied by category andhemisphere (Fig. 1d, e) and that
was not limited to categories with a clustered region. We first exam-
ined development in lateral VTC. Consistent with the first hypothesis,
we find increases in distinctiveness for pseudowords and faces and
decreases in distinctiveness for limbs: Distinctiveness for pseudo-
words increased significantly with age in the left lateral VTC
(βage = 0.026, t(125) = 3.49, pFDR = 0.0038, Fig. 1c, d), but there was no
evidence for significant development in right lateral VTC (βage = 0.009,
t(125) = 1.36, pFDR = 0.32). Distinctiveness for both adult faces (left:
βage = 0.018, t(125) = 2.72, pFDR = 0.019; right: βage = 0.0199,
t(125) = 2.85, pFDR = 0.015) and child faces (left: βage = 0.029,
t(125) = 4.06, pFDR = 0.0017; right: βage = 0.025, t(125) = 3.84,
pFDR = 0.002) increased significantly with age in both hemispheres
(Fig. 1c, d). In contrast to these developmental increases, distinctive-
ness for limbs decreased significantly with age in the right hemisphere
(βage = −0.018, t(125) = −2.45, pFDR = 0.035) while distinctiveness for
bodies remained largely unchanged from age 5 to 17. Consistent with
the second hypothesis, we find increases in distinctiveness even for
categories that do not have a clustered region in lateral VTC. Specifi-
cally, (i) distinctiveness for numbers increased significantly in the right
lateral VTC (βage = 0.023, t(125) = 3.36, pFDR = 0.004); while there was
no evidence for significant development in left lateral VTC
(βage = 0.011, t(125) = 1.39, pFDR = 0.32) and (ii) distinctiveness for
houses increased significantly bilaterally (left: βage = 0.028,
t(125) = 3.45, pFDR = 0.0038, right: βage = 0.026, t(125) = 2.98,
pFDR = 0.011). We find no evidence for other significant age-related
changes (Table S1). We next examined development of distinctiveness

inmedial VTC. Consistentwith the first hypothesis,wefind increases in
distinctiveness for houses in left and right medial VTC (left:
βage = 0.023, t(125) = 2.76, pFDR = 0.034, right: βage = 0.032,
t(125) = 3.61, pFDR = 0.009). Consistent with the second hypothesis, we
also find development for a category without a clustered region in
medial VTC: Distinctiveness for adult and child faces increased sig-
nificantly in the left hemisphere in medial VTC (adult faces:
βage = 0.0186, t(125) = 3.048, pFDR = 0.028, child faces: βage = 0.0187,
t(125) = 2.76, pFDR = 0.034). We find no evidence for other significant
development in medial VTC (Table S2). Overall, these analyses reveal
differential development of distributed category representation in
VTC from age 5 to 17.

Which voxels drive the development of distributed
representations?
Wenext asked: which voxels in VTCdrive the development of category
representation? Is the development of distinctiveness driven by
category-selective voxels, non-selective voxels, or both? We reasoned
that if changes in distributed responses are driven by the development
of category selectivity, then the development of category distinctive-
ness will be evident in the selective but not in the non-selective voxels
of lateral VTC. Alternatively, voxels that are selective may be already
developed, predicting that the non-selective voxels are driving the
observed development of category distinctiveness. A third possibility
is that category information is carried by the relative response across
the entire neural population and in fact, there is nothing special about
the selective voxels13. This hypothesis predicts that thedevelopmentof
category distinctiveness is driven by all voxels of VTC, including both
the selective and non-selective voxels.

To test these predictions, we separated lateral and medial VTC
into two sets of voxels each – those which were category-selective,
and the rest that were not selective to any category. That is, for each
session, we first identified lateral (or medial) VTC voxels that were
selective (t > 3, voxel-level, Methods) for each of the 10 categories,
and then took the union of these voxels across the 10 categories to
generate the set of all category-selective voxels. Non-selective voxels
were defined as the remainder of lateral (or medial) VTC voxels and
were not selective to any of these categories. We next computed
LMMs relating distinctiveness to age, with tSNR as an independent
factor, in these two subsets of voxels (see Tables S3–6 for all model
parameters). We report the slope of the LMM indicating the effect of
age for each category in Fig. 2. We first examine the results in lateral
VTC. Although there are overall fewer selective voxels (left:
39.24% ± 11; right: 34% ± 11%) than non-selective voxels (left:
60.76% ± 11; right: 66% ± 11%) we find a significant development of
category distinctiveness across the unionof selective voxels of lateral
VTC (Fig. 2a-maroon & pink bars), but no evidence for significant
development of distinctiveness across the non-selective voxels of
lateral VTC (Fig. 2a-gray bars). These findings were not due to higher
tSNR in the union of selective voxels compared to the non-selective
voxels (no evidence for a significant effect of voxel subset in left
lateral VTC: βsubset_Selective = 1.8, t(254) = 1.34, p = 0.18 and higher tSNR
in non-selective vs. selective voxels in right lateral VTC:
βsubset_Selective = −3.4, t(254) = −2.47, p = 0.01, LMM with binary pre-
dictor of voxel subset). Additionally, we repeated the analyses in
subsets of the union of the selective and the non-selective voxels that
were matched for the variance explained and for the number of
included voxels. This analysis showed the same pattern of significant
development of distinctiveness for the union of the selective voxels,
and no evidence of significant development for the non-selective
voxels, except for a significant increase in distinctiveness for num-
bers (Fig. S2) suggesting that the lack of development in the non-
selective voxels is not driven by poorly responding voxels.

In fact, the development of category distinctiveness in the subset
of selective voxels largely replicates the findings when considering all
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lateral VTC voxels (compare Figs. 1d and 2a). That is, in the union of
selective voxels in the left hemisphere, we find a significant increase in
the distinctiveness for pseudowords (βage = 0.026, t(125) = 3.99,
pFDR = 0.002), faces (adult: βage = 0.026, t(125) = 3.88, pFDR = 0.002;
child: βage = 0.034, t(125) = 4.39, pFDR = 0.0009), houses (βage = 0.036,
t(125) = 3.69, pFDR = 0.003) and a small increase in distinctiveness for
numbers (βage = 0.016, t(125) = 1.998, pFDR = 0.21), which was not sig-
nificant after FDR-correction. In the right hemisphere, we find a sig-
nificant increase in the distinctiveness for numbers (βage = 0.027,
t(125) = 3.08, pFDR = 0.017), faces (adult: βage = 0.02, t(125) = 2.95,
pFDR = 0.02; child: βage = 0.017, t(125) = 2.75, pFDR = 0.03), and houses
(βage = 0.034, t(125) = 3.49, pFDR = 0.005). We find no evidence for a
significant decrease in the distinctiveness for limbs in this subset of
voxels (βage = −0.013, t(125) = −1.67, pFDR = 0.33). In contrast to these
effects in the union of the selective voxels, we find no evidence for
significant changes in distinctiveness for any category in the non-
selective voxels of lateral VTC (Fig, 2A-graybars, Table S4).We tested if
these results change if the union of the selective voxels and the non-

selective voxels are defined using different thresholds (Methods). We
found that the results are largely robust across a range of t-thresholds
defining selectivity (Fig. S3).

We next examined the development of distinctiveness in these
subsets of voxels in medial VTC. As in lateral VTC, the union of the
selective voxels comprised less voxels compared to the non-selective
voxels (see legend Fig. 2b). Examining changes in distinctiveness in the
union of the selective voxels revealed an increase in distinctiveness for
houses in right medial VTC (βage = 0.028, t(125) = 3.03, pFDR = 0.12),
which was not significant after FDR-correction (Fig. 2b-maroon & pink
bars). In the non-selective voxels (Fig. 2b-gray bars), there were
increases in distinctiveness for faces in the left and for numbers in the
right hemisphere, which were not significant after FDR-correction
(adult faces: βage = 0.012, t(125) = 2.41, pFDR = 0.35; child faces:
βage = 0.0128, t(125) = 2.06, pFDR = 0.41, numbers: βage = 0.011,
t(125) = 2.16, pFDR = 0.41). We found no evidence for other significant
effects (Tables S5–6). Results were largely the same for a range of
thresholds to define selective voxels (Fig. S4).

Fig. 2 | Development of distributed representation in the selective voxels in
lateral VTC. a Bars indicate the change in category distinctiveness per year (LMM
relating distinctiveness to age and tSNR,with participant as a randomeffect,n = 128
sessions, 29 children) in different subsets of voxels of lateral VTC.Maroon bars: the
union of voxels that were selective to one of the 10 categories in lateral VTC.
Category-selectivity was computed by contrasting responses to a category vs. all
other categories except the other category from the same domain (e.g., numbers
vs. all other categories except words). A voxel was defined as selective to a category

when t > 3. Overall ~36.5% of lateral VTC voxels were selective to one of the cate-
gories (see schematic in box). Gray bars: the remainder, non-selective voxels of
lateral VTC that were not selective to any of these categories. Darker colors: left
hemisphere. Lighter colors: right hemisphere. Error bars: 95% CI. If the CI does not
cross the y = 0 line, the change in distinctiveness is significantly different than 0.
Asterisks indicate significant development (p<0.05). Circles around asterisks
indicate significant development after FDR-correction to adjust for multiple com-
parisons.b Same asAbut formedial VTC. Full statistics are reported in Tables S3–6.
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To further investigate how development within clustered
category-selective regions contributes to the development of distinc-
tiveness, we also conducted an analysiswherewe created independent
disk-ROIs for each category-selective ROI (e.g., word-selective region)
for each participant. We chose this approach to ensure that: (i) we
examine information across voxels selective to one category, (ii) we
use a constant number of included voxels across sessions of a parti-
cipant, and (iii) that the voxel selectionwill notbe biased to aparticular
session. Results show that distinctiveness develops for the category
that was used to define the ROI (e.g., there is an increase in distinc-
tiveness for words in the word-selective ROI), but also that develop-
ment is not limited to the preferred category (Fig. S5).

How does the nature of the internal representational space
change from childhood to adolescence?
As there is a heterogeneous development of category distinctiveness
both across categories and subsets of VTC voxels, it is interesting to
consider how this relates to the neural representational space of these
ten categories. To visualize the representational space and how it
changes with age, we computed mean representational similarity
matrices (RSMs) for 5–9-year-olds and 13-17-year-olds (Fig. S6A). We
then used multidimensional scaling (MDS) to visualize the repre-
sentational space in 2D. We focus on the development of the repre-
sentational space in lateral VTC because it showed amore pronounced
development compared to medial VTC; medial VTC data is in Figs. S7
and S8.

Visualization of the representational space of lateral VTC in chil-
dren and teens illustrates two key findings.

First, distributed representations across both the union of selec-
tive voxels (Fig. 3a, d, SupplementaryMovie 1) andnon-selective voxels
(Fig. 3b, e) have a categorical structure, however, the categorical
representation over nonselective voxels is strongly diminished com-
pared to that over theunionof selective voxels (Fig. 3, compareA&D to
B&E). That is, MDS embeddings over both the union of selective voxels
(Fig. 3a, d) and over the non-selective voxels (Fig. 3b, e) reveal that
representations of animate stimuli (faces, bodies) are largely separate
from those of inanimate stimuli (objects, places, characters) in both
children and adolescents. Yet, comparing the embeddings of the union
of selective voxels (Fig. 3a, d) to that of the non-selective voxels
(Fig. 3b, e) reveals that the representation of category information is
much clearer and enhanced over the selective voxels.

Second, the representational structure over the union of selective
voxels from childhood (small circles) to adolescence (large circles)
reveals developmental changes. In contrast, the representational
structure of the non-selective voxels remains largely unchanged.
Examining theMDS embeddings over the union of the selective voxels
reveals development of the categorical structure in several ways: (i) in
both hemispheres, representations of faces strengthen and become
more separable from other categories from childhood to the teens
(Fig. 3a, d, red arrows moving outward, see developmental trajectory
in Supplementary Movie 1), (ii) representations of both pseudowords
and numbers strengthen from age 5 to age 17, and this development is
particularly pronounced in the left hemisphere (Fig. 3a, d, blue arrows
moving outward, Supplementary Movie 1), and (iii) representations of
limbs in the right hemisphere weaken from childhood to the teens
(Fig. 3d, Supplementary movie 1, yellow arrow moving inward). In
contrast, comparing representations over the non-selective voxels in
children and adolescents suggests no substantial development.

We quantified the development of the representational structure
in both selective and non-selective voxels in each child (Fig. 3c, f,
Methods). Thus, for each set of voxels we aligned theMDS embedding
of each child’s first session to that of their last session and measured
the mean distance between the coordinates of each category in this
shared embedded space. This analysis reveals that there is a sig-
nificantly larger developmental change in the representation over the

union of selective voxels than the non-selective voxels in both hemi-
spheres (left: t(28) = 6.40, p <0.001, d = 1.19, t-test Fig. 3c, and right:
t(28) = 4.92, p <0.001, d = 0.91, Fig. 3f). Importantly, this effect is visi-
ble inmost individual children illustratingwithin-child development of
distributed responses (Fig. 3c, f). In sum, these analyses reveal that
while there is categorical structure in both sets of voxels (union of
selective, non-selective), the representation in the union of selective
voxels (i) is enhanced compared to that of the non-selective voxels,
and (ii) undergoes stronger development.

Is development of distributed responses linked to improve-
ments in behavior?
So far, accumulating evidence reveals the enhancement of distributed
category representations in lateral VTC from age 5 to 17. Given that
face recognition and reading also improve from age 5 to 17, we mea-
sured face recognition and reading ability in our longitudinal sample
(Fig. S9) and tested if these developments are linked.We hypothesized
that developmental increases in distinctiveness for faces and pseu-
dowords may enhance recognition performance for these categories.
We tested this hypothesis using LMMs relating behavioral perfor-
mance to category distinctiveness, with participant as a random factor.

We found a significant and positive relationship between reading
performance of pseudowords and distinctiveness for pseudowords
over the union of the selective voxels of left lateral VTC (Fig. 4a,
βdistinctiveness = 40.19 [95%-CI: 12.86;67.53], t(62) = 2.94, pFDR = 0.016,
LMM, random slope and intercept across participants). That is, better
reading scores were associated with higher values of distinctiveness
for pseudowords. The effect of distinctiveness predicting reading
performance remained significant when age was added to the LMM
(βdistinctiveness = 28.92 [4.82;53.02], t(61) = 2.4, pFDR = 0.046; βage = 2.45
[1.03;3.88], t(61) = 3.44, pFDR = 0.007), showing that the effect of dis-
tinctiveness was independent from the effect of age. Importantly, this
link between reading scores and distinctiveness for pseudowords in
left lateral VTC was specific, as there was no evidence for a significant
link between reading performance and (i) pseudoword distinctiveness
over the non-selective voxels of left lateral VTC (βdistinctiveness = 14.96
[−8.14;38.05], t(62) = 1.29, pFDR = 0.35), (ii) pseudoword distinctiveness
over the selective voxels in right lateral VTC (βdistinctiveness = −6.90
[−34.5;20.8], t(62) = −0.50, pFDR = 0.72), or (iii) face distinctiveness
over the selective voxels in either hemisphere (left: βdistinctiveness = 6.0
[−17.42;29.44], t(62) = 0.51, pFDR = 0.72; right: βdistinctiveness = 0.72
[−27.94;29.38], t(62) = 0.05, pFDR = 0.96).

We also tested if a similar link exists between (i) the number of
word-selective voxels in left lateral VTC or (ii) the size of the word-
selective region pOTS-words in the left hemisphere and reading per-
formance for pseudowords (Fig. S10AB). However, reading perfor-
mance was neither significantly related to the number of selective
voxels for pseudowords, nor the size of the left word-selective pOTS-
words, suggesting that word distinctiveness in left lateral VTC is a
better predictor of reading performance than the other metrics.

We further reasoned that if distinctiveness predicts behavior, then
this model can be used to predict reading performance in new parti-
cipants just from the distinctiveness of their lateral VTC selective
voxels. We tested this prediction using a leave-one participant-out
cross-validation (LOOCV) approach. Results reveal that distinctiveness
for pseudowords in the union of selective voxels in left lateral VTC
successfully predicts reading performance in left-out participants with
amedianprediction error of 8.7% (Fig. 4b, purple boxplot). Adding age
to themodel did not further reduce the prediction error (Fig. 3b, black
boxplot; no evidence for a significant difference in performance,
t(25) = 0.47, p =0.64). In contrast, predicting reading performance
from distinctiveness for pseudowords in non-selective voxels revealed
a larger median prediction error of 11.5% (Fig. 4b, gray boxplot). We
found a small but significant difference between the prediction error
for themodel using the distinctiveness over the selective voxels vs that
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over the non-selective voxels (Fig. 4b-swarm plot, two-sided t-test
comparing the difference in error to zero: t(25) = −2.11, p =0.045,
d = 0.41). That is, for most participants the prediction error was larger
for a model based on distinctiveness of the non-selective voxels than a
model based on distinctiveness of the selective voxels.

Likewise, distinctiveness for adult faces in the union of selective
voxels of right lateral VTC was significantly and positively related to
face recognition performance (βdistinctiveness = 31.49 [15.07;47.92],

t(80) = 3.82, pFDR = 0.0008, LMM with random slope and random
intercept across participants). That is, better face recognition perfor-
mance was associated with higher values of distinctiveness for faces
(Fig. 4c).When age was added to the LMM the effect of distinctiveness
was only trending and was no longer significant after correction for
multiple comparisons (βdistinctiveness = 16.41 [−0.19;33.01], t(79) = 1.97,
pFDR = 0.08; βage = 3.94 [2.94;4.93], t(79) = 7.89, pFDR < 0.001). None-
theless, the link between face recognition and face distinctiveness was

Fig. 3 | Development of the representational space of the 10 categories in
lateral VTC. Multidimensional scaling (MDS) embeddings for the category repre-
sentation in different subsets of voxels for two age groups: 5–9-year-olds (n = 16
participants, small circles) and 13–17-year-olds (n = 13 participants, larger circles).
These age groups are used to illustrate the change in the representational space
and are based on average RSMs of children in two age groups. All statistics are run
using the full sample (Figs. 2, 3c, f). One session per child is included per MDS of
each age group. a, d MDS embedding of the representational space across the

union of selective voxels in left (a) and right (d) lateral VTC. b, e MDS embedding
the representational space of the remainder, non-selective voxels of left (b) and
right (e) lateral VTC. c, f Line plots depicting the change in representational spaces
in individual children in left (c) and right (f) lateral VTCacross the selective andnon-
selective voxels. The change in representation is the mean Euclidian distance
between category positions in the MDS embedding of a child’s first session vs their
last session. Each line is a participant (n = 29);Gray: larger distances in the selective
voxels; Red: larger distances in the non-selective voxels.
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specific to the selective voxels of right lateral VTC, as no evidence was
found for a link between (i) face recognition and face distinctiveness in
the non-selective voxels of right lateral VTC (βdistinctiveness = 0.85
[−18.14;19.84], t(80) = 0.09, pFDR = 0.93), (ii) face recognition and face
distinctiveness in the union of the selective voxels of left lateral VTC
(βdistinctiveness = 17.79 [−0.16;35.73], t(80) = 1.97, pFDR = 0.08) or (iii) face
recognition and pseudoword distinctiveness in the selective voxels in
right lateral VTC (βdistinctiveness = −8.7 [−23.21;5.91], t(80) = −1.18,
pFDR = 0.31). While face recognition ability was also linked to

distinctiveness for pseudowords in the left hemisphere
(βdistinctiveness = 24.56 [6.77;42.34], t(80) = 2.75, pFDR = 0.017), this link
was driven by age, as there was no evidence for a significant relation-
ship when age was added to the model (βdistinctiveness = −2.69
[−17.65;12.28], t(79) = −0.36, pFDR = 0.81, βage = 4.18 [3.12;5.24],
t(79) = 7.83, pFDR < 0.001). As prior research has also suggested a link
between face recognition performance and the number of face-
selective voxels21 we also examined this relation in our data. We found
that face recognition was also significantly linked to the number of

Fig. 4 | Distinctiveness for words and faces in left and right lateral VTC,
respectively, predict reading and face recognition performance in individual
children. a Linearmixedmodel (LMM) with random slopes and intercepts relating
reading performance of pseudowords (Woodcock Reading Mastery Test, WRMT)
to pseudoworddistinctiveness over the union of selective voxels of left lateral VTC.
Model parameters indicated in the bottom, p-Value adjusted for multiple com-
parisons (see text). Each dot is a session; Dots are colored by participant. Colored
lines: individual slopes and intercepts. Thick gray line: LMM prediction. Shaded
gray: 95% CI of the slope. b Left: Median error in predicting the reading perfor-
mance of a left-out participant from their distinctiveness for pseudowords in left
lateral VTC using the parameters derived from the LMM of the rest of the partici-
pants (leave-one-out-cross validation). Higher values indicate worse model pre-
diction. The box plots show the prediction error for three different models:
Selective: LMMpredicting behavior from distinctiveness over the union of selective

voxels.Non-selective voxels: LMMpredicting behavior fromdistinctiveness over the
non-selective voxels. Selective & age: LMMpredicting behavior fromdistinctiveness
over the union of selective voxels with age as an additional factor. Boxplots show
the 75% and 25% percentiles (shaded areas) and the median (horizontal lines).
Whiskers extend to the most extreme data points not considered outliers (values
more than 1.5 times the interquartile range away from the bottom or top of the
box). Gray plus signs: outliers. Right: Swarm plots showing the difference between
the prediction error for selective vs. non-selective voxels. Each dot is a participant.
Statistics of the two-sided t-test (at bottom), n = 26. c Same as (a) but for LMM
parameters for a model relating face recognition performance (Cambridge face
recognition memory test (CFMT), adult faces) and distinctiveness for adult faces
over the selective voxels of right lateral VTC. d Same as (b) but for face recognition
performance and distinctiveness for adult faces in right lateral VTC, n = 29.
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face-selective voxels and the size of the right face-selective pFus-faces
(Fig. S10C, D), but once age was added to the model there was no
evidence for these effects.

Notably, distinctiveness for adult faces over the selective voxels of
right VTC predicts face recognition performance in left out partici-
pants (LOOCV, Fig. 4d-purple boxplot). Face recognition ability is
predicted from face distinctiveness over the selective voxels of right
lateral VTC in the left-out participant with amedian prediction error of
10.93%. There was no evidence for a smaller error when age was added
to themodel (t(28) = −0.42,p = 0.68, Fig. 4d-dark gray boxplot) and for
most participants, the prediction error was higher from amodel based
on the non-selective voxels than a model based on the union of
selective voxels (Fig. 4d-light gray boxplot and swarm plot, t-test
comparing the difference in error to zero: t(28) = −3.19,
p =0.004, d = 0.59).

Together these data suggest that the distinctiveness of word and
face representations in lateral VTC predicts performance for these
categories, and that developmental improvements in reading and face
recognition abilities are linked to increases in word and face distinc-
tiveness in the selective voxels of left and right lateral VTC,
respectively.

Discussion
By combining longitudinal measurements of distributed VTC respon-
ses tomultiple categories with behavioral data in children over several
years, the present study reveals several findings regarding the func-
tional development of category representations in children’s brains.
First, our data reveals the development of multiple category repre-
sentations in VTC from age 5 to age 17. This development consists of
both enhancement and diminution of the distinctiveness of dis-
tributed category representations, as well as the development of
representations for categories that are not associated with clustered
regions in this cortical expanse. Second, the development of dis-
tributed responses was driven mainly by changes in representations
over the union of voxels that exhibited category selectivity. Third,
importantly, the developmental increases of category distinctiveness
to words and faces in the union of selective voxels in the dominant
hemisphere (left and right lateral VTC, respectively) predicted the
visual recognition ability of words and faces in left-out participants.

Our longitudinal and multivariate analyses of category distinc-
tiveness in lateral VTC reveal increases of distinctiveness for faces,
words, numbers, and houses as well as a decrease in distinctiveness for
limbs. In addition, in medial VTC our analyses reveal increases in dis-
tinctiveness for houses and faces. The increase in distinctiveness for
faces andwords in left lateral VTC is in line with prior findings showing
that word- and face-selective regions grow with development and
become increasingly more selective to their preferred
category16,19,21,23,25,32 and with prior findings using multivariate approa-
ches showing developmental increases in distinctiveness forwords16,18.
Likewise, the increase in distinctiveness for houses in medial VTC is in
line with findings showing childhood development of the place-
selective region in medial VTC21,33. Further, the decrease in distinc-
tiveness in distributed lateral VTC responses for limbs is consistent
with findings that limb-selective regions shrink from childhood to the
teens and lose their limb-selectivity23. Together these data are con-
sistent with the idea that developmental changes in the degree of
selectivity affect distributed responses. That is, these data suggest that
developmental increases in category selectivity lead to increases in
category distinctiveness, and developmental decreases in selectivity
lead to decreases in distinctiveness.

Our data also reveal increases in distinctiveness for numbers and
houseswith age in the right lateral VTC and for faces in themedial VTC.
The development of distinctiveness for numbers is in line with the
expectation that schooling not only enhances word but also number
representations in VTC. As prior cross-sectional18 and univariate23

approaches did not detect the development of number responses in
lateral VTC, these data highlight the higher sensitivity of longitudinal,
multivariate approaches to measuring functional development in the
brain. Given that place-selective regions are located in the medial part
of VTC10,12, finding developmental increases in distinctiveness for
houses in lateral VTC shows that increases in distinctiveness can also
occur in parts of VTC that don’t have a clustered region for that
category. In line with this idea, we also observed an increase in dis-
tinctiveness for faces in medial VTC, even as it does not contain a
clustered region selective to faces. As both voxels with strong positive
and negative preferences can contribute to category information (e.g.,
words18), the developmental increases in distinctivenessmay be driven
both by increases in the number of voxels selective to the respective
category, as well as increases in the number of voxels with a negative
preference to that category. For instance, in the case of distinctiveness
for houses in lateral VTC, it is possible that this increase was driven by
both increases in the number of house-selective voxels23 and increases
in the number of voxelswith a stronger negative preference to houses,
such as face-selective voxels.

The present data also offers insight on the laterality of the
development of category distinctiveness34. In particular, prior research
has suggested a graded developmental lateralization of word repre-
sentations to the left hemisphere11,18,31,35 and of face representations to
the right hemisphere7,31,35. Consistent with this hypothesis, we see that
the development of distinctiveness for pseudowords was significant
only in the left hemisphere and that distinctiveness in the left, but not
right hemisphere, predicts reading performance. With regard to the
lateralization of face representations, our results reveal a bilateral
development of distinctiveness across all voxels in lateral VTC, as well
as across the union of category-selective voxels, in line with prior
studies finding that the number of face-selective voxels increases
across development in both hemispheres23. It should be highlighted at
this point that the results shown in Figs. 1 and 2 summarize the change
in distinctivenesswith age, rather than the level of face distinctiveness.
That is, while the change in face distinctiveness was bilateral, distinc-
tiveness for faces was nonetheless numerically higher in the right than
left hemisphere. As such, these results support lateralization of word
and face representations in children and teens but suggest that
development is not restricted to the dominant hemisphere.

In addition to the changes in category distinctiveness, we also
examined changes in the nature of the representational space of the 10
categories acrossVTC. Likeprior cross-sectional studies15,17 wefind that
in lateral VTC representations of faces are already separated from
those of other categories at age 5 (Fig. 3) and yet our data show that
they continue to be enhanced into adolescence. Our results also show
that representations for words and numbers in the left hemisphere are
not yet separated from those of other categories in the younger age
group of 5-9-year-olds but become enhanced by adolescence. As such,
these data suggest (i) that the development of distributed face
representations starts earlier than that of character representations,
which appears to start later in childhood, and (ii) that schooling and
learning how to read changes category representational space in VTC.
We note that other extensive visual experience during childhood (e.g.,
playing Pokémon) also affects category representations in VTC36.

In addition to the enhancement of character and face repre-
sentations during childhood, our data also reveal that representations
for limbs weakened from childhood to adolescence in the right
hemisphere in lateral VTC. That is, representations for limbs move
towards the center of the MDS space as children get older (Fig. 3d).
While the reason for this developmental change is currently unclear, it
is possible that changes in visual experience with limbs during child-
hood contribute to this change. Future longitudinal studies can test
this prediction empirically. These findings also raise questions on how
the representational space for visual categories may be affected in
individuals with altered or deprived visual experience such as children
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with cataracts37,38, illiterate individuals, or late-literate individuals who
only learned how to read when they were adults39. These results also
highlight the importance of examining the development of category
representations in other developmental phases, in particular during
infancy40–43 and testing how these developments relate to other
behaviors, such as eye gaze patterns toward visual categories44.

The present results also have important theoretical implications
for the debate on how distributed13 vs. modular28 category repre-
sentations in VTC contribute to behavior. On the one hand, our data
reveal that representations of animate (faces and bodies) categories
are separable from representations of the other inanimate categories
in both selective and non-selective voxels (Fig. 3), consistent with the
predictions of the distributed hypothesis13. On the other hand, we find
significant development of category distinctiveness across the union
of the selective voxels in lateral VTC, but no evidence for the devel-
opment of category distinctiveness in the non-selective voxels, con-
trary to the predictions of the distributed hypothesis13. Similarly, the
analysis of the development of distinctiveness in disk ROIs that are
selective to one particular category (Fig. S5) showed that distinctive-
ness developed for the category used to define the ROI (i.e., distinc-
tiveness for words developed in the word-selective ROI) but also that
development was not limited to the ROI-defining category. Interest-
ingly, the decrease in distinctiveness for limbs that was observed
across all voxels in lateral VTC, was not significant when examining the
union of the selective voxels or the non-selective voxels as separate
subsets. This suggests that both subsets of voxels may contribute to
the decrease in distinctiveness for limbs.

Crucially, however, we find that distinctiveness over the union of
selective voxels, but not the non-selective voxels, predicts recognition
behavior. That is, distinctiveness for pseudowords over the union of
selective voxels in left lateral VTC predicted pseudoword reading with
~9% error in left-out participants; likewise, distinctiveness for faces
over the union of selective voxels in right lateral VTC predicted face
recognition with a ~ 11% error in left out participants. These long-
itudinal measurements are consistent with our prior cross-sectional
data that found that better reading ability in adults than children is
coupled with higher distinctiveness in word-selective voxels18 but also
show that the link between reading anddistinctiveness forwords in the
union of the selective voxels of left lateral VTCwas higher than for face
recognition and face distinctiveness in the union of selective voxels of
right VTC. In particular, the linkbetween face recognitionperformance
and distinctiveness for faces over the union of selective voxels in the
right hemisphere was no longer significant when age was added to the
model. We hypothesize that the more restricted range of face recog-
nition than reading performance combined with smaller individual
variability in the rate of face recognition performance changes over
time may contribute to these differences. Future longitudinal studies
that include participants with both a larger range of ages and a larger
range of face recognition abilities (comparable to the range of reading
abilities) will be important to tease apart these possibilities. Together,
the present data support a sparsely distributed account of VTC func-
tional organization29. That is, while we find that distributed responses
across both selective and non-selective voxels contain category
information, thedevelopmentof the selective voxels ismoreenhanced
and better predicts behavioral outcomes.

The described link between category distinctiveness in the union
of selective voxels and recognition ability has important ramifications
for studying the neural basis of atypical development and develop-
mental disorders. For instance, future research can examine if children
with dyslexia have lower distinctiveness for words in left lateral VTC
than age-matched typically-developing children and whether distinc-
tiveness for words contributes to explaining reading ability indepen-
dent of other predictors such as phonological awareness45, socio-
economic status46,47, whitematter properties48, gyrification in auditory

cortex49, or perceptual decision-making50. Similarly, future research
can test if adults and children with developmental prosopagnosia51,52

show lower distinctiveness for faces, compared to typical age-matched
controls, and conversely, if super-face-recognizers53,54, show higher
distinctiveness for faces in right lateral VTC than typical age-matched
controls.

In sum, our results not only provide insights on the development
of category representations in VTC, but also elucidate how this
development relates to behavioral changes in visual recognition of
faces and written words during childhood and adolescence. Future
studies can test the hypothesis that this link between category dis-
tinctiveness and behavior generalizes to the representation of other
categories and skills involving visual recognition, such as number
representations and math.

Methods
Participants
Children aged 5–12 years with normal or corrected-to-normal vision
were recruited for this study. This age range was selected for two
reasons: First, face recognition and reading, the two behavioral mea-
sures assessed in this study, improve during this age range. Second,
prior studies investigating the functional development of VTC have
shown development in this age range16,23.

Childrenwere recruited fromschools in and around Palo Alto, CA.
The diversity of the participants reflects the makeup of the region:
62.5% of children were Caucasian, 20% were Asian, 5% were Native
Hawaiian, 5% were Hispanic, and 7.5% were multiracial or from other
racial/ethnic groups. We collected fMRI data from 40 (26 female)
children (onset age = 5–12 years, M = 8.66 years, SD = 2.34 years). Data
from 4 children had to be excluded because they dropped out of the
study after participating only once, thus providing no longitudinal
fMRI data. Data from 7 children were excluded because their data did
not pass the inclusion criteria (see below). In the remaining 29 chil-
dren, 29 functional sessions were excluded due to motion, 1 session
due to a technical error during acquisition, and 1 sessiondue to aliasing
artifacts during acquisition. The fMRI data has previously been
reported in23.

Therefore, in this study, we report data of 29 neurotypical chil-
dren (18 female, 11 male), who were between 5 to 12 years old
(mean= 9.19, SD = 2.13) when they enrolled in the study. Sex and
gender were not considered in the design of the current study. Gender
was determined based on self-reporting. No sex and gender-based
analyses were performed as the final sample was not completely
balanced according to these factors and the limited sample size does
not enable deriving meaningful conclusions regarding sex and gender
effects. Children participated in the study for 1 to 5 years. When pos-
sible, children completed 1 to 2 functional scans and a structural scan
each year. Each child participated in at least 2 and up to 10 fMRI ses-
sions (mean= 4.41, SD = 1.92) with the time interval between the first
and last fMRI scan ranging from 10 months to 5 years
(mean= 45 months, SD = 18 months). The sample size in the present
study is similar to those reported in prior cross-sectional
publications55,56 and larger than previous longitudinal studies on VTC
development16. No statistical method was used to predetermine the
sample size. We also report behavioral data collected on a subset of
sessions of the same children (see below, behavioral data collection).

Statement on ethical regulations
This study was approved by the Institutional Review Board of Stanford
University and complies with all relevant ethical regulations. Prior to
the start of the study, parents gave written consent, and children gave
written assent for their participation. Children received $30 per hour
for scanning, $10 per hour for behavior, and a small toy for their
participation.
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Procedure
Before taking part in the actual fMRI session, children completed
training with a mock scanner to enhance the quality of pediatric neu-
roimaging data. During the mock scanner training children were
acclimated to the scanner environment in a child-friendly way: Chil-
dren practiced laying still while watching a short movie and receiving
live feedback on howmuch they weremoving. After themock scanner
training the child participated in the actualMRI session. Functional and
anatomical scans were typically conducted on different days to avoid
fatigue. Face recognition and reading tests were typically completed
after one of the scanning sessions.

Magnetic resonance imaging
Structural imaging. We collected neuroimaging data at the Center for
Cognitive Neurobiological Imaging at Stanford University using a
phase-array 32 channel head coil and a 3 Tesla GE Discovery
MR750 scanner (GE Medical Systems). Anatomical scans were col-
lected using quantitative MRI (qMRI57). Here, we used a spoiled gra-
dient echo sequence with multiple flip angles (α = 4°, 10°, 20°, 30°),
TR = 14msandTE = 2.4ms.The scan resolutionwas0.8 × 0.8 × 1.0mm3

(which was later resampled to 1mm isotropic). For T1-calibration spin-
echo inversion recovery scans were acquired with an echo-planar
imaging read-out, spectral spatial fat suppression and a slab inversion
pulse. These scans were collected at TR = 3 s, inplane resolution = 2
mmx2mm, slice thickness = 4mm and 2x acceleration, echo
time=minimum full.

Functional imaging. The functional data was acquired with the same
scanner and head coil as the structural images. We oriented slices
parallel to the parieto-occipital sulcus. Data were collected using a
simultaneous multi-slice, one-shot T2* sensitive gradient echo EPI
sequence with a multiplexing factor of 3. This sequence had a FOV =
192mm, TR= 1 s, TE = 30ms, and flip angle = 76°, a resolution of
2.4mm isotropic and near whole brain coverage (48 slices).

10 category experiment
During functional imaging, children completed three runs of a 10-
category experiment23,58. In each functional run, participants watched
images from 10 categories which can be grouped into 5 domains
(Supplementary Fig. 1B): faces (child faces, adult faces), characters
(pseudowords, numbers), body parts (headless bodies, limbs), places
(houses, corridors) and objects (cars, string instruments). The authors
affirm that the individuals displayed in Supplementary Fig. 1B provided
written informed consent for the publication of these images. Images
contained category stimuli, which were placed on a phase-scrambled
background generated from randomly selected images. All stimuli
were grayscale. Images were presented at a rate of 2Hz and did not
repeat across the course of the experiment. Images were presented in
4 s blocks, which were intermixed with baseline blocks showing a gray
luminance screen. Blocks were counterbalanced across categories and
baseline blocks. Participants were instructed to view the images while
fixating on a central dot and perform an oddball task. The oddball task
required participants to press a button whenever an image containing
only thephase-scrambledbackgroundappeared. Behavioral responses
to the oddball task were recorded in 98 out of 128 sessions due to
occasional button malfunction. Performance on the oddball task per-
formed during scanning was overall high (median performance=
91%, SD = 18%).

Behavioral data collection
Assessing reading ability. In a subset of sessions participants also
completed the word identification and word attack tests from the
Woodcock Reading Mastery Test (WRMT). Reading assessment was
performed outside the scanner. In the word identification task, parti-
cipants are asked to read a list of words as accurately as possible. In the

word attack task, participants are supposed to read a list of pseudo-
words as accurately as possible. Tests do not have a time limit, but end
when the participant makes 4 consecutive errors or has read the
complete list. The reading score for each test was obtained by dividing
the number of words read correctly by the total number of words and
multiplying the result by 100.

Assessing face recognition ability. In a subset of sessions participants
also completed outside the scanner the Cambridge FaceMemory Test
(CFMT59) using adult male faces and a version of the CFMT using male
child faces60. The CFMT is a self-paced face recognition test. In the
learning phases, participants learn the identity of six target unfamiliar
faces. In the test phase, in each trial they are shown a triplet of faces
and are asked to identify the learned faces amongst distractor faces.
The test constitutes 72 trials that become increasingly difficult as faces
appear in unknown views, lighting, and superimposed noise. Accuracy
was measured as the percent of correct responses made during the
test phase.

Data analysis
We used MATLAB version 2017b (The MathWorks, Inc.) and the
mrVista software package (version 2.1, https://github.com/vistalab/
vistasoft/wiki/mrVista) to analyze the data. Swarm plots in Fig. 4 were
created using MATLAB version 2020b.

Inclusion criteria. There were two criteria relevant for the inclusion of
the fMRI data in the analysis. First, there needed to be at least 2 (out of
3) runs per session with within-run motion <2 voxels and between-run
motion <3 voxels. Second, the child participated in at least two fMRI
sessions that were at least 6 months apart. Because in several sessions
only 2 out of 3 functional runs passed the motion quality criteria, final
analyses include 2 runs per session to ensure equal amounts of data
across participants and functional sessions. For sessions with 3 runs
surviving motion quality thresholds, the 2 runs with the lowest within-
run motion were selected.

For analyses that relate fMRI data to behavioral data, behavioral
datasets (face recognition and reading tests) were included in the
analysis if the time between acquisition of the behavioral data and the
acquisition of fMRI data was <1 year (Fig. S1A).

Analysis of structural MRI data and individual template creation.
We processed quantitative whole-brain images of each child and
timepoint with the mrQ pipeline (https://github.com/mezera/mrQ57)
to generate synthetic T1 brain volumes. For each child, we then used
the synthetic T1 brain volumes from their multiple timepoints to
generate a within-participant brain volume template. The individual
template of each child was generated using the FreeSurfer Long-
itudinal pipeline implemented in FreeSurfer version 6.0. (https://
freesurfer.net/fswiki/LongitudinalProcessing61). We then manually
edited the gray-white matter segmentations of each participant’s
within-participant brain template to fix segmentation errors (like holes
and handles) to generate an accurate cortical surface reconstruction.
The functional data from each child’s multiple timepoints (see below)
was then aligned to the within-participant template. The reasons for
this procedure were to: (i) minimize potential biases which can occur
from aligning longitudinal data to the anatomical volume froma single
timepoint61 and to (ii) enable the use of the same anatomical regions of
interest (ROIs) across different timepoints in the same brain volume
for each participant. On average 2.48 (SD =0.69) synthetic T1s were
used to generate the within-participant-template (min = 2, max=5). In
17 participants, the last fMRI session that was included was conducted
after the within-participant template had been created. These func-
tional sessions were acquired on average 11 ± 2 months after acquisi-
tion of the last synthetic T1 that was included in the within-participant-
template (excluding 2participantswhose last synthetic T1 could not be
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used because of technical error during acquisition and participant
motion).

Definition of lateral and medial VTC Regions of Interest (ROIs). We
defined lateral and medial VTC ROIs based on anatomical landmarks
on the inflated cortical surface in each hemisphere of each participant
as in prior publications18,23. The posterior border of both VTC ROIs was
defined along the posterior transverse collateral sulcus (ptCoS). The
anterior border was aligned with the posterior end of the hippo-
campus, which typically alignswith the anterior tip of themid-fusiform
sulcus (MFS). The lateral border of the lateral VTC ROI was placed
along the inferior temporal gyrus (ITG). Lateral and medial VTC ROIs
were separated by placing a border along the mid-fusiform sulcus
(MFS). The medial border of the medial VTC ROI was placed along the
Collateral Sulcus (CoS).

Analysis of functional MRI data. Functional data from each session
were aligned to the individual participant’s brain template (see above).
Data wasmotion-corrected both within and across functional runs.We
applied no spatial smoothing and no slice-timing correction. Time
courses were transformed into percentage signal change. To this end,
each timepoint of each voxel’s data was divided by the average
response across the entire run. A general linearmodel (GLM) was fit to
each voxel by convolving the stimulus presentation design with the
hemodynamic response function (as implemented in SPM, https://
www.fil.ion.ucl.ac.uk/spm/) to estimate the contribution of each of the
10 conditions. Analyses were performed in voxel space (not on sur-
face nodes).

Multivariate pattern analysis. For each category multivoxel patterns
(MVPs) of responses are vectors of response amplitudes across all
voxels in each ROI (left and right lateral and medial VTC). Amplitudes
were estimated from the GLM run at each voxel. Response amplitudes
were transformed into z-scores to remove between voxels differences
in amplitudes (e.g., because of distance from the coil) and to down-
weight noisy voxels (see18,62,63). Next, we calculated all pair-wise cor-
relations between MVP pairs from one functional run to the other
resulting in a 10 × 10 representational similaritymatrix (RSM14) for each
session.

Assessment of category distinctiveness. For each session’s RSM, we
computed the distinctiveness for each of the 10 categories. The dis-
tinctiveness of a category is defined as the within-category minus
between-category similarity of distributed responses leaving out the
between-category similarity with the other category from the same
domain. This is illustrated in the gray box in Fig. 1a: In the RSM the
values on the diagonal represent the within-category similarity, while
the off-diagonal values represent the between-category similarities.
For instance, to compute the distinctiveness of words, the between-
category similarities for all categories except numbers are subtracted
from the within category similarity for words. The reason for leaving
out the other category from the samedomain is that for somedomains
the two categories are very similar to each other (such as adult and
child faces) while for other domains the two categories differ from
each other to a greater extent (such as cars and string instruments) so
we chose a procedure that would be least biased and will not differ-
ently affect stimuli from various domains.

Definition of voxel subsets: the union of selective voxels across all
categories and of non-selective voxels. To define the union of
selective voxels in each session, we first computed the selective voxels
for each category and then took the union of selective voxels across all
10 categories. Selective voxels for each category were defined by
contrasting responses to a given category vs. all other categories
except the other category from the same domain (i.e., words vs. all

other categories except numbers). Category-selectivity was defined as
a t-value > 3 (voxel-level) for the contrast of interest. This threshold
was chosen because prior research has shown that category-selective
regions can be defined reliably in individual participants including
both children and adults using this threshold23,31,55,56,64. Then, we took
the union of the selective voxels across all 10 categories. Non-selective
voxels were the remainder of voxels in lateral VTC, that were not
selective of any of the 10 categories. For the control analyses shown in
Figs. S3 and S4 we defined the two voxel subsets for t-values > 1, t-
values > 2, t-values > 3 (as presented in the main analysis), t-values > 4,
and t-values > 5.

Control analysis matching the voxel subsets for variance
explained. To test if the lack of development in the non-selective
voxels (Fig. 2a)was driven bypoor-responding voxels, rather thanwell-
responding voxels without any known category selectivity, we per-
formed a control analysis using subsets of the union of the selective
voxels and of the non-selective voxels in lateral VTC thatwerematched
on variance explained. For this purpose, 300 voxels were chosen in
each session and each voxel subset. This number was chosen (i) to
select the samenumber of voxels across subsets, and (ii) to ensure that
the analysis can be conducted in all sessions, including sessions with a
lownumber of selective voxels. For the non-selective voxels, the voxels
with highest variance explained were selected, for the union of selec-
tive voxels a random selection of voxels was performed. Next, we
repeated the analyses shown in Fig. 2 using these voxel sub-
sets (Fig. S2).

Control analysis in category-selective disk ROIs. The goal of this
analysis was to (i) determine changes in distinctiveness in ROIs that
show selectivity to a given category (i.e., in a word-selective ROI) and
(ii) to determine changes in distinctiveness in voxel sets that are con-
stant across sessions of a given participant (Fig. S5). For this analysis
disk-ROIs with a radius of 10mm were created for each category-
selective ROI for eachparticipant. DiskROIswere created for theword-
selective ROIs pOTS-words and mOTS-words (also called the Visual
Word Form Area11), the face-selective ROIs pFus-faces and mFus-faces
(also called the Fusiform Face Area7), the limb-selective ROI OTS-limbs
(also called the FusiformBody Area8), and the place-selective ROI CoS-
places (also called the Parahippocampal Place Area10). For the word
ROIs, only the left hemisphere was included because the ROIs could
only be defined in the right hemisphere in about 20% of participants23.

To define the disk ROIs, ROIs of all sessions of that contrast in a
given participant (i.e., word-selective ROI in session 1, 2 and 3) were
used, which had individually been defined in the respective partici-
pant’s functional sessions23. Then, the average center coordinates of
these ROIs across all sessions of that participant were computed and
the 10mm disk ROI was centered on those average coordinates. This
approach was chosen as (i) it ensures that the voxels will show selec-
tivity to a certain category, (ii) it ensures that the number of included
voxels is constant across sessions of a participant, (iii) provides an
independent definition of the ROI, and (iv) minimizes bias towards a
particular session.

Visualizing changes in the representational space. We used multi-
dimensional scaling (MDS) to visualize the representational space in
lateral andmedial VTC and determine how it changes with age (Fig. 3a,
b, d, e& SupplementaryMovie 1, Supplementary Fig. S8). As visualizing
how the representational space changes longitudinally is challenging,
we show MDS embeddings for young children (5–9-year-olds) and
teenagers (13–17-year-olds). Supplementary Movie 1 is a video that
shows the developmental trajectory of the MDS embedding in lateral
VTC across age. These age groups are used for visualization only;
statistics are run on the whole longitudinal sample (see below). For the
MDSembedding shown in Fig. 3a, b, d, ewefirst computedmeanRSMs
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for 5–9-year-olds and 13–17-year-olds separately for the union of
selective voxels and for the non-selective voxels in each hemisphere
(Fig. S6C, D). The RSMs were then turned into dissimilarity matrices.
We next applied classical multidimensional scaling (MDS) to visualize
the representational space in 2D (Fig. 3a, b, d, e). We used the same
approach to visualize the development of the representational space
in medial VTC (Supplementary Figs. 7, 8). To facilitate visual compar-
ison of different MDS embeddings across hemispheres and sets of
voxels, we aligned all MDS embeddings of 13–17-year-olds to the
embedding of 13–17-year-olds across all voxels in left lateral VTC using
the Procrustes transformation. We next used the Procrustes transfor-
mation to align the embedding of 5–9-year-olds to that of 13–17-year-
olds. Procrustes analysis was used without scaling in both cases.

Assessing changes in the representational space. The line plots in
Fig. 3c, f quantify the change that is visualized in theMDS embeddings
(Fig. 3a, b, d, e). The goal of this analysis was to assess how the
representational structure changes in the union of selective voxels
compared to in the non-selective voxels in each child. To this end, we
appliedMDS to the RSMof each child’s first session in the study and to
the RSM of their last session. We next used Procrustes transformation
without scaling to align the embedding of thefirst session to that of the
last session. In each child we then measured the Euclidian distance for
each category between the first to the last session, in the shared MDS
embedding space and report the mean distance across all categories.
This analysis was performed for both hemispheres and for both sets of
voxels (union of selective voxels, non-selective voxels).

Statistics
Unless stated otherwise, tests reported in this manuscript are two-
tailed.

We used linear mixed models (LMM) to test whether distinctive-
ness develops with age because LMMs can account both for the hier-
archical data structurewithmultiple sessions being nestedwithin each
participant and for the uneven distribution of sessions across time
(Supplementary Fig. 1A). Normality and equal variances were not for-
mally tested.

Statistical analyses related to Fig. 1. LMMs were fitted using the
‘fitlme’ function in MATLAB version 2017b (The MathWorks, Inc.). In
these models, category distinctiveness was predicted by age using
participant as a random factor. We first tested whether a random
intercept or random slopes model fit the data best. In a random
intercept model, intercepts are allowed to vary across participants,
while in a random slope model both intercepts and slopes can vary
across participants. Since in the majority of cases random intercept
models fit the data best, we used random intercepts for all analyses
presented in Fig. 1 to enable comparability across models.

We next tested whether motion during scanning and tSNR con-
tributed to themodel fit. Addingmotion as a predictor to the LMMdid
not significantly contribute to the model fit except for distinctiveness
for string instruments. Importantly, adding motion in the model for
distinctiveness for string instruments did not influence the result:
There was no significant contribution of age to string instruments
distinctivenesswith orwithout addingmotion.Wenext testedwhether
tSNR contributed to the model fit. Since adding tSNR contributed to
the model fit independently from age in several cases, we included
tSNR as an additional factor into the model. The bars in Fig. 1d show
the slopes for the effect of age on category distinctiveness taking into
account tSNR.

LMMs related to Fig. 1d, e can be expressed as: category distinc-
tiveness ~ age in years + tSNR + (1|participant), in which category dis-
tinctiveness is the response variable, age and tSNR are the predictors
and the term (1|participant) indicates that intercepts vary by
participant.

False-discovery rate (FDR) correction following the procedure by
Benjamini and Hochberg65 as implemented in MATLAB version 2017b
(The MathWorks, Inc.) using the mafdr function was used to account
for multiple comparisons (20 tests) for analyses shown in Fig. 1d, e.
This function computes false-discovery-rate-adjusted p-values based
on a ranking of p-values. Adjusted p-values are reported in the text.

Statistical analyses related to Fig. 2. The analyses in Fig. 2 were
performed similar to those in Fig. 1d, e and can be expressed as:
category distinctiveness ~ age in years + tSNR + (1|participant).

LMMs were run separately for each category, hemisphere, and
voxel subsets (union of the selective voxels, non-selective voxels).
Here, tSNR was obtained for each voxel and then averaged across
voxels within each voxel subset (union of the selective voxels, non-
selective voxels). In addition, we ran a LMM to test whether there are
differences in tSNR in the subset of the union of the selective voxels
and the non-selective voxels.

This model can be expressed as: tSNR ~ voxelSubset + (1|partici-
pant), where voxelSubset is a binary predictor (selective/non-selective).

For analyses shown in Fig. 2 FDR correction was performed as
described for Fig. 1, separately for analyses in lateral and medial VTC.

Statistical analyses related to Fig. 3. We used paired t-tests to eval-
uate the change in representation in the union of selective voxels and
the non-selective voxels in each hemisphere (Fig. 3c, f). That is, in each
hemisphere and voxel subset we first computed the mean Euclidean
distance across all categories from each child’s MDS embedding of
their first session to the embedding of their last session. We then
compared the mean distances across the union of selective voxels to
that in the non-selective voxels.

Statistical analyses related to Fig. 4. For the analysis in Fig. 4a, c, we
used LMMs to test if distinctiveness in the union of selective voxels is
related to behavior. The reported p-values are adjusted for multiple
comparisons using the FDR procedure described for Fig. 1.

Figure 4a: While we acquired reading scores for both real words
and pseudowords in our participants, we used the reading scores for
pseudowords to test for a link between distinctiveness and behavior,
becausepseudowordswere also used in the fMRI experiment.We used
a random slopes model that can be specified as:

Pseudoword reading score (%) ~ distinctiveness for pseudo-
words + (distinctiveness for pseudowords | participant).

A random slopes model was used because (i) it fitted the data
better compared to the random interceptmodel and (ii) the individual
participant’s slopes (random effects) visualize that there is a positive
link between distinctiveness for pseudowords and reading score in
most individuals.

Figure 4c: In this analysis we tested if there is a link between
distinctiveness for adult faces in the union of selective voxels in lateral
VTC and face recognition scores as assessedwith theCFMTusing adult
faces. While we had also acquired data of a version of the CFMT using
child faces (CFMT-child), we used data of the CFMT-adults to link it to
distinctiveness for two reasons. First, performance on the CFMT-child
was overall higher resulting in ceiling effects in some participants.
Second, as theCFMT-adults is awidely used test, it enables comparison
across studies. As such, for the data presented in Fig. 4c we used a
random slopes model that can be specified as:

Face recognition score in CFMT-adults (%) ~ distinctiveness for
adult faces + (distinctiveness for adult faces | participant).

While the random slopes model did not fit the data significantly
better than the random intercept model, it enables visualizing the
effect between face distinctiveness and face recognition in individual
participants. There are no significant differences to the results of the
present analysis when a random intercept model is used instead of the
random slopes model.
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Predictingbehavior frombrain data.Weused a leave-oneparticipant-
out-cross validation (LOOCV) approach to test if we can predict
behavior from brain data. That is, we computed a LMM that predicts
behavior using distinctiveness on all sessions except for one partici-
pant that was left out in each iteration. Then, we used the LMM esti-
mates to compute the predicted behavioral score for each session of
the left-out participant. The prediction error was defined as the dif-
ference between the predicted and the actual behavioral score. We
then repeated this procedure for all participants.

The box plots in Fig. 4b, d show the prediction error for three
different models:
(i) Selective: LMM predicting behavior from distinctiveness over the

union of selective voxels.
B: Pseudoword reading score ~ distinctiveness for pseudowords
across the union of selective voxels + (distinctiveness for pseu-
dowords | participant);
D: Face recognition score ~ distinctiveness for adult faces across
the union of selective voxels + (distinctiveness for adult faces |
participant);

(ii) Non-selective voxels: LMM predicting behavior from distinctive-
ness over the non-selective voxels.
B: Pseudoword reading score ~ distinctiveness for pseudowords
across the non-selective voxels + (distinctiveness for pseudo-
words | participant);
D: Face recognition score ~ distinctiveness for adult faces across
the non-selective voxels + (distinctiveness for adult faces |
participant);

(iii) Selective & age: LMM predicting behavior from distinctiveness
over the union of selective voxels with age as an additional factor.
B: Pseudoword reading score ~ distinctiveness for pseudowords
across the union of selective voxels + age + (distinctiveness for
pseudowords | participant);
D: Face recognition score ~ distinctiveness for adult faces across
the union of selective voxels + age + (distinctiveness for adult
faces | participant);

In the analyses in the scatterplots in Fig. 4b, d we calculated the
difference in prediction error using a model that predicts behavior
based on distinctiveness in the union of the selective vs. in the non-
selective voxels. Next, we used one-sample t-tests to evaluate if the
difference was significantly different from zero.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated with this study have been deposited in Zenodo66

https://doi.org/10.5281/zenodo.8366779. The processed data required
to generate themain and supplemental figures are available at: https://
github.com/VPNL/distributedVTCDevelopment and https://doi.org/
10.5281/zenodo.8366779. This repository includes a directory excel-
files with tables containing detailed statistics for the analyses shown in
Supplementary Fig. 2-5. The raw data generated in this study are pro-
tected and not available due to data privacy laws. Raw data can be
made available upon request from KGS or MN.

Code availability
fMRI data were analyzed using the open source mrVista software pack-
age (available on GitHub: http://github.com/vistalab). Preprocessing of
the functional data was performed using the code provided in: https://
github.com/VPNL/fLoc. Synthetic T1 brain volumes were generated
using the mrQ software package: https://github.com/mezera/mrQ. Ori-
ginal code to generate themain and supplementary figures and tables is
available at: https://github.com/VPNL/distributedVTCDevelopment.
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