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Fast free energy estimates from λ-dynamics
with bias-updated Gibbs sampling

Michael T. Robo 1,2,6, Ryan L. Hayes3,4, Xinqiang Ding 5,7, Brian Pulawski1 &
Jonah Z. Vilseck 1,2

Relative binding free energy calculations have become an integral computa-
tional tool for lead optimization in structure-based drug design. Classical
alchemical methods, including free energy perturbation or thermodynamic
integration, compute relative free energy differences by transforming one
molecule into another. However, these methods have high operational costs
due to the need to perform many pairwise perturbations independently. To
reduce costs and acceleratemolecular designworkflows, we present amethod
called λ-dynamics with bias-updated Gibbs sampling. This method uses
dynamic biases to continuously sample between multiple ligand analogues
collectivelywithin a single simulation.We show thatmany relative binding free
energies can be determined quickly with this approachwithout compromising
accuracy. For five benchmark systems, agreement to experiment is high, with
root mean square errors near or below 1.0 kcalmol−1. Free energy results are
consistent with other computational approaches andwithin statistical noise of
both methods (0.4 kcalmol−1 or less). Notably, large efficiency gains over
thermodynamic integration of 18–66-fold for small perturbations and
100–200-fold for whole aromatic ring substitutions are observed. The rapid
determination of relative binding free energies will enable larger chemical
spaces to be more readily explored and structure-based drug design to be
accelerated.

Relative binding free energy (RBFE) calculations have emerged as a
promising tool for the lead optimization of small molecule
pharmaceuticals1–3. In anRBFE calculation, a smallmoleculebound to a
protein target is alchemically transformed into a different small
molecule, such as an analog formed by modifying one or more func-
tional groups of the lead compound. The relative difference in free
energies of binding (ΔΔGbind) between the two molecules can then be
calculated using a thermodynamic cycle (Fig. 1)4. Compared to meth-
ods such as molecular docking, RBFE calculations have shown sig-
nificantly improved correlation between computed and experimental

binding affinities, with errors of roughly 1 kcalmol−1 or less for state-of-
the-art calculations5–8. Although too high to eliminate the need for
experiment entirely, this degree of accuracy is low enough to separate
compounds with stronger versus weaker binding affinities and effi-
ciently prioritize molecules for experimental investigation9,10. Using
stochastic simulations, Mobley and Klimovich quantified the effect
that this computational prioritization can have on a drug discovery
project. They estimate that RBFE calculations with an average of
1.0 kcalmol−1 of error to experiment can improve the odds of identi-
fying a tenfold potency boost by a factor of 511. When optimizing lead
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compounds for other drug-like properties, RBFE calculations can also
be used to filter out compound modifications that might negatively
affect potency7.

While many methods of RBFE calculations exist, the most com-
monly used methods are free energy perturbation (FEP) or thermo-
dynamic integration (TI) coupled with the multistate Bennett
acceptance ratio (MBAR) free energy estimator12–15. With these meth-
ods, an alchemical coupling parameter, called λ, is used to alchemically
transformonemolecule into another. To ensure sufficient phase space
overlap exists between λ states and to achieve convergence in com-
puted free energy differences, many intermediate discrete λ states are
also defined (typically 10–20) that span a range of λ values between 0
and 1, the two molecule end states of interest4,7,9. Molecular dynamics
(MD) simulations are performed at each of these discrete λ states, λ
values held constant for the duration of the simulation, and the MD
trajectories are then postprocessed to calculate the final free energy
difference. Though effective, FEP and TI calculations require con-
siderable computational resources, are exclusively pairwise, and are
inherently unable to evaluate more than one RBFE at a time. For
example, in a typical FEP/TI experiment5,7,8,16, 11 discrete λ statesmaybe
used to model a single perturbation, requiring 11 MD trajectories of
5–20 ns per λwindow to be run, which amounts to a total of 55–220ns
of simulation time for a single RBFE result6,16. Longer simulations or
additional windows may be needed for more challenging perturba-
tions, such as ring additions or polar-to-non-polar transformations17.
Further compounding computational costs, recommended best
practices for investigating large sets of multiple ligands with FEP/TI
necessitates the use of redundant calculations to provide improved
accuracy around closed perturbation cycles18–20. Although the recent
adoption of running MD simulations on graphical processing units
(GPUs) has accelerated computational throughput and facilitated
routine employment of RBFE calculations on large, parallel high-
performance computing (HPC) resources for drug discovery21–23, costs
per RBFE calculation remain high.

Driven by the high cost of pairwise RBFE calculations, many
groups have investigated alternative methods to perform RBFE cal-
culations with the aim of achieving comparable accuracy with lower

computational costs per computed RBFE. Non-equilibrium switching
free energy calculations have seen renewed interest24–27. Mostly run in
a pairwise manner, these calculations require only ca. 20–40ns per
transformation and are highly parallelizable24,27, making them good
candidates for HPC or cloud computing. A variety of expanded
ensemble methods have also grown in popularity28–32. λ-dynamics
(λD)33,34, enveloping distribution sampling35–37, and λ-local elevation
umbrella sampling methods38–40, to name a few, have all sought to
calculate free energy differences between multiple thermodynamic
states within a single calculation to increase efficiency through
improved scalability.

In a conventional λD simulation, λ is treated as a continuous
parameter and its value canchangedynamically in conjunctionwith the
coordinates of an MD simulation, using extended Lagrangian
methods34,41. Sampling of multiple ligand end states or sampling of
many substituents at two ormore sites of substitution are both feasible
with multisite λ-dynamics (MSλD) via holonomic constraints34,42.
Hence, multiple RBFEs can be computed from a single λD simulation,
lending large efficiency gains over conventional approaches. Recent
benchmarks have shown that single-site perturbations can be per-
formed with cost savings in the range of 3–5.4 times better than TI/
MBAR6. Advantageously, sampling multiple ligand end states with λD
also allows alchemical transitions to occur from one end state to any
other end state—forming a connection network termed “strongly
connected” in graph theory—without the need for redundant calcula-
tions to form cycle closure connections, as commonly performed for
FEP/TI (Fig. 2)18,20. Over the past few years, a variety of developments
have been introduced to expand the utility of λD for drug discovery,
including an Adaptive Landscape Flattening (ALF) algorithm for auto-
mated bias determination41,43, a Potts model-based estimator for
computing free energy differences and intersite couplings44, an accel-
eratedGPUengine45, and an alternative λ sampling strategy usingGibbs
sampling, a Markov chain Monte Carlo algorithm46,47. As discussed in-
depth in “Methods”, this work builds upon this latter development of
the discrete Gibbs sampler λ-dynamics (d-GSλD) method47.

To sample multiple ligands collectively within a single λD simu-
lation, however, free energy barriers between ligand end states in λ-
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Fig. 1 | A thermodynamic cycle for computing relative binding free energies.
Two ligands (L1 and L2) with different substituents (represented as a methyl group
in blue or an iso-propyl group in red) are represented as bound to a protein (in

gray) or unbound in solution. Relative binding free energies between L1 and L2 can
be computed by alchemically transforming L1 into L2 in bound and unbound states.
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space must first be flattened. This can be accomplished by identifying
and incorporating a variety of biasing potentials into a λD simulation41.
These biases flatten intermediate free energy barriers and ensure
ligand end states have equivalent free energies to facilitate rapid
transitioning between end states. Though effective, a non-negligible
amount of simulation time must be devoted to determining these
biases prior to production sampling, e.g., recent λD simulations have
used 20–50ns for bias determination6,44,48,49. With the advent of d-
GSλD, discrete λ states can also be used to propagate alchemical
transformations while maintaining the ability to sample all λ states
within a single simulation. This approach works by forming two con-
ditional distributions, P(X | λ) and P(λ | X), from the desired joint dis-
tribution of atomic coordinates, X, and alchemical states, λ, (P(X, λ)).
Sequential sampling of these conditional distributions is then per-
formed with Gibbs sampling to generate new values of X and λ at time
t32,47.Molecular dynamics is used to sampleX at afixed λ state, while λ is
sampledby calculating thepotential energyof every λ statewith afixed
set of atomic coordinates and selecting the next λ state proportional to
its probability from a probability distribution using a pseudorandom
number generator47. In d-GSλD, the use of discrete λ states is advan-
tageous because conventional λD biasing potentials can be simplified
from a functional form into a single scalar value per discrete λ state.
Biases added to individual λ states flatten energy barriers and facilitate
stochastic transitions to different λ states over the course of a d-GSλD
simulation. Although this does not remove the need to identify
appropriate biases prior to production sampling, this approach redu-
ces the amount of time needed to identify biases to 5–10 ns, on aver-
age. Highly accurate d-GSλD free energy estimates can then be
obtained with MBAR15,47,50. Nonetheless, the computational cost of
identifying biases for d-GSλDor λD reduces the efficiency, throughput,
and cost advantages of both methods. Thus, this work was motivated
to try to eliminate these costs and accelerate RBFE calculations by
removing the need to identify biases prior to production sampling. If
such “biasing runs” could be avoided, we estimate that λD-based
methods could screen hundreds of compound analogs at a fraction of
the cost of FEP/TI methods for drug discovery.

In this report, we implement the use of continuous bias updates in
conjunction with discrete Gibbs sampler λ-dynamics to achieve rapid
and accurate RBFE estimates. We refer to this method as λ-dynamics
with bias-updated Gibbs sampling (LaDyBUGS). In contrast to the
static biases used with d-GSλD, which were determined with a
Wang–Landau-like algorithm47, LaDyBUGS uses an aggressive dynamic
bias that changes and continuously drives the system to sample

different λ states. This avoids the need to run separate simulations for
bias determination prior to production sampling and continually
refocuses sampling towards the least visited λ states to provide
exceptionally smooth sampling of all λ states. FastMBAR, a GPU
implementation of MBAR, is used for rapid free energy determination
and on-the-fly bias refinement50. For five protein–ligand benchmark
systems,weobserve large efficiencygains of 18–66-fold improvements
with LaDyBUGS compared to TI/MBAR without compromising accu-
racy in the predictedΔΔGbind results. Larger efficiency gains (100–200-
fold) are also observed for two systems involving more challenging
perturbations of whole aromatic rings, where enhanced sampling in
LaDyBUGS overcomes observed sampling limitations in TI/MBAR. In
the following “Results and Discussion”, we evaluate LaDyBUGS’ per-
formance in terms of accuracy compared to the experiment and effi-
ciency compared to TI/MBAR, as implemented in OpenMM51. In
“Methods”, we describe the workflow of LaDyBUGS as well as our
computational procedure.

Results and discussion
Our goal in evaluating LaDyBUGS was to demonstrate that it provides
comparable accuracy to classical methods for RBFE calculation with
significant improvements in efficiency and cost savings. To that end,
we selected five literature examples to benchmark LaDyBUGS perfor-
mance: major urinary protein 1 (MUP1)52, DNA ligase53, c-Met kinase (c-
Met)54, thrombin55, and 6-phosphofructo-2-kinase/fructose-2,6-bipho-
sphatase 3 (PFKFB3)56. These systems have been featured in previous
benchmarking studies of FEP+ and non-equilibrium switching5,16,24,52. In
total, binding free energies were calculated for 45 different ligands: 6
for MUP1, 7 for DNA ligase, 11 for c-Met, 11 for thrombin, and 10 for
PFKFB3 (Fig. 3). To avoid the complications of charge-changing
perturbations5,57,58, only ligands with neutral alchemical substituents
were included in this study. We also performed symmetric methyl
perturbations to ensure no artificial bias is introduced into LaDyBUGS
free energies as a result of using dynamic bias updates.

Symmetric methyl perturbations
Symmetric perturbations were performed with LaDyBUGS to inter-
convert between identical but distinct methyl groups on toluene and
p-xylene (as shown in Supplementary Fig. 1). This test confirms that
correct sampling and accurate free energy estimates could be
obtained without introducing artifacts via continuous bias updates in
LaDyBUGS. As shown in Table 1, for both systems, the expected result
(ΔG =0.00 kcalmol−1) is reproduced within the computed
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Fig. 2 | Alchemicalperturbation connectiongraphs. a λD-basedmethods sample
a strongly connected graph of ligand end states. Efficiency gains obtained with
λD-based methods over traditional TI or FEP free energy methods originate from
two key sources: (1) all physical and intermediate λ states are sampled within a
single simulation (represented as solid lines) and (2) multiple ligands can be

sampled simultaneously (represented as different colors). b TI or FEP methods
sample a weakly connected graph via pairwise perturbations (commonly referred
to as a “star map” when run without redundant calculations for cycle closure) and
require many intermediate simulations to be run (represented as dashed lines).
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bootstrapped errors, suggesting that LaDyBUGS is functioning prop-
erly for both single-site (toluene) and multisite (p-xylene) systems.
These results provide confidence to proceed with benchmark pertur-
bations commonly observed in structure-based drug design.

Structure-based drug design benchmarking
To demonstrate the applicability of LaDyBUGS for structure-based
drug design, we assess the accuracy and efficiency of the LaDyBUGS
method compared to experiment and a standard alchemical free
energy method (TI/MBAR). We also briefly compare LaDyBUGS vs λD,
since both methods can examine multiple perturbations simulta-
neously, albeit λD requires additional sampling time to identify biases
prior to production sampling. In total, free energies of binding were
calculated for 45 ligands bound to one of five benchmark protein
systems: MUP1, DNA ligase, c-Met, thrombin, or PFKFB3. Figure 4 plots
the correlation between the experiment and computed binding affi-
nities (ΔGbind) with LaDyBUGS (using 15 ns of sampling per simulation)
and TI/MBAR (using 5 ns of sampling per λ window; 55 ns of total
sampling per pairwise perturbation); all data points are reported in
Supplementary Tables 1 and 2 of the Supplementary Information.
Root-mean-square error (RMSE) andKendall τ scores59 were computed
for each test system individually and for the combined dataset60. Using
these metrics, we see a uniform improvement in both RMSE and

Kendall τ with LaDyBUGS relative to TI/MBAR. For all 45 ligands, the
LaDyBUGS RMSE was 0.97 kcalmol−1 and the Kendall τ was 0.65. For
every test case, the calculated LaDyBUGS RMSE was near or below
1.0 kcalmol−1, a typical goal and state-of-the-art for predictive accuracy
in free energy calculations for drug discovery5–7,11,16,17,24. It is important
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Fig. 3 | Protein–ligand benchmark systems. Five systems with 45 total ligands
were used to evaluate and compare LaDyBUGS and TI/MBAR. LaDyBUGS calcula-
tions evaluated several ligands within a single simulation, and compounds were
grouped in the following panels: a c-Met ligands, b DNA ligase ligands, c thrombin
ligands,d PFKFB3 ligands, and eMUP1 ligands. For the TI/MBAR calculations, a star

map of pairwise perturbations was utilized (Fig. 2). All relative free energy differ-
ences were calculated with respect to a reference compound for each system
(highlighted in red). Ligand numbering was kept consistent with original experi-
mental reports (c-Met54, DNA ligase53, thrombin55, and PFKFB356) or a previous
benchmark study (MUP152).

Table 1 | Free energy differences in water for symmetric
methyl perturbations computed with LaDyBUGS (kcal mol−1)

Site 1 (X) Site 2 (Y) ΔGwater ±σM

Toluene → Toluene

CH3 (A) H 0.00

CH3 (B) H 0.0018 ±0.004

p-Xylene → p-Xylene

CH3 (A) CH3 (C) 0.00

CH3 (A) CH3 (D) 0.0005 ±0.003

CH3 (B) CH3 (C) 0.0003±0.004

CH3 (B) CH3 (D) −0.0015 ± 0.004

Pairs of symmetric but distinct CH3 groups are labeled (A, B) and (C, D). Toluene and p-xylene
structures are shown in Supplementary Fig. 1. Errors are presented as the standard error of the
mean (σM).
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to note that accuracy is dependent on both correct force field repre-
sentation of a chemical system and thorough configurational sampling
with a given free energy method61. The larger RMSE of 1.19 kcalmol−1

and reduced Kendall τ of 0.59 from TI/MBAR (5 ns per window), which
used the same force field parameters as LaDyBUGS, suggests LaDy-
BUGS is providing improved sampling proficiency over TI/MBAR for
the same benchmark systems. Notably, LaDyBUGS used 18.3–66.0
times less sampling than TI/MBAR 5 ns per window when comparing
the two computational approaches (Fig. 5).

Becauseboth LaDyBUGS andTI/MBAR calculations used the same
force field parameters, we can also compare the agreement of their
ΔGbind predictions (Fig. 5). The two computational methods agree well
with each other, with an overall RMSE of 0.44 kcalmol−1. Considering
that most protein–ligand ΔGbind calculations have computed

uncertainties between 0.3–0.5 kcalmol−1 16,48,49, and that LaDyBUGS
bootstrapped errors ranged from 0.1 to 0.4 kcalmol−1 (Supplementary
Tables 1 and 2), these results suggest good agreement between these
free energymethods exists and that LaDyBUGS results are comparable
to the community accepted standard TI/MBAR. To explore the effect
of sampling time on the ΔGbind results, we also compared these
methods with less sampling per LaDyBUGS simulation (with 5 ns of
sampling per simulation) and more sampling per TI/MBAR calculation
(with 15 ns of sampling per λ window; 165 ns of total sampling per
pairwise perturbation). In Fig. 6, the agreement between LaDyBUGS
5 ns simulations compared to TI/MBAR 5 ns per window remains high
with a RMSE of 0.42 kcalmol-1 and a Kendall τof 0.86. As expectedwith
a reduction in sampling, the mean bootstrapping error for LaDyBUGS
increased from 0.17 to 0.30 kcalmol−1, although the RMSE between
LaDyBUGS (5 ns) and experiment remains comparable at
1.04 kcalmol−1. This level of agreement is significant considering
LaDyBUGS5 ns used 55.0–198.0 times less sampling than TI/MBAR 5 ns
per window. The amount of TI sampling for thrombin and PFKFB3 are
noticeably larger than the other systems, by a factor of 2–4, due to the
additional calculations performed to sample alternate conformations
of larger aromatic ring perturbations. As discussed in the next sub-
section, LaDyBUGS showed enhanced sampling of dihedral torsions
for alchemical aromatic rings, while TI/MBAR did not, requiring addi-
tional sampling to bemanually performed. Thus, from a total of 120 ns
expended to sample all 45 ligands (~2.67 ns per ligand) bound to their
respective targets, LaDyBUGS 5 ns can provide ΔGbind predictions with
errors near or below 1.0 kcalmol−1 compared to the experiment.
Though error bars are slightly larger than observed with 15 ns, running
LaDyBUGS for 5 ns could provide a useful way to quickly screen large
series of ligand analogs prior to more rigorous evaluations by
extending sampling to longer time scales. These results further high-
light that significant cost savings are achievable with LaDyBUGS
without compromising accuracy in the computed ΔGbind results. In
contrast, with 5 ns of sampling per window, TI/MBAR required 12.7μs
of total protein–ligand sampling (165–660ns per ligand). We note that
commonly employed redundant calculations for cycle closure and
hysteresis error reductionwere not performed here to try tomaximize
the efficiency of TI/MBAR, although additional calculations were per-
formed to sample 180° rotated ring conformations of the thrombin
and PFKFB3 alchemical substituents18–20. To test LaDyBUGS con-
vergence, 25 ns simulations were also run. No large deviations were
observed and the RMSE between LaDyBUGS 15 ns and LaDyBUGS 25 ns

 RMSE Kendall τ
All data 0.97 0.65
MUP1 0.34 1.00
DNA ligase 0.95 0.71
c-Met 1.02 0.40
Thrombin 1.05 0.82
PFKFB3 1.07 0.72

 RMSE Kendall τ
All data 1.19 0.59
MUP1 0.48 0.87
DNA ligase 1.02 0.62
c-Met 1.12 0.26
Thrombin 1.26 0.82
PFKFB3 1.52 0.64

LaDyBUGS 15 ns TI/MBAR 5 ns per window
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Fig. 4 | Correlation to experiment. Computed a LaDyBUGS 15 ns and b TI/MBAR
5 ns per window ΔGbind compared to experiment (in kcal mol−1). Data points are
colored by the chemical system (MUP1 in cyan, DNA ligase in red, c-Met in blue,
thrombin in green, and PFKFB3 in purple), and bootstrapped uncertainties com-
puted over three replicates with FastMBAR are shown as error bars. The center

black line represents perfect one-to-one correlation; the shaded gray area repre-
sents an error of ± 1 kcalmol−1. Root-mean-square errors and Kendall τ statistics are
reported for all data points collectively and each system individually. Source data
are provided as a Source Data file.
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TI/MBAR 5 ns per window ΔGbind (kcal mol-1)

 LaDyBUGS TI Efficiency gain
All data 360 ns 12,705 ns 35.3
MUP1 45 ns 825 ns 18.3
DNA ligase 45 ns 990 ns 22.0
c-Met 90 ns 1650 ns 18.3 
Thrombin 90 ns 3300 ns 36.7
PFKFB3 90 ns 5940 ns 66.0
(Protein simulation sampling)

 RMSE Kendall τ
All data 0.44 0.86
MUP1 0.18 0.87
DNA ligase 0.49 0.71
c-Met 0.37 0.85
Thrombin 0.45 0.93
PFKFB3 0.55 0.94

Fig. 5 | Correlation to TI/MBAR. Correlation between computed LaDyBUGS 15 ns
and TI/MBAR 5 ns per windowΔGbind results (in kcalmol−1). Data points are colored
by chemical system (MUP1 in cyan, DNA ligase in red, c-Met in blue, thrombin in
green, and PFKFB3 in purple), and bootstrapped uncertainties computed over
three replicates with FastMBAR are shown as error bars. The center black line
represents y= x; the shaded gray area represents an error of ±1 kcalmol−1. Root-
mean-square errors, Kendall τ statistics, total amount of sampling, and efficiency
gains of LaDyBUGS 15 ns over TI/MBAR 5 ns per window in terms of sampling are
reported. Source data are provided as a Source Data file.
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simulations was small (0.12 kcalmol−1), well within statistical noise
(Supplementary Tables 1 and 2). The RMSE of 0.30 kcalmol−1 between
5 ns and 25 ns LaDyBUGS results was slightly larger but still within
noise, suggesting a high degree of convergence even with a minimal
amount of LaDyBUGS sampling. Figure 6 also shows the effects of
extending TI/MBAR sampling to 15 ns per window for all systems
except MUP1, which was deemed to be satisfactorily converged at 5 ns
per window by its low RMSE compared to LaDyBUGS. Large
improvements are observed for TI/MBAR 15 ns per window in com-
parison to TI/MBAR results from 5 ns per window of sampling. The
RMSE to experiment improves to 0.93 kcalmol−1 with TI/MBAR 15 ns
per window, and the RMSE to LaDyBUGS decreases to 0.27 kcalmol−1.
The strong agreement between short 5 ns runs of TI/MBAR and
LaDyBUGS, as well as between the longer 15 ns runs of TI/MBAR and
LaDyBUGS, suggests LaDyBUGS is able of deliver comparable accuracy
as TI/MBAR with significant cost savings in terms of sampling (18–200
times less simulation time required). This is notable considering the
spectrum of alchemical substituent sizes involved in these benchmark
systems: from 1 to 4 heavy atoms in MUP1 and DNA ligase systems to
6–12 heavy atoms and entire aromatic rings in c-Met, thrombin, and
PFKFB3. Improved efficiency with LaDyBUGS directly stems from its
ability to investigate several alchemical perturbations collectively
within a single simulation, without the need to break up transforma-
tions into separate λ windows spread across multiple separate simu-
lations (Fig. 2).

The performance of LaDyBUGS can also be compared to λD
since both methods are able to sample multiple substituent trans-
formations simultaneously. As shown in Supplementary Fig. 2, high
correlation is observed between these λD-based techniques; the
RMSE is 0.45 kcalmol−1 and the Kendall τ is 0.83. Overall, these
results are very similar to what was observed in the above compar-
isons of LaDyBUGS and TI/MBAR. In contrast to LaDyBUGS, however,
λD required 609 ns of sampling for bias identification prior to its
360 ns of production sampling. At this level of sampling, λD is still
13.1 timesmore efficient than TI/MBAR 5 ns per window, but 2.7 times
less efficient than LaDyBUGS 15 ns. The loss of efficiency of λD
compared to LaDyBUGS stems directly from the costs associated
with bias identification for λD. Each system used a minimum of 48 ns
for initial bias identification; however, additional production runs
were performed for DNA ligase and thrombin because initial biases
were not converged, causing poor λ sampling and free energy con-
vergence in initial production calculations. Though biases can be
readily refined with ALF, production sampling that isn’t used for
production results ultimately gets incorporated into a system’s
overall bias identification costs. For example, in initial DNA ligase
production simulations, the reference compound was sampled less
than 1% of the time in two out of three duplicates, yielding high
uncertainties in computed ΔGbind. Similar trends were observed for
some thrombin molecules as well, which were sampled only 2–4% of
the time. Meanwhile, other ligands predominated and were sampled
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 RMSE Kendall τ
All data 1.04 0.61
MUP1 0.45 0.87
DNA ligase 0.93 0.52
c-Met 1.09 0.31
Thrombin 1.19 0.75
PFKFB3 1.15 0.69

 RMSE Kendall τ
All data 0.42 0.86
MUP1 0.14 0.73
DNA ligase 0.33 0.90
c-Met 0.36 0.84
Thrombin 0.54 0.85
PFKFB3 0.47 0.96

 RMSE Kendall τ
All data 1.14 0.61
MUP1 --- ---
DNA ligase 0.86 0.52
c-Met 0.98 0.29
Thrombin 1.31 0.82
PFKFB3 1.27 0.63

 RMSE Kendall τ
All data 0.35 0.88
MUP1 --- ---
DNA ligase 0.29 0.81
c-Met 0.26 0.89
Thrombin 0.47 0.93
PFKFB3 0.31 0.84

 LaDyBUGS TI Efficiency gain
All data 120 ns 12,705 ns 105.9
MUP1 15 ns 825 ns 55.0
DNA ligase 15 ns 990 ns 66.0
c-Met 30 ns 1650 ns 55.0 
Thrombin 30 ns 3300 ns 110.0
PFKFB3 30 ns 5940 ns 198.0
(Protein simulation sampling)

 LaDyBUGS TI Efficiency gain
All data 315 ns 35,640 ns 113.1
MUP1 --- --- ---
DNA ligase 45 ns 2970 ns 66.0
c-Met 90 ns 4950 ns 55.0 
Thrombin 90 ns 9900 ns 110.0
PFKFB3 90 ns 17820 ns 198.0
(Protein simulation sampling)
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Fig. 6 | Correlation associated with changes in sampling. Correlation in ΔGbind

between a LaDyBUGS 5 ns compared to experiment,b LaDyBUGS 5 ns compared to
TI/MBAR 5 ns per window, c TI/MBAR 15 ns per window compared to experiment,
and d LaDyBUGS 15 ns compared to TI/MBAR 15 ns per window. Data points are
colored by chemical system (MUP1 in cyan, DNA ligase in red, c-Met in blue,
thrombin in green, and PFKFB3 in purple), and bootstrapped uncertainties

computed over three replicates with FastMBAR are shown as error bars. The center
black line represents ideal one-to-one agreement; the shaded gray area represents
an error of ± 1 kcalmol−1. Root-mean-square errors, Kendall τ statistics, total
amount of sampling, and efficiency gains of LaDyBUGS over TI/MBAR in terms of
sampling are reported. Source data are provided as a Source Data file.
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40–50% of the time. These deficiencies were mostly resolved after
refining biases and rerunning production simulations, although DNA
ligase λD results still show some larger uncertainties (>0.5 kcalmol−1)
and may benefit from additional sampling and bias optimization.
Thrombin λD results appeared well converged and ligand end states
weremore equally sampled in the final production runs. As discussed
in more detail below, LaDyBUGS avoids these problems of both bias
identification and uneven λ sampling via the use of dynamic bias
updates. This allows LaDyBUGS to be efficiently and accurately run
with less sampling (5–15 ns). In contrast, shortening bias flattening in
λD would yield poorer performance because biases may not be fully
optimized. As an example, LaDyBUGS 5 ns yields a consistent RMSE
of 0.41 kcalmol−1 compared to λD but is now 8.1 timesmore efficient.
In summary, high cost savings are observed with LaDyBUGS even
when its performance is compared to other expanded ensemble
techniques that can similarly examine multiple perturbations
simultaneously.

Enhanced sampling of dihedral torsions with LaDyBUGS
In addition to the efficiency improvements observed with LaDyBUGS,
enhanced sampling of dihedral torsions for large substituent pertur-
bations was also observed with LaDyBUGS. In fact, this behavior has
long been observedwith λD,where intramolecular degrees of freedom
in alchemical substituents can be scaled by λ at a user’s discretion. To
preserve a functional group’s expected geometric shape, dihedral
angles are often scaled by λ, but bonds and angles are not42,43,49. Fur-
thermore, by samplingmultiple substituents simultaneously, λD-based
methods provide greater flexibility and time in the MD simulation for
substituents to sample alternative conformations when their respec-
tive λ states are near 0. These attributes are retained in LaDyBUGS, and
they provide enhanced sampling for perturbations of larger functional
groups, such as the aromatic ring transformations in thrombin and
PFKFB3 systems. As shown in Supplementary Fig. 3, LaDyBUGS can
equally sample two flipped ring conformations for both thrombin and
PFKFB3 ligands within a single calculation, while TI/MBAR is clearly
trapped in a single starting conformation. Direct comparison of TI/
MBAR results without considering ring flips would, thus, be expected
to yield poor agreement to LaDyBUGS, because TI/MBAR fails to
sample these important conformational changes. For example, with-
out considering ring flips in the TI/MBAR results, RMSEs of 0.68 and
1.01 kcalmol-1 are observed when comparing LaDyBUGS 15 ns vs TI/
MBAR 5 ns per window for thrombin and PFKFB3 systems, respec-
tively. These RMSEs drop significantly to 0.45 and 0.55 kcalmol−1

(Fig. 5), respectively, when additional TI/MBAR calculations with
rotated functional groups are performed and weighted together with
MBAR to calculate the final ΔGbind results. Hence, LaDyBUGS can
provide enhanced sampling of large substituents, without incorpor-
ating replica exchange or other additional enhanced sampling tech-
niques, allowing it to retain a high degree of efficiency and speed for
examining many kinds of different alchemical perturbations.

Uniformity of λ sampling with LaDyBUGS
One potential issue associated with expanded ensemble free energy
methods is a difficulty in achieving sampling smoothnessof all λ states,
e.g., avoiding becoming stuck primarily sampling one or several states
too often and neglecting to sample all other λ states41,62. This problem
has been observed in a recent expanded ensemble investigation that
used a Wang–Landau algorithm to propagate λ switching28. In con-
ventional λD simulations, includingMSλDandd-GSλD, static biases are
added to a simulation to reduce free energy barriers in λ space and
facilitate transitions between λ states41,47. In most situations, these
biases work well, all λ states are evenly sampled, and reliable free
energy predictions are obtained. But, as discussed above for λD, burn-
in time is required to first identify appropriate biases for these meth-
ods, which decreases their overall efficiency. Furthermore, if biases are

poorly converged, static biases may be unable to facilitate continuous
λ sampling and the simulation could become trapped sampling one or
a handful of alchemical end states. Thus, new biases would need to be
identified and sampling would have to be restarted. This was observed
in the present λD work with DNA ligase and thrombin benchmark
systems. However, the dynamic biases used in LaDyBUGS continuously
propagate the sampling ofmany λ stateswithout prior burn-in time for
bias identification and allow for conformational plasticity of the che-
mical system without getting trapped sampling a small number of λ
states. Biases from Eq. (4), in “Methods”, rely solely on the number of
times each λ state has been sampled and on-the-fly FastMBAR free
energy estimates; thus, LaDyBUGS can provide incredibly smooth λ
sampling throughout an entire simulation. Figure 7 shows the differ-
ence between the minimum and maximum number of times a λ state
was sampled as a function of time, referred to as “counts”, averaged
across all protein simulations used for benchmarking. On average, the
difference betweenminimum andmaximum counts is ~4, even though
λ states are sampled more than 500–800 times by the end of each
simulation. This level of sampling smoothness ensures that LaDyBUGS
does not become trapped sampling particular λ states and provides
rapid transitions between multiple ligand end states to facilitate
accurate free energy estimation with FastMBAR.

LaDyBUGS samples a mixture distribution of λ states
Smooth transitions between states are also facilitated by strong
energetic overlap between neighboring λ states. In our benchmark
studies, c-Met group 1 consists of different 5-membered heterocycles
while group 2 contains a mixture of carbamate and aryl substituents
(Fig. 3). As shown in Fig. 8 for two example c-Met group 1 and 2 per-
turbations, a uniform Δλ schedule provides good energetic overlap
between both similar (c-Met Group 1) and dissimilar (c-Met Group 2)
transformations. This enables facile transitions to adjacent λ states
when sampling the P(λ | X) conditional distribution (described more in
“Methods”). As shown inFig. 8,most transitions occur to +1 or +2 states
away, although large jumps (>4 states) are sometimes observed. The
degree of overlap between λ states affects the transition distance tra-
veled, with higher overlap facilitating larger jumps (see also Supple-
mentary Table 3). The mean transition distance traveled for c-Met
group 1 is 2.47 states, but it is smaller at 1.64 states for c-Met group 2
which has less overlap between adjacent states (Fig. 8). Fortuitously,

M
ax

/m
in

 λ
 s

am
pl

in
g 

di
ffe

re
nc

e 
(c

ou
nt

s)

Simulation time (ns)

Fig. 7 | Sampling counts. The average difference between the maximum and
minimum number of times a λ state was sampled. Counts were computed from all
LaDyBUGS benchmark simulations and averaged together as a function of time
(plotted in blue). Source data are provided as a Source Data file.
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transitions between energetically similar and adjacent λ states enables
the chemical system to quickly relax and equilibrate during the brief
200 fs MD simulation following a sampling transition to a new λ state.
Therefore,weassume theMDconfigurationdrawn fromP(X | λ) in each
Gibbs sampling step represents an equilibrium sample. By constant
sampling of different λ states and atomic coordinates, LaDyBUGS can
efficiently sample a mixture distribution of λ states within a single
simulation. Pairing free energy determination with the MBAR algo-
rithm is natural then, becauseMBAR pools and reweights samples as if
they originated from a mixture distribution15,63. Supplementary Note 1
presents a mathematical proof that demonstrates that samples drawn
from the same λ state with different external biases can be treated as
coming from the same state. We then use FastMBAR to obtain equili-
brium free energy results from a LaDyBUGS simulation, under the
stated assumptions of the proof. Furthermore, because sampling of
the P(λ |X) conditional distribution requires energies to be calculated
for every λ state at every sampled P(X | λ) configuration, no post-
processing of LaDyBUGS trajectories is required to run MBAR; all
necessary information is generated on-the-fly and is available at the
conclusion of a LaDyBUGS simulation.

Software implementation
LaDyBUGS has been implemented in OpenMM51, and all LaDyBUGS
scripts are available for downloadon the Vilseck LabGitHub page. One
advantage of using OpenMM for LaDyBUGS is the ability to use force
groups to partition the interactions of different components of an
alchemical system and thus enable λ state-dependent energies to be
evaluated without recalculating the energy of the entire chemical
system. This feature speeds up the sampling of P(λ |X) which requires
λ-dependent energies to be calculated for every λ-state at every P(X | λ)
configuration. Consequently, we find that sampling a group of 6
ligands collectively with 141 λ states is only marginally slower than
performing a standard pairwise perturbation of 11 λ states with LaDy-
BUGS. For example, on a NVIDIA 2080 TI GPU, 6 duplicate 5 ns LaDy-
BUGS c-Met group 1 cmet_9 to cmet_10 pairwise perturbations each
took ca. 10.85 h to run. Similarly, 6 duplicate 5 ns simulations of all 6
c-Met group-1 ligands sampled collectively took ca. 11.01 h each. Thus,
the combined 6-ligand calculation was only ca. 1.5% slower, high-
lighting the effectiveness and cost savings of samplingmultiple ligands
simultaneously with LaDyBUGS. With our current implementation of
LaDyBUGS in OpenMM and using an assumption of sampling 6 per-
turbations per LaDyBUGS simulation, we estimate that ca. 4–13

compound perturbations can be investigated per day per 1 GPU with
LaDyBUGS using a range of 15 ns to 5 ns of sampling per calculation,
respectively. On amodest cluster of 25GPUs, this readily scales to 100-
325 perturbations per day. Hence, rapid high-throughput screening of
hundreds of lead compound analogs with highly accurate free energy
predictions is obtainable with LaDyBUGS within a day using minimal
computational resources.

Work is ongoing to further optimize our implementation of
LaDyBUGS in OpenMM as well as incorporate it into other software
suites, includingCHARMM.Todate, LaDyBUGShas been implemented
in pyCHARMM, a python API for CHARMM64. In these efforts, if a
program lacks the ability to partition energetic interactions via a “force
group”-like algorithm, P(λ | X) may be sampled by calculating the
energy of the entire chemical system; all non-alchemical environment-
to-environment interactions should cancel out when λ state-
dependent energies are compared. Though some wall-time slow-
down may be expected to occur as a consequence of running a larger
energy evaluation, we anticipate that LaDyBUGS would still provide
highly efficient results, nonetheless. Incorporating LaDyBUGS into
CHARMM, or other programs, could provide additional benefits too.
For example, the CustomNonbondedForce class in OpenMMmakes it
challenging to use particle mesh Ewald (PME) methods with LaDy-
BUGS. However, a λD-based PME approach is already available in
CHARMM and BLaDE for running λD simulations45,65–67, and this can be
utilized with LaDyBUGS in pyCHARMM to facilitate the inclusion of
long-range electrostatic interactions in future calculations.

Multisite sampling
Finally, we emphasize that the efficiency gains for LaDyBUGS reported
in this work used only single-site perturbations, where substituent
groupmodifications occurred at only one site off a central ligand core.
Multisite perturbations, with functional group substitutions occurring
at multiple sites around a ligand core, could also be accomplished as
performed previously with d-GSλD47. Such LaDyBUGS simulationsmay
need longer total sampling to obtain converged results due to the
increased number of λ states required for multisite sampling, but this
has not yet been tested. Instead, this work focused on single-site per-
turbations to match structure-activity relationship strategies typically
pursued experimentally by changing one component of a lead com-
pound at a time16,52–56. In this manner, LaDyBUGS seems especially
adept at exploring incremental changes to a lead compound. Future
investigations will reveal the applicability of LaDyBUGS to tackle larger
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Fig. 8 | Analysis of λ state transition probabilities. Normalized configuration
energy distributions between adjacent λ states in two example LaDyBUGS pertur-
bations: a c-Met group 1 cmet_9 → cmet_10 and b c-Met group 2 cmet_5 → cmet_13.
Each colored line represents a distribution associated with a unique λ state pro-
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states sampled in all c-Met group 1 and c-Met group 2 LaDyBUGS simulations. The
greater the degree of overlap between adjacent λ states, the more probable long-
range λ transitions become. Additional transition probabilities can be found in
Supplementary Table 3. Source data are provided as a Source Data file.
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or more challenging perturbations or for molecular decoupling to
compute absolute free energies of binding directly.

Summary and outlook
Alchemical free energymethods suchas FEP andTI have playedpivotal
roles in the lead optimization phase of drug design1–3,5–11, yet they
require large computational costs to exploremany tens to hundreds of
alchemical perturbations. λD-based methods have shown improved
scalability and efficiency in exploring large chemical spaces with
reduced costs6,33,34,44,46–49. Hence, the object of this study was to
investigate approaches to further accelerate λD-based free energy
methods by eliminating burn-in time commonly expended to identify
static biases prior to production sampling. In this work, we have
described the λ-dynamics with bias-updated Gibbs sampling method,
which is a Gibbs sampler-based λ-dynamics approach. To eliminate
time spent for bias identification, LaDyBUGS uses continuous bias
updating to rigorously drive the sampling of multiple λ states, and
consequentlymultiple different ligands, simultaneously within a single
simulation. This results in very even and complete sampling of all λ
states and significant efficiency gains, compared to TI/MBAR. Eval-
uated against five experimental benchmarks, LaDyBUGS RMSEs of
computed ΔGbind compared to the experiment were less than
1 kcalmol−1 on average with only 5–15 ns of sampling per simulation.
LaDyBUGS RMSEs were lower than the corresponding error with TI/
MBAR in all test cases, notwithstanding the use of only ca. 2–5% of the
total amount of TI sampling. From these results, we estimate that
highly accurateΔGbind estimates can be obtained with only ca. 2.5–5 ns
of LaDyBUGS sampling per ligand. From timing benchmarks of LaDy-
BUGS implemented in OpenMM, we estimate that ca. 4–13 perturba-
tions can be examined per day per GPUwith LaDyBUGS, depending on
the length of sampling. Using amodest amount of GPU resources (with
as few as 25 GPUs), this can easily scale to hundreds of compounds
examined within a day. We envision that the rapid delivery of ΔGbind

predictions via LaDyBUGS could thus be used to screen hundreds of
compound analogs with minimal computational costs, accelerating
computer-aided drug discovery at an incredible pace.

Methods
λ-Dynamics with bias-updated Gibbs sampling builds upon the fra-
mework of the discrete Gibbs sampler λ-dynamics approach47. There-
fore, we quickly review d-GSλD before describing the workflow for
LaDyBUGS.

Discrete Gibbs sampler λ-dynamics
To investigate alchemical transformations of a chemical system,
d-GSλD samples the joint distribution of atomic coordinates, X, and
alchemical states, λ, (P(X, λ))47. With Gibbs sampling this is accom-
plished via indirect sampling of two related conditional distributions,
P(X | λ) andP(λ | X),whichare formedby freezing a subset of variables, λ
and X, respectively. A single Gibbs sampler step thus consists of
sequential sampling of P(X | λ) and P(λ | X) to yield X and λ at time t (Xt,
λt)

32,68,69. To obtain Xt+1, molecular dynamics can be used to sample
P(Xt | λt), the coordinate space of the chemical system; λt+1 can then be
chosen by using a pseudorandom number generator to sample P(λt | Xt
+1) (described in more detail below). While GSλD can utilize both
continuous and discrete λ variables, the use of discrete λ states in
d-GSλD was advantageous for several reasons. Notably, it allowed for
soft-core potentials, or other λ-dependent potentials, to be easily
integrated into the direct sampling routines of P(λ | X); in contrast, with
the continuous λ variant of GSλD, use of a nonlinear λ-dependent
potential creates a complex normalization constant in P(λ | X) which
prevents direct sampling46,47. Also, d-GSλD facilitated the exploration
of multiple perturbations at many sites around a central ligand core47.
Though no unique solution exists for defining discrete λ states
between multiple ligand end states, a representation of λ states along

connective edges between ligands provides a strongly connectedmap
for samplingmultiple ligands simultaneously (Fig. 2), and it has yielded
good free energy results in prior benchmark evaluations47. We note
that to sample multiple ligands simultaneously with d-GSλD, a single λ
state i (λi) consists of a vector of substituent-specific λy,c variables (for
substituent c at site y) that scale the interactions of each alchemical
functional group individually47. Like most λD-based methods, all λy,c
values within a single λi state must sum to 1.0 to prevent more than 1
ligand from interacting with the rest of the chemical system at one
time34,41,42. Furthermore, as mentioned earlier, biases are necessary to
reduce free energy barriers in λ space and facilitate transitions
between λi states at equilibrium. For d-GSλD, these biases are a single
scalar energy term added to each λi state47. Prior to production sam-
pling, static biases for each λi state were identified with a
Wang–Landau-like algorithm with ca. 5–10 ns of sampling70,71. Pro-
duction sampling for a preset amount of Gibbs sampling steps then
ensued, followed by a FastMBAR50 calculation to compute all final
relative free energy differences.

λ-Dynamics with bias-updated Gibbs sampling
LaDyBUGS builds upon the d-GSλD framework and uses Gibbs sam-
pling with discrete λ states to sample multiple ligand end states
collectively within a single simulation. However, in an endeavor to
accelerate d-GSλD and achieve rapid free energy results, Gibbs
sampling is performed with dynamic biases, rather than static biases,
to drive the exploration ofmany λ states during production sampling
without prior bias determination. Figure 9 describes the workflow of
LaDyBUGS. Following initialization and minimization of a chemical
system, the atomic coordinates and alchemical states of the system
are alternatively sampled with Gibbs sampling. As described above,
P(X | λ) can be sampled with MD. Like in d-GSλD, in LaDyBUGS the
conditional distribution P(λ | X) can be described as a multinomial
distribution (Eq. (1)):

P λi
��X� �

=
exp �β V SS X , λi

� �
+VMS X , λi

� �
+ Ei

h i� �
PM

l = 1 exp �β VSS X , λl
� �

+VMS X , λl
� �

+ El
h i� � ð1Þ

whereM represents the total number of λi states and Ei is a scalar bias
added to each λi state. The single-site VSS and multisite VMS potentials,
necessary for investigating multisite perturbations of substituents c
and d at sites y and z, are defined by Eqs. (2) and (3), respectively:

V SS

�
X =

�
x0, fxg

�
, λ
�
=
XS
y= 1

XNy

c = 1

λy,c V x0, xy,c

� �
+V xy,c

� �� �
ð2Þ

VMSðX = ðx0, fxgÞ, λÞ=
XS
y= 1

XNy

c= 1

XS
z = y+ 1

XNz

d = 1

λy,cλz,dV ðxy,c, xz,dÞ ð3Þ

where X comprises atomic coordinates for both environment (x0) and
alchemical components (xy,c), {x} represents the set of all xy,c coordi-
nates, S represents the number of sites, Ny is the number of sub-
stituents on-site y, and λy,c are the site- and substituent-specific λ
variables. These equations stem from similar potentials used in
conventional MSλD for multisite sampling34,41–47. However, if systems
with only single-site modifications are investigated, VMS equals zero
and canbe ignored. The conditional distributionP(λ | X) at time t is thus
formed by first calculating the potential energy of the system at
coordinates Xt for each alchemical state λi and normalizing to form a
Boltzmann distribution. A new λi at time t + 1 (λit + 1) state can then be
chosen by selecting a new state proportional to its probability with a
pseudorandom number generator. As shown in Fig. 9, Gibbs sampling
is an iterative process that is performed repeatedly for a preset amount
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time, usually quantified as an amount of cumulative MD sampling.
Prior to the end of each Gibbs sampler step, the biases for all λi states
are also updated. This update step is described in more detail in the
next section. Furthermore, at designated break points, Gibbs sampling
is halted and FastMBAR is called to compute relative free energy
differences (ΔGi) for each λi state compared to the reference state, λ1.
These intermediate MBAR free energy results, collected at various
stages of anongoing simulation, canbeused toupdate and refine the Ei

biases for the next set of Gibbs sampler steps. As discussed below, this
helps provide uniform sampling of all λ states in a LaDyBUGS
simulation. Advantageously, theMBAR input, i.e., equilibrium energies
of all λ states at every sampled configuration of the system (X), are
calculated and saved on-the-fly when P(λ | X) is sampled, thus no
trajectory postprocessing is necessary to combine MBAR with LaDy-
BUGS. Finally, a concluding MBAR calculation is performed at the
termination of a LaDyBUGS free energy calculation to compute the
final relative free energy results.

Choice of the bias function
In LaDyBUGS, the Ei biases are changed at the end of each Gibbs
sampler step and intermediate FastMBAR calculations are performed
regularly throughout a simulation to provide additional bias refine-
ment. When a LaDyBUGS simulation is initiated, a relatively aggres-
sive biasing scheme is used to ensure every λ state is sampled prior to
running FastMBAR for the first time. For example, in this work we

used a flat external bias of 100 kcalmol−1, which is added to each λi

state every time that state is sampled. While any flat bias value would
work, in principle, a large bias (≥ 10 kcalmol−1) ensures rapid sam-
pling of all λ states within a small amount of Gibbs sampling near the
onset of a LaDyBUGS simulation. Prior to the first iteration of running
FastMBAR, the total bias on λi is Ei = 100 Li, where Li is the number of
times λiwas sampled and 100 is the flat bias employed in this work. At
time t = u updates, Gibbs sampling is stopped and a FastMBAR cal-
culation is performed to estimate the free energy differences of each
λi state up to that point in time (ΔGi

t =u). At this stage, the Ei biases are
replaced with the negative value of the MBAR results (�ΔGi

t =u) and
an additional exponential bias39 is used to penalize each λi state based
on the number of times λi is sampled compared to the least-sampled
state (min[L(λ)]) (Eq. (4), where εb = 1.0 kcalmol−1). After each Gibbs
sampler step, the biases are updated with Eq. (4) to reflect the new
number of counts per λi state, but the �ΔGi

t =u component remains
unchanged until the next FastMBAR calculation. Through this con-
tinuous changing of the biases, complete and smooth sampling of all
λ states can be achieved (see “Results and discussion” and Fig. 7).
Supplementary Note 1 presents a mathematical proof that, assuming
the MD simulation used for sampling from P(X | λ) in each Gibbs
sampler step reaches equilibrium, the value of the scalar bias used
during Gibbs sampling has no effect on the FastMBAR calculation,
facilitating the use of unbiased equilibrium energies in FastMBAR for
free energy estimation.

Ei = � ΔGi
t =u + εb2

Li�min½LðλÞ� ð4Þ

Benchmark system details
LaDyBUGS has been implemented in OpenMM and all simulations
were run using the CUDA platform51. CHARMM-based force field
parameters were used to represent different components of the che-
mical systems. CHARMM36 was used for all protein atoms72–74. Small
molecule ligand atoms were parameterized with ParamChem/CGenFF
atom types75–77 and partial atomic charges from the MATCH atom
parameterization tool78. The TIP3P water model was used to represent
water79. Initial protein complex coordinates were taken from PDBIDs
1I0680, 4CC553, 4R1Y54, 2ZFF55, and 6HVI56 for MUP1, DNA ligase, c-Met,
thrombin, and PFKFB3, respectively. Protonation states of titratable
residues at a pH of 7.0 were determined with the assistance of
MolProbity81 and ProPKa82. Protein systems were prepared and sol-
vated using theCHARMM-GUIwebserver83 and cubicwater boxeswere
constructed with a 10Å buffer between solute atoms and box edges.
Enough ions to neutralize the system and create a 0.1M NaCl solution
were added. Small molecule structure files for MUP1, DNA ligase,
thrombin, and PFKFB3 ligands were constructed manually using UCSF
Chimera84. Published structure files were used as initial coordinates for
the c-Met compounds5. Alchemical functional groups were created as
multiple topology models, with explicit atoms for every unique func-
tional group, using the msld-py-prep utility85. Cubic unbound ligand
solvent boxes were constructed with the convpdb.pl tool from the
MMTSB toolset86, with a 12 Å buffer between solute atoms and box
edges. Starting psf topology and pdb coordinate files were generated
with the CHARMM molecular simulation package prior to running
LaDyBUGS in OpenMM65,66. To track alchemical transformations along
connective edges between ligand end states, a series of discrete λ
states were created for each system following the procedure used for
d-GSλD47. In OpenMM, the CHARMM-generated psf and pdb files were
loaded inwith theCharmmPsfFile andCharmmParameterSet classes. A
nonbonded lookup table was generated to handle CHARMM’s NBFIX
nonbonded parameter exceptions, and custom nonbonded forces
were written to facilitate λ scaling of all alchemical functional groups.
These custom nonbonded forces included CHARMM’s force switching
and λD-based soft-core potentials41,87. All LaDyBUGS simulations were

No

Yes

Initialize system

SampleP(X|λ)
Molecular dynamics

Sample P(λ|X) & update biases
Evaluate all λ states; choose a new state

Stop Gibbs
sampling?

Yes

FastMBAR
Calculate ΔG for all λ states

Update
biases & continue

sampling?

No

Finished

Fig. 9 | The LaDyBUGS workflow. Gibbs sampling is used to sample atomic
coordinates and λ states of an alchemical system; a dynamic bias is continually
updated to ensure continuous sampling of all λ states. Final free energy estimates
and periodic bias refinements are accomplished with FastMBAR.
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performed at 25 °C and 1 atm in the isothermal-isobaric ensemble. In
OpenMM, this was accomplishedwith aMonte Carlo barostat88,89 and a
Langevin integrator90 with a friction coefficient of 10 ps−1. An integra-
tion time step of 2 fs was used, facilitated by constraining all hydrogen
to heavy atom bond lengths with the SHAKE algorithm91. Periodic
boundary conditions were employed, and force switching was used to
gradually smooth nonbonded forces to zero between 10 and 12 Å87.
During a LaDyBUGS simulation, trajectory frames were saved at the
end of a Gibbs sampler step, if an alchemical end state was sampled.
VMD92 and PyMOL93 were used to visualize and analyze simulation
trajectories.

LaDyBUGS free energy calculations
Ligands in the five test systems were grouped together as follows: 6
MUP1 ligands were sampled collectively, 7 DNA ligase ligands were
sampled collectively, 11 c-Met ligands were grouped into two sets of 6
ligands each, 11 thrombin ligands were grouped into two sets of 6
ligands each, and 10 PFKFB3 ligands were grouped into two sets of 6
and 5 ligands, respectively. For c-Met, thrombin, and PFKFB3 calcula-
tions, a common reference compound was featured in each group to
connect the two datasets (Fig. 3, red-boxed reference molecules). A
symmetric lambda spacing (Δλ) of 0.1 along connective edges was
used for all transformations. For LaDyBUGS calculations performing
single-site alchemical perturbations only, the number of total λ states
(Nλ) scales quadratically with the number of ligands analyzed (Ns), as
shown in Eq. (5). As a result, 95 λ states were used in LaDyBUGS cal-
culations analyzing 5 ligands, 141 λ states were used to evaluate 6
ligands, and 196 λ states were used to evaluate 7 ligands collectively.
Though this work only investigates single-site perturbations, multisite
perturbations are feasible as well, as demonstrated with d-GSλD47.

Nλ =Ns +
NsðNs � 1Þ

2
1
Δλ

� 1
� �

ð5Þ

For each LaDyBUGS calculation, the chemical system was sub-
jected to 1000 steps of energy minimization at a random fixed λ state,
followed by 5000 steps ofMD equilibration to briefly relax the system.
The workflow in Fig. 9 was then followed, with iterative sampling of
P(X | λ) and P(λ | X) conditional distributions. MD was run for 100 time
steps (200 fs) to sample P(X | λ), and biases were updated after every
P(λ | X) sample was taken. After 1000 Gibbs sampler steps (200ps), a
FastMBAR calculationwas performed, and theΔGt =u results were used
to update the biases according to Eq. (4). Gibbs sampling with bias
updates then resumed. LaDyBUGS simulations were run for 15 ns each,
during which FastMBAR was called 75 times for bias refinement (every
1000Gibbs sampler steps). Simulationswere run in triplicate for a total
of 45 ns of simulation time expended per compound group. FastMBAR
was used to collate data from all duplicate runs to yield the final free
energy results, and bootstrapping was used to provide an estimate of
precision. To investigate the effects of running LaDyBUGS for shorter
or longer, simulations were also run for 5 ns and 25 ns each, respec-
tively. Computed relative free energy differences (ΔΔGcomp) were
converted into absolute free energy differences (ΔGcomp) for com-
parison to experiment (ΔGexpt) with Eq. (6)16,49.

ΔGcomp =ΔΔGcomp �
P

ΔΔGcomp

n
�

P
ΔGexpt

n

� �
ð6Þ

TI/MBAR free energy calculations
For each chemical system, pairwise perturbations were run between a
reference ligand, highlighted with a red box in Fig. 3, and all other
ligand analogs for a protein system. This perturbation approach has
often been called a “starmap” (Fig. 2); redundant calculations for cycle
closure were not performed to maximize TI/MBAR efficiency18–20.

Alchemical transformationswere accomplishedover 11 λwindowswith
a Δλ schedule of 0.1. For each λ window, the chemical system was
subjected to 1000 steps of energyminimization and 5000 steps ofMD
equilibration.MD simulations were then run for 5 ns per λwindow, and
configurations were saved every 100 time steps (200 fs) for a sub-
sequent FastMBAR analysis. Similar to LaDyBUGS, each calculationwas
run in triplicate for a total of 165 ns of sampling per pairwise pertur-
bation. For systems with larger perturbations, specifically thrombin
and PFKFB3 which mutate whole aromatic rings of 6–12 heavy atoms,
we observed poor rotational sampling of the perturbed aromatic rings.
Therefore, additional sampling of alternative rotational states was
performed by manually flipping the aromatic rings by 180° prior to
rerunning the TI pairwise calculations. For thrombin, this required
twice the total amount of sampling per transformation (330 ns) to
perform perturbations from a symmetric reference phenyl ring to two
flipped conformations of every other alchemical substituent. For
PFKFB3, perturbations were performed between flipped conforma-
tions of both the reference and other alchemical substituents, requir-
ing 4 times the total amount of sampling (660ns) per transformation.
For all systems, configurations from all λwindows and duplicates were
pooled together and supplied to FastMBAR to estimate a final relative
free energy difference and bootstrapped errors. We refer to these
results as “TI/MBAR 5 ns per window”. Relative binding free energies
were again converted into absolute binding affinities for comparison
to LaDyBUGS and experiment. To investigate the effects of running TI/
MBAR for longer, λ window simulations were also extended and sam-
pled for 15 ns each, referred to as “TI/MBAR 15 ns per window”. These
longer simulations required 495–1980 ns of total sampling for a single
pairwise perturbation.

λD free energy calculations
To provide an additional computational dataset for comparison to
LaDyBUGS, binding free energies were also calculated with λ-dynam-
ics. Simulation parameters and conditions used for LaDyBUGS were
similarly employed for λD to provide a close one-to-one comparison.
Therefore, the multiple topology models and ligand groupings used
for LaDyBUGS were also used for λD. Calculations were run with the
CHARMM molecular simulation package utilizing the domain decom-
position (DOMDEC) module or the BLaDE engine for GPU accelerated
sampling22,45,65,66. The Adaptive Landscape Flattening algorithm was
used to identify appropriate biasing potentials for each systemprior to
production sampling41. Following conventional λD/ALF protocols, one
hundred short 100ps simulations followed by thirteen longer 1 ns and
then five duplicate 5 ns simulations were performed for initial bias
identification41,43,44,47,49,50. For each system, this required a minimal
amount of 48 ns for bias identification with ALF. For DNA ligase and
thrombin systems, initial production runs failed to yield good sam-
pling and converged free energy results; thus, production trajectories
were reanalyzed with ALF to yield new, refined biases, and the dis-
carded production sampling was added to the overall amount of time
required to identify biases for λD. Additional production runs were
then performed until satisfactory convergence was observed in both λ
sampling and the final free energy results.

Symmetric perturbations
Finally, to demonstrate that no artificial bias is introduced by using
dynamic bias updates during a LaDyBUGS calculation, symmetric
perturbations were performed. Because the expected answer of
ΔG =0.00 kcalmol-1 is known, these calculations provide a useful
control for evaluating the performance of LaDyBUGS without concern
for force field inaccuracies. Utilizing a previous example from
d-GSλD47, methyl perturbations in two systems were explored to
convert toluene into toluene and p-xylene into p-xylene in water. In
each system, 1–2 methyl groups were perturbed into identical but
atomically distinct substituents at one (toluene) or two (p-xylene)
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sites, respectively. Simulationswere run in triplicate for 25 ns to ensure
full convergence of the calculation, and the final free energy results
were calculated with FastMBAR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
Scripts to setup and run LaDyBUGS simulations in OpenMM and
pyCHARMM are available at github.com/Vilseck-Lab/LaDyBUGS and
Zenodo94.
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