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Dilution of specialist pathogens drives
productivity benefits from diversity in plant
mixtures

Guangzhou Wang 1,2 , Haley M. Burrill 2,3,4, Laura Y. Podzikowski 2,3,
Maarten B. Eppinga5, Fusuo Zhang 1, Junling Zhang1, Peggy A. Schultz2,6 &
James D. Bever 2,3

Productivity benefits fromdiversity can arisewhen compatible pathogenhosts
are buffered by unrelated neighbors, diluting pathogen impacts. However, the
generality of pathogen dilution has been controversial and rarely testedwithin
biodiversity manipulations. Here, we test whether soil pathogen dilution
generates diversity- productivity relationships using a field biodiversity-
manipulation experiment, greenhouse assays, and feedbackmodeling.Wefind
that the accumulation of specialist pathogens in monocultures decreases host
plant yields and that pathogen dilution predicts plant productivity gains
derived from diversity. Pathogen specialization predicts the strength of the
negative feedback between plant species in greenhouse assays. These feed-
backs significantly predict the overyieldingmeasured in the field the following
year. This relationship strengthens when accounting for the expected dilution
of pathogens in mixtures. Using a feedback model, we corroborate that
pathogen dilution drives overyielding. Combined empirical and theoretical
evidence indicate that specialist pathogen dilution generates overyielding and
suggests that the risk of losing productivity benefits from diversity may be
highest where environmental change decouples plant-microbe interactions.

Diverse plant communities are consistently more productive and
support other desirable ecosystem functions1,2. Though, productivity
gains from diversity are commonly attributed to increased resource
partitioning3,4, direct evidence of resource partitioning operating in
plant biodiversity-manipulation experiments has been limited5–7. This
limited success could reflect inadequate measures of resource parti-
tioning, or could arise from the importance of other unmeasured
mechanisms. Pathogendilution is a prominent alternative explanation,
hypothesizing productivity benefits from diversity arise when com-
patible pathogen hosts are buffered by unrelated neighbors, diluting
adverse host impacts (e.g., disease incidence, inhibited growth)8–10. To

date, studies of pathogen dilution have focused heavily on wildlife and
human diseases11. While meta-analyses indicate biodiversity decreases
disease prevalence8,9, the generality of pathogen dilution across sys-
tems has been controversial12,13. Studies of pathogen dilution in plant
communities have been less common14 and direct evidence for
pathogen dilution contributing to plant productivity and ecosystem
functioning remains sparse.

Testing the importance of pathogen dilution in plant commu-
nities is challenging given the high taxonomic diversity of pathogens
and difficulties measuring their abundance. Conclusions about
pathogen importance, for example, may depend on which of many
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pathogens in a particular system one selects; and even if influential
pathogens are chosen, their effects may depend on interactions with
ones that are omitted15. Moreover, studies of pathogen dilution clas-
sically focus on patterns of pathogen symptoms8,9,14, while hypotheses
of pathogen mediation of biodiversity-productivity relationships
depend on pathogen dilution alleviating adverse impacts on plant
growth. An alternative and complementary approach to investigating
the importance of pathogens focuses on the net impacts on plant
fitness from host-specific changes in microbial composition16,17. This
plant-soil feedback (PSF) framework starts with the observation that
pathogen growth rates are host specific, and as a result, pathogens
differentially accumulate on particular hosts. Although the effects of
multiple pathogens are difficult to evaluate, the net effect of pathogen
dynamics on plant-plant interactions can be characterized using a fully
reciprocal inoculation experiment17. Analysis of this dynamic has
revealed that pathogens can contribute to plant species coexistence
when intraspecific effects aremore strongly negative than interspecific
effects17,18. That is, pathogen dynamics can contribute to plant species
coexistencewhen the fitness of the plant species declines as a result of
pathogen accumulation on their own species (i.e., there is net pairwise
negative feedback), as has been found to be common in native plant
communities19,20.

The stabilizing influence of pathogen generated negative feed-
back might also contribute to statistical complementarity between
different plant species (i.e., any changes in the average relative yield in
mixture)21, thereby resulting in overyielding10. Specifically, accumula-
tion of host-specific pathogens could reduce productivity in mono-
cultures, while the deleterious impacts of specialized pathogens
decrease in diverse communities because of reduced densities of
compatible hosts. Manipulations of microbiome composition in
mesocosms22,23 and in the field24 provide direct evidence of pathogen
mediation of overyielding and negative plant-soil feedback models

havepredictedpatternsof overyielding25,26. Todate, however, no study
has demonstrated the causal connections between host-specific
pathogen accumulation and the strength of negative feedback, then
connecting the strength of those negative feedbacks with the magni-
tude of complementarity effects observed in the field. Knowledge of
the causal mechanism could inform predictions regarding the context
dependenceofbiodiversity-productivity relationships. For example, as
both pathogen-driven feedback and the benefits of pathogen dilution
build on host specificity of pathogens, pathogen dilution mediated
complementarity should bemore common in phylogenetically diverse
plant communities, as phylogenetically similar plant species are more
likely to share pathogens27,28. Moreover, pathogen dilution should
increase with plant species richness, so too should pathogen dilution-
driven complementarity.

We tested the possibility that feedbacks between plants and
pathogens are important drivers of plant diversity generated pro-
ductivity through an integrated set of fieldmanipulations, greenhouse
assays, and feedback modeling (Fig. 1). We planted 18 common prairie
plants representing three families in the field experiment (see “Meth-
ods”). The design altered plant species richness levels (1, 2, 3, 6),
manipulating plant phylogenetic relatedness inmixture (selecting 2, 3,
and 6 species from a single family or multiple families). Four months
after establishment, we collected soil and root samples, which were
sequenced for bacteria, fungi, arbuscularmycorrhizal fungi (AMF), and
oomycete (commonly plant pathogens) communities. To determine
microbiome feedbacks and pathogen dilution effects, PSF experi-
ments were conducted using the field soil samples as inocula. The next
year, we calculated overyielding and complementarity inmixtures and
assessed whether the PSF and pathogen dilution predicted biodi-
versity effects. We then explored the potential of PSFs and pathogen
dilution to promote long-term community coexistence and over-
yielding. Specifically, we parameterized a general feedbackmodel with

Experiment 1: Biodiversity 
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Fig. 1 | Flow diagram of the experimental design. A biodiversity manipulation
experiment altering plant richness (1, 2, 3, 6) and phylogenetic dissimilarity (under-
dispersed from the same family, over-dispersed from the multi-families) were
established at theUniversity of Kansas Field Station in 2018 (1st season). Both soil and
rootmicrobial communities (bacteria, fungi, AMF and oomycete) were sequenced to
test the pathogen divergence between different species (Experiment 1). Monoculture

soils from the biodiversity manipulation experiment were collected as inocula for
greenhouse assays, in which all 18 species were grown in their own or heterospecific
soils in a full factorial design to test the soil microbiome feedbacks (Experiment 2).
Next, subsequent yield advantages were determined for experiment 1 by calculating
the complementarity effect using biomass collected in 2019 (2nd season), to test the
underlying mechanism of pathogen dilution effect. Created with BioRender.com.
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the empirically derived plant-microbiome interaction strengths (Sup-
plementary Fig. 1)18. We hypothesized productivity benefits will be
realized in diverse plots and these will be greater where pairwise PSF
are more negative, as expected when pathogen dilution drives pro-
ductivity benefits from diversity.

Results and discussion
Pathogens drive negative feedbacks
We observed rapid differentiation of soil pathogens in response to
plant community composition 4 months after establishment of the
field experiment, and subsequent greenhouse assays confirmed this
pathogen divergence generated negative pairwise feedbacks (Fig. 2).
On average, pairwise plant-soil feedbacks were negative (Fig. 2a and
Supplementary Table 1) (95% confidence interval (CI) −0.48 to −0.24,
p <0.0001). While we did not find stronger feedback between families
than within families as expected from meta-analyses19 and phyloge-
netic structure to pathogen specialization29, we did observe different
feedback patterns between species of different families. PSFs were on
average negative between species within the composite (95% CI −0.90
to −1.04, p <0.0001) and grass (95% CI −0.71 to −0.09, p =0.011)
families, and between families when composites and grasses (95% CI
−1.42 to −0.87, p <0.0001) were grown together (Fig. 2a and Supple-
mentary Fig. 2a). The combination of composites and legumes showed
negative PSFs withmarginally significant effect (95%CI −0.55 to −0.03,
p =0.079) while grasses and legumes combinations showed neutral
effect (95%CI −0.20 to −0.26, p = 0.81). However, PSFswereon average
positive between species within the legume family (Fig. 2a and

Supplementary Fig. 2a) (95% CI 0.23 to 0.89, p =0.001), which is con-
sistent with the limited pathogen specialization within this family
(Fig. 2b, c and Supplementary Fig. 2b, c), and specialist nitrogen fixing
rhizobia30.

Soil fungal and oomycete pathogen dissimilarities mirrored pat-
terns observed with negative feedbacks (Fig. 2a–d). Pairs of species
within composites (Fig. 2b–d and Supplementary Fig. 2b–d) and
grasses (Fig. 2c and Supplementary Fig. 2c), as well as between com-
posites and grasses, and between composites and legumes (Fig. 2b, c
and Supplementary Fig. 2b, c) showed greatest average pathogen
dissimilarities. Although bacteria and mycorrhizal fungi may con-
tribute to plant-soil feedbacks31, pathogen dissimilarities were the only
components of themicrobiome to predict pairwise feedback. Pairwise
PSF values were significantly decreased with both pairwise soil fungal
(R2

adj = 0.036, p = 0.05) and oomycete (R2
adj = 0.05, p = 0.025) patho-

gen dissimilarities (Fig. 2e, f), but not with other microbial groups
(Supplementary Table 2). The best model based on multi-model
inference suggested soil fungal pathogen (p =0.037), soil oomycete
(p = 0.028) and root fungal pathogen (p =0.049) were the strongest
predictors of PSF, as they occupied the highest weight in the model
(Supplementary Table 3). These findings are consistent with results of
a meta-analysis showing that PSF effects are generally stronger and
more negative when pathogens are included in the soil community19.
While we cannot identify the contribution of individual pathogens to
PSFs, we observed the most abundant fungal pathogens differed for
most plant species (Supplementary Fig. 3), which suggests that can-
didate pathogens may drive negative feedbacks. By showing that

Fig. 2 | Pairwise feedbacks, soil pathogendissimilaritiesand their relationships.
Pairwise feedback effects (a), soil fungal pathogen dissimilarity (b), soil oomycete
dissimilarity (c) and root fungal pathogen dissimilarity (d) within and between
families, respectively. Regressions between soil fungal pathogen (e) and oomycete
dissimilarities (f) and measured pairwise feedbacks. For the number of each group
in (a), within and between family group N = 9 and N = 18, respectively; for the
number of each group in (b–d), within and between family group N = 15 and N = 36,
respectively. Asterisks in (a) indicate that the PSF significantly differed from zero
(95% confidence intervals). Boxplots (a–d) indicate median (box center line), 25th

(box bottom line), 75th (box top line) percentiles, and 5th (the lower whisker) and
95th (the upper whisker) percentiles. Different letters between boxes (b–d) indi-
cate significant differences between combinations based on two-sided tests
(α =0.05, Kruskal–Wallis test, followed by a Dunn’s post hoc test). The solid blue
lines in (e) and (f) indicate the fitted relationships and the gray backgrounds indi-
cate the 95% confidence intervals. The statistical test used is F-test based on one-
sided test, and p <0.05 denotes the overall significance of the regression model.
N = 81. Source data are provided as a Source Data file.
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pathogen-driven negative feedbacks can be generated over one
growing season in the field, our results add to the growing evidence
that accumulation of host-specific pathogens contribute to plant
species coexistence19,20,32.

Negative feedbacks predict plant diversity benefits
We found above-ground productivity increased with planted species
richness (F3,236 = 25.7, p <0.0001) in the second season of the field
experiment (Fig. 3a). In plant mixtures, both complementarity21

(F2,165 = 15.4, p <0.0001) and relative yield totals33 (F2,165 = 9.15,
p =0.00017) increased with richness (Fig. 3b, c and Supplementary
Table 4), and the relative yield totals were strongly driven by positive
complementary effects (R2

adj = 0.56, p < 0.0001) rather than by
species-specific selection effects (R2

adj = 0.0034, p =0.45) (Supple-
mentary Fig. 4). Despite the expectation that legumes should increase
resource partitioning given their ability to access nitrogen, an often
limiting nutrient in terrestrial systems2,34, we did not observe con-
sistently stronger complementarity in mixtures including legumes
(multiple-families) compared to those including species of the same
family (Supplementary Table 5). While stronger complementarity in
mixtures including species of different familieswas also expected from
phylogenetic structure of pathogen specialization28, we found similar
levels of pathogen dissimilarities and feedback strengths within and
between families (Fig. 2 and Supplementary Table 6), qualitatively
matching the complementarity results.

Complementarity increased with the strength of pathogen-driven
plant-soil feedbacks (Fig. 4). We quantified plant-soil feedbacks by
weighted average pairwise feedback (Eq. (4) in the “Methods”) extra-
polated from pathogen dispersion measures (Eq. (3)). With more
negative pairwise PSF, statistical complementarity (R2

adj = 0.11,
p <0.0001) and productivity benefits (R2

adj = 0.11, p <0.0001) in
diverse plots significantly increased in the second growing season
(Fig. 4a, c). These relationships held in both single- and multi-family
mixtures, as well as in plots with nitrogen-fixing legumes and plots
without (Supplementary Fig. 5, Supplementary Table 7 and Supple-
mentary Discussion), which suggests pathogen dilution is general-
izable and consistentmechanismgenerating productivity responses to
diversity. The change in relative abundance of the most abundant
pathogen decreased with plant richness providing further evidence
pathogen dilution (Supplementary Figs. 6–8 and Supplementary

Discussion). Together, this causal chain of specialist pathogens gen-
erating negative feedback which predicts yield increases in mixture,
demonstrates that pathogen dilution generates overyielding.
Accounting for the pathogen dilution expected from increased species
richness (Eq. (5)) revealed an even stronger positive relationship with
observed complementarity (R2

adj = 0.12, p < 0.0001) and relative yield
total (R2

adj = 0.11, p <0.0001) (Fig. 4b, d).

Feedback modeling corroborated the pathogen dilution
mechanism
Simulations of long-termcommunity dynamicsdemonstrate pathogen
dilution can generate linear relationships between complementarity
and plant species richness (Fig. 5a), as observed in long-term biodi-
versity manipulations35,36. Analysis of a general feedback model18

parameterized using observed pairwise pathogen dissimilarities iden-
tifies pathogen-driven feedbacks can both stabilize diverse commu-
nities and generate positive productivity responses to diversity that
persist over time (Fig. 5, Supplementary Figs. 9–11 and Supplementary
Discussion). The simulations provide additional substantiating evi-
dence that the observed dependence of complementarity in the field
on average pairwise feedbacks from greenhouse assays (Fig. 4a, c) are
signatures of pathogen dilution, an important mechanism that can
theoretically replicate long-term community dynamics; thus linking
field observations with coexistence models (Fig. 5b, c). Moreover, the
theoretical results indicate this relationship has two components: (1)
within each species richness level, a positive relationship with the
strength of negative feedback, and (2) across species richness levels, a
stair step progression toward higher average complementarity and
more strongly negative average feedbacks (Fig. 5b). Together, these
components generate an asymmetric tail associated correlation37. We
find that our empirical data (Fig. 4a) share these features (Supple-
mentary Figs. 9–11), providing additional evidence that pathogen
dilution drives complementarity in our field experiment.

Together, our empirical and theoretical results provide strong
evidence that specialist pathogen dilution causally generates com-
plementarity and overyielding. While the ecological importance of
biodiversity diluting pathogens has been controversial given devas-
tating examples of pathogen spillover between animal populations38,39,
we find strong support that the diversity of native plants reduce
deleterious impacts of specialist pathogens on plant productivity. We

Fig. 3 | Plant productivity and biodiversity effects by planted richness. Average
plant biomass (gm−2) (a), complementarity effect (b) and relative yield total (c) by
plant richness in the 2nd season of the biodiversity manipulation experiment
(2019).Monocultures and two speciesmixtures each contain 72 plots and three and
six speciesmixtures 48 plots each. Boxplots indicatemedian (box center line), 25th
(box bottom line), 75th (box top line) percentiles, and 5th (the lower whisker) and

95th (the upper whisker) percentiles. Different letters betweenboxes (b, c) indicate
significant differences between combinations based on two-sided tests (α =0.05,
Kruskal–Wallis test, followed by a Dunn’s post hoc test). Asterisks in (b) and (c)
indicate that complementarity and relative yield totals in richness levels 2–6 were
significantlygreater than0and 1, respectively. Sourcedata are provided as a Source
Data file.
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observed rapid differentiation of soil pathogens in response to chan-
ges in plant diversity and community composition 4 months after
plant establishment in the field and this pathogen divergence gener-
ated negative pairwise microbiome feedbacks (Fig. 2). With higher
negative pairwise PSF, we found an increase in complementarity and
productivity with diversity the subsequent growing season (Figs. 3
and 4), which is consistent with pathogen dilution contributing to
positive productivity responses to plant diversity. Parameterizing a
general theoretical model with our empirical observations corrobo-
rates that these relationships are causal, generalizable, and capable of
generating linear relationships between plant diversity and pro-
ductivity over time (Fig. 5)35,36. Our results provide the strongest evi-
dence to date that dilution of host-specific pathogens contribute to
plant diversity driven yield advantages, consistent with previous work
manipulating pathogen abundance in field24,40 and mesocosm
experiments22,23, as well as studies that connect negative feedback
results to positive diversity-productivity relationships23,41. While more
work is necessary to evaluate the generality of pathogen dilution
across systems, our findings indicate pathogen dilution can indepen-
dently generate patterns consistent with observations of productivity
increases with plant diversity (i.e., biodiversity-ecosystem functioning,
BEF, relationships)2–4.

When and where pathogen dilution generates BEF relationships
will likely depend on ecological context. This mechanism may be
particularly important for systems containing coevolved plants and
pathogens; for example, negative feedbacks are commonly observed
between native plants, but not between non-native plants19. Consistent
with this hypothesis, biodiversity manipulation experiments with non-
native plant species have shown low levels of complementarity com-
pared with native plant species42,43. We included native prairie soil
microbiome at the initiation of our experiment manipulating native
prairie plants, which may have made our detection of pathogen dilu-
tion more likely. This could also explain why we observed significant

complementarity in the first 2 years of the biodiversity manipulation,
while complementarity took multiple years to realize in other BEF
experiments34,35. Many biodiversity manipulations were initiated with
soil microbiomes degraded by anthropogenic disturbance, including
conventional agriculture. As a result, it may have taken several years
for specialist pathogens to reestablish at those sites. In addition, global
change drivers such as warming44, high precipitation45 and nutrient
enrichment46 can have positive effects on pathogens, and therefore
may strengthen BEF relationships. While we show that pathogen
dilution can rapidly generate productivity gains from diverse plant
communities, more work is necessary to link these productivity ben-
efits of pathogen dilution to other positive ecosystem responses that
may occur with plant diversity, such as the increased carbon
sequestration47,48. Moreover, our theoretical results suggest that
pathogen dilution may promote community coexistence, meaning
that productivity increases can also bemaintained over longer periods
of time.

While resource partitioning has historically been thought to be
the principal force structuring plant communities, our work suggests
that dynamics between host-specific pathogens and plants can con-
tribute to species coexistence and BEF relationships. Further work is
necessary to explore the relative importance of these two forces in
structuring plant communities and functioning. Moreover, more work
on the importance and context dependence of biotic PSFs and
resources partitioningwould improveunderstanding of the interactive
forces of biodiversity loss and anthropogenic change.

Methods
Experiment 1: field experiment and measurement
The field experiment was established in May 2018 at the University of
Kansas Field Station (39°03'09” N, 95°11'30” W), located in eastern
Kansas, USA. This land historically was tallgrass prairie, but was tilled
for row crops or pasture from 1870 to 1970, after which it was left
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Fig. 4 | The relationship between plant productivity and plant-soil feedback
and pathogen dilution. Regressions between complementarity and predicted PSF
effect (a) and pathogen dilution effect (b). Regression between relative yield total

and predicted PSF effect (c) and pathogen dilution effect (d). The solid blue lines
indicate the fitted relationships and the gray background indicates the 95% con-
fidence interval. N = 168. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44253-4

Nature Communications |         (2023) 14:8417 5



fallow and was inhabited by non-native pasture grasses, with native
prairie grass establishment occurring in the last 10 years. Prior to
planting, we tilled the resident soil and tilled in native prairie soil as
inocula for the soil microbiome (see Supplementary Methods). A total
of 240 plots (1.5m× 1.5m) were established, with 18 native prairie
plant species chosen from three families (six species each from Poa-
ceae, Fabaceae, and Asteraceae, see Supplementary Table 8). We
manipulated species richness (1, 2, 3, and 6), plant community com-
position (phylogenetically under or over dispersed), and precipitation
(50 or 150% ambient rainfall) (Fig. 1). In plant mixtures, under-
dispersed treatments contained plants from a single family while over-
dispersed treatments contained plant species from two or three
families. The full-factorial design comprised 72 monocultures, 72-two
species, 48-three species, and 48-six species plots, with each of the 18

plant species being equally represented in all treatment combinations.
We established six subblocks containing 40 paired plots distributed
across replicate rainfall exclusion shelters containing 20 plots with the
same plant combinations (6-monocultures, 3-each of phylogenetically
over- and under-dispersed two species mixtures, 2-each of phylogen-
etically over- and under-dispersed three species mixtures, 2-each of
phylogenetically over- and under-dispersed six species mixtures).
Beginning in spring 2019, one paired precipitation exclusion shelter
received 150% ambient growing season rainfall, while other paired
shelter received 50% ambient growing season rainfall. To help with
plant establishment and since construction of the rainfall exclusion
shelters was not completed until August 2018 and both precipitation
treatments received ambient rainfall toAugust 2018.As a result, we did
not consider precipitation effects on microbial community composi-
tion in the current study.

Soils were collected from each plot in September 2018, 4 months
after planting, and then paired plots of matched plant composition
were pooled across paired rainfall exclusion shelters. A total of six
20 cm soil cores with 1.9 cm diameter (~340ml) were taken from each
plot, sealed in polyethylene bags and kept on ice and then transferred
to the lab for storage. The coring devices were sanitized between dif-
ferent treatments to minimize contamination. The soil cores were
taken close to planted species to be more representative of plant-
affected soil microbes and to ensure we were able to collect root
samples. The soil samples were separated into two subsamples. One
subsample (~50ml) was passed through a 4-mm mesh to separate
roots, and then both soil and sterile water washed root samples were
stored in a freezer at −20 °C for DNA extraction and sequencing. The
remaining soil was stored at 4 °C until it was used for the subsequent
plant-soil feedback experiment.

In July 2019, at peak biomass, plant aboveground biomass was
harvested andweighed from0.1m2 strips and plant cover surveyswere
conducted for the total plot. Biomass was sorted to species within
1 day, dried at 70 °C for at least 3 days, and weighed. Strong correla-
tions between plant cover and biomass (Pearson’s R =0.76; t[646,
0.05] = 29.6; p < 0.001) allowed us to develop species-specific regres-
sions to convert cover to biomass and present community-level bio-
mass yields at a plot level.

Experiment 2: plant-soil feedback effect test and calculation
Fieldmonoculture soils collected in Experiment 1 were used as inocula
to test both conspecific and heterospecific plant-soil feedback (PSF)
effects (Fig. 1 and Supplementary Fig. 12). The background soil (20 cm
depth) was collected from the Field Station with a pH 5.93, 0.17% total
nitrogen, 6.7mg kg−1 Mehlich phosphorus, and 3.83% organic matter.
The soil waspassed through a 4-mmsieve to remove stones and coarse
roots and then mixed up 1:1 with river sand. The mixture of soil and
sand as background soil was steam sterilized twice for 4 h with a 1-day
rest period between sterilization. Each deep-pot (diameter 6.4 cm,
height 25.4 cm) was filled with 500ml soil into three layers: 225ml
sterile soil at the bottom, 50ml (10%) inoculum in the middle, and
another 225ml sterile soil on the top.

We used all 18 species and grew them with pots inoculated with
soils from conspecific monocultures, or monocultures from other
species from the same family, or from a different family. Each of the
18 species were grown with inocula from three plant species mono-
culture plots from each family (Supplementary Fig. 12), which resulted
in 81 full factorial pairwise feedback tests. For each of 18 species, one
individual of each species was planted, with their own monoculture
soils (nine replicates) and nine soil treatments for other species (three
replicates of three heterospecific species from each family), and sterile
soil was used for controls, including three replicates for each species.
In total, there were 702 pots and all pots were arranged in a rando-
mized block design. Greater replication of conspecific plantings allows
greater confidence in measurement of this effect which is used for
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Fig. 5 | Analytical solutions of a general feedback model parameterized with
the empirically derived interaction strengths between the plant species. These
model results reveal the expected relationships between complementarity, species
richness, predicted plant-soil feedback (PSF) effects and predicted pathogen dilu-
tion when plant community dynamics are driven by host-specific soil pathogens.
These include generating a positive relationship between complementarity and
plant richness (a), a negative relationshipwith predicted plant-soil feedback (b) and
a positive relationship with expected pathogen dilution (c). In (a), lines indicate
groupmedians, box edges indicate 25th and 75th percentiles, whiskers indicate the
minimum and maximum values within the observation group. In the latter rela-
tionships, this relationship shows an asymmetric tail association correlation that is
consistent with the empirical data (see Supplementary Information for details).
Different letters between boxes indicate significant differences between plant
richness levels (α =0.05, Kruskal–Wallis test, followed by a Dunn’s post hoc test). In
(b) and (c), the solid blue lines indicate the fitted relationships for mean com-
plementarity effects, with the gray background indicating the 95% confidence
interval. N = 17,850. Source data are provided as a Source Data file.
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multiple pairwise feedback calculations involving individual species49.
The experiment was carried out in a glass greenhouse at University of
Kansas, Lawrence, USA. The natural light intensity was
~800–1200 µmolm−2 s−1 with a night-day temperature range of
20–30 °C. All pots were irrigated with daily with drip irrigation system
and the pots weremeasured every 3 days tomaintain the soil moisture
content at ~20% (w/w). Plantswere harvested after 2months of growth,
separating and weighing shoot and root dry biomass.

To measure PSF effects between species, we calculated the log
response ratio of pairwise PSF19:

PSF= ln
αA

βA

.αB

βB

� �
= ln

αA

βA

� �
ln

αB

βB

� �
= ln ðαAÞ+ ln ðβBÞ � ln ðβAÞ � ln ðαBÞ

ð1Þ

where αA is species A’s average performance grown in species A’s soil
community (α), βB is species B’s average performance grown in species
B’s soil community (β), and αB and βA are the average performances of
species B and A grown in soil A and B, respectively. This formula was
modified from the classic pairwise PSF formulation
(Is = αA + βB − αB − βA)

18, which compares the relative difference of the
two plant species’ performances in their conspecific soils versus het-
erospecific soils. In both formulations of pairwise PSF, negative values
are required for plant coexistence while positive values prevent
coexistence.

DNA extraction and sequencing processing
Microbial DNA of both soil and root samples were extracted from all
the field treatments. DNA were extracted from 0.25 g fresh soil fol-
lowing themanufacturer’s instructions (DNeasy PowerSoil Kit, Qiagen,
Hilden, Germany) as well as 0.25 g of roots separated from soil. Bac-
terial, fungal, oomycete, and AM fungal communities were sequenced
from both soil and root DNA. The bacterial primers (forward 515F, 5’-
GTGYCAGCMGCCGCGGTAA-3’; reverse 806R 5’-GGAC-
TACNVGGGTWTCTAAT-3’) targeting the V4 region of 16S small sub-
unit (SSU) of ribosomal RNA50,51, fungal primers (forward fITS7, 5’-
GTGAGTCATCGAATCTTTG-3’; reverse ITS4, 5’-TCCTCCGCTTATTGA-
TATGC-3’) targeting the internal transcribed spacer (ITS) region52,
mycorrhizal fungal primers (forward fLROR, 5’-ACCCGCTGAACT-
TAAGC-3’; reverse FLR2, 5’-TCGTTTAAAGCCATTACGTC-3’) designed
for the large subunit (LSU) region53 and oomycete primers (forward
ITS300, 5’-AGTATGYYTGTATCAGTGTC-3’) and reverse ITS4)54 target-
ing the ITS region were selected for polymerase chain reaction (PCR).
For bacteria, fungi and AMF, PCR reactions were conducted in a final
volume of 25μl with 1μl template DNA, 10.5μl ddH2O, 0.5μl of for-
ward and reverse primer and 12.5μl of Master Mix Phusion (Thermo
Fisher Scientific, Waltham, MA, USA). For oomycete, the reactants in
each sample were 0.5 µl of both primers, 1.0 µl of template DNA, 5.0 µl
HOT FIREpol (Solis Biodyne, Tartu, Estonia), and 18 µl of ddH2O. The
bacterial PCR program was as follows: 94 °C for 5min; 35 × (94 °C for
30 s; 57 °C for 30 s and 72 °C for 30 s); ending with 72 °C for 7min. The
mycorrhizal fungal PCR program was: 94 °C for 5min, 35 × (94 °C for
30 s, 48 °C for 30 s, and 72 °C for 45 s), ending with 72 °C for 10min.
Theoomycete PCRprogramwas: 5minat 95 °C, 35 × (30 s at 95 °C, 30 s
at 55C°, 60 s at 72 °C), endingwith 72 °C for 10min. Fourmicroliters of
PCR product were checked on 1.5% (w/v) agarose gel to estimate the
quality of PCR products. PCR products were barcoded using Nextera
XT Index Kit v2 (Illumina, San Diego, CA, USA) for indexing and pur-
ified using AMPure XP beads (Beckman Coulter, Brea, CA, USA) before
sequencing. For bacteria, fungi and AMF, barcode PCR cycle began at
98 °C for 30 s; 10 × (98 °C for 10 s; 55 °C for 30 s and 72 °C for 30 s),
ending with 72 °C for 5min. For oomycete, the PCR was run under
similar conditions as the initial PCR, except 5 µl of the primary PCR
ampliconwasused instead of the original DNA template. PCRproducts
concentration was measured by Invitrogen Qubit 3.0 Fluorometer

(ThermoFisher Scientific,Waltham,MA, USA). Sampleswere pooled in
equimolar concentration to a single library for each target group.
Sequencing was performed by Illumina MiSeq v3 PE300 Next-Gen
Sequencer in Genome Sequencing Core of University of Kansas.

After sequencing, the primary analysis of raw FASTQ data was
processed with the QIIME2 pipeline55. After sequences were demulti-
plexed and primers removed, they were quality filtered, trimmed, de-
noised, and merged using DADA256. Taxonomy was assigned to all
ribosomal sequence variants in QIIME2 using a feature classifier
trained with the SILVA 99% OTU database for bacteria57 and the UNITE
99% database for fungi (Version 18.11.2018)58. The mycorrhizal fungal
database was further examined to discard sequences falling outside
the AM fungal clade by creating a phylogenetic tree using a self-
constructed reference database and pipeline53. These sequences were
aligned using MAFFT59 and a phylogenetic tree constructed using
RAXML v.860 with 1000 bootstrap replicates and the evolutionary
model GTRGAMMA in QIIME2 (2019.10). Outgroups were Mortierella
elongata (MH047197, Mucoromycota), Exophiala spinifera
(MH876260; Basidiomycota) and Rhodotorula hordea (AY631901;
Ascomycota), and LSU sequences of a plant, Citrus limon (X05910,
Rutaceae), and an animal, Rutilus rutilus (EF417167, Cyprinidae) were
also included. Functional groups within the fungal community were
categorized based on the FungalTraits database61. The amplicon
sequence variants (ASVs) categorized as “plant_pathogen” in the “pri-
mary_lifestyle” or “secondary_lifestyle” were used as putative patho-
gens, and “soil_saprotroph”, “litter_saprotroph”, “wood_saprotroph”
and “unspecified_saprotroph” in the “primary_lifestyle” were used as
saprobes for subsequent analyses. For soil, 1904 out of 7272 ASVswere
matched to a guild, and 212 of those were putative pathogens. For
roots, 139 of 2825 ASVs werematched to a guild, and 133 of those were
putative pathogens. For oomycetes, we checked the identity of
resultingOTUs either against a database containing all NCBI oomycote
ITS2 sequence results using the Basic Local Alignment Search Tool,
BLAST v. 2.6.062, using default parameters, or through placing OTUs in
the oomycete clade, as the oomycota are thought to have arisen froma
common ancestor forming a conserved clade63. The terrestrial oomy-
cetes are primarily parasites of vascular plants64,65 and generally
function as pathogens. All samples were normalized to a sequencing
depth of lowest total reads per sample (soil fungi-3880, root fungi-
3943, soil bacteria-661, root bacteria-658, soil AMF-860, root AMF-358,
soil oomycete-2004, root oomycete-200) prior to downstream ana-
lyses in R (version 3.5.1) prior to downstream analyses by using the
rarefy function in the vegan package66 in R (version 3.5.1).

Statistical analysis
We assessed the ecological importance of soil microbiome composi-
tion in generating PSFs by comparing microbial dissimilarities with
pairwise PSF effects between different species. In Experiment 1 using
field data, we first analyzed microbial composition differences by cal-
culating pairwise Bray–Curtis dissimilarities between pairwise species
monocultures using the vegan package66 in R. For the analysis of
Experiment 2, plant biomass was log-transformed to improve homo-
scedasticity and explained using a linear model with plant species,
inocula species, and their interactions as fixed effects. Seedling height
at planting by plant species was included as a covariate to remove the
effect of initial size differences. Marginal means and standard errors of
each plant species by inocula species pair were estimated from the
model and were used to calculate pairwise feedback effects between
species using Eq. (1). We compared the PSF effects within and between
families, namely the pairwise PSF effect between the host plant and the
other species from the same family or other families, respectively. To
test whether overall PSF was significantly different from zero, the
rma.mv function as implemented in the metafor package67 was used.
We fit a random effects model using PSF (Eq. (1)) as the response
variable with pairwise combination as a random effect and the
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individual estimate variance (VarPSF) as the variance19. The VarPSF was
calculated as:

VarPSF =
VarαA

NαA
× ðαAÞ2

+
VarβB

NβB
× ðβBÞ2

+
VarαB

NαB
× ðαBÞ2

+
VarαB

NαB
× ðαBÞ2

ð2Þ

where Var and N represent variance and sample size, respectively. As
conspecificmeanswere used formultiple pairwise feedback estimates,
the sample size of conspecifics, NαA

and NβB
, were adjusted in the

VarPSF calculation for the nine pairwise feedbacks in which they were
used from the 9 conspecific replicates in the experiment to 1 (=9
replicates/9 pairwise feedback estimates). The PSF effects were con-
sidered significantly different from zero if the 95% confidence interval
did not contain zero.

The regressions between different microbial community dissim-
ilarities and measured pairwise PSFs were calculated and the regres-
sion coefficients and the functions’ significancewere obtainedwith the
stat_poly_eq and stat_fit_glance functions in the ggpmisc package68. The
regressions between soil fungal pathogen andoomycetedissimilarities
andmeasured pairwise PSFs were significant (Supplementary Table 2),
indicating the importance of fungal pathogens in driving negative
PSFs. We then considered two different approaches (linear model and
random forest) to predict pairwise feedback using 12 potential
microbial predictors (rhizobia, non-rhizobia bacteria, AMF, fungal
pathogen, fungal saprobe and oomycetes for both soil and root).
However, for soil rhizobia, only 28 ASVswere identified and therewere
many missing values when calculating the dissimilarity and could not
be used in later modeling running. Therefore, we removed the soil
rhizobia when running the models, keeping the other 11 microbial
predictors. Linear and random forest models69 were compared using
the lm and randomForest base R functions, and we assessed the sig-
nificance of fitted random forest models using the A3 package70. We
found that the linear model explained a larger proportion of variance
(Radj

2 = 0.137) than the random forest model (Radj
2 = 0.106). Then, we

performed a model selection process for feedback effects, using the
glmulti package71 in R to generate a suite of candidate models and
sample size corrected Akaike Information Criterion (AICc)

72 to distin-
guish between candidate models. As ΔAICc between models were
statistically indistinguishable (≤2), we opted to perform model aver-
aging to represent the importance of parameters across all candidate
models73. Parameter weights were estimated as the sum of Akaike
weights across all the models74 and are considered a measure of the
overall support for each predictor. We set a lower limit of 0.7 to dif-
ferentiate between the important and unimportant predictors. We
found that soil fungal pathogen, soil oomycete and root pathogen
dissimilarities were the three most important predictors and their
effects onpredicting the PSFwere significant (Supplementary Table 3).
We then derived a best linearmodel based on these three predictors to
characterize the pairwise PSF effects:

Predicted PSFij between species i and j = � 1:52*soil fungal pathogen dissimilarity

�2:27*soil oomycete dissimilarity

�1:27*root fungal pathogen+ 1:589

ð3Þ

where the coefficients of both soil and root fungal pathogen and
oomycete dissimilarities were the estimates derived from the pre-
dictedmodel (Supplementary Table 3). To determine the intercept, we
calculated a weighted average of all multiple regression model
intercepts.

To estimate PSF effects for plant mixtures in the field, the pre-
dicted PSF was calculated as the sum for a plot of PSFij weighted by

pairwise plant densities:

Predicted PSF effect of plots =
X

pi pjðPSFijÞ ð4Þ

where pi and pj represent the realized density (proportion of the total
biomass) observed in the field, and PSFij represents the pairwise
feedback between those two species obtained from Eq. (3).

A more negative PSF indicates greater pathogen suppression in
monocultures and therefore greater potential pathogen dilution—i.e.,
the degree of pathogen dilution should be predicted by pathogen-
generated PSF. However, in plantmixtures, pathogendilutionmay also
dependonplant species richness. For example, the expected chanceof
the closest neighbor being conspecific is 1 out of 2 in two species
mixtures, but only 1 out of 6 in six species mixtures. That is the
expected dilution due to heterospecific neighbors is (N − 1)/N (=1 − 1/
N), whereN is the number of species in the plot.We therefore estimate
expected release from pathogens for a given plot as the product of
average PSF and the expected dilution, times −1 to represent release
from the negative feedback:

Predictedpathogendilution=PredictedPSF× � 1 × ð1� 1=NÞ ð5Þ

We postulate negative PSF and pathogen dilution effects are an
underlying mechanism generating complementarity and explaining
subsequent yield advantages. We used the second growing season’s
aboveground biomass (2019) to calculate complementarity (CE) and
selection effects (SE)21. Complementarity effects are highest where
most or many species yields are higher than expected based on yields
in monoculture. Selection effects are high when one or few species
generate the productivity gains generated from diversity. We calcu-
lated these components as follows:

CE =N ×4RY× �M ð6Þ

SE =N × covð4RY,MÞ ð7Þ

where N is the plant species richness, ΔRY is deviation from expected
relative yield of species in the mixture, M is a species’ average mono-
culture biomass, 4RY is the mean change in relative yield for each
species in mixture, and �M is the mean monoculture biomass for each
species. We also calculate the relative yield total (RYT)33, which is a
measure of the relative productivity of plant mixtures compared to
monocultures, and could be used to indicate overyielding, calculated
as:

RYT= ΣN
1

Bi mix

Bi mono
ð8Þ

where Bi_mix represents observed biomass production of species i in
mixture, while Bi_mono represents biomass production of species i in
monoculture. RYT > 1 indicates overyielding, whereas RYT < 1 indicates
underyielding.

The effects of phylogenetic dispersion (within family, between
family), plant richness (2, 3, 6) and their synergistic effects on plant
biomass, complementarity effect and relative yield total of mixture
plots were tested using the analysis of variance (ANOVA). We used t-
tests to determine whether complementarity effect and relative yield
totals in richness levels 2–6 were significantly greater than 0 and 1,
respectively. Relationships between independent variables, predicted
PSF effect and predicted pathogen dilution, and dependent variables,
complementarity effect andRYTof plantmixtureswereanalyzedusing
simple linear regression analysis.
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Theoretical analysis
We utilized empirically derived plant host-microbiome interactions to
parameterize a general mathematical model of host-environment
feedback (Supplementary Fig. 1). Previous studies have shownhow this
model can be applied specifically to the study of plant-soil feedbacks,
which mediate plant community coexistence18. In summary, plant
abundances are expressed as proportions or frequencies, with plant-
soil microbiome effects driving frequency-dependent feedbacks con-
trolling plant community dynamics. Changes in plant frequencies are
described by:

dPi

dt
= Pi wi �

XN
j = 1

wjPj

 !
ð9Þ

In which:

wi =
XN
j = 1

σijPj ð10Þ

where Pi is the frequency of plant species i,wi is its fitness within the
current environment, the state of which is determined by the fre-
quencies of all N species within the community. The parameters σij

determine the fitness of plant species i in an environment domi-
nated by plant species j. We parameterized the coefficients σij using
the empirically quantified dissimilarities in fungal pathogen, root
fungal pathogen and oomycete compositions of plant hosts and Eq.
(3). Note that conspecific effects could be calculated assuming that
pairwise feedback between two plant species with completely dis-
similar soil microbiomes is the sum of the two conspecific effects,
which can be calculated from Eq. (3) with dissimilarity = 1. Further-
more, we assumed that the strength of conspecific effects were
equal among all plant species. This approach yielded a constant
fitness, wmono, for all species growing in their own soil environment.
Quantification of all the σij parameters then enabled the construc-
tion of an interaction matrix:

A=

σ11 σ12

σ21 σ22

. . . σ1N

. . . . . .

. . . . . .

σN1 σN2

. . . . . .

. . . σNN

2
6664

3
7775 ð11Þ

Which determines the feasibility and stability of the community
coexistence equilibrium state. Specifically, the feasibility condition can
be written as:

0 <Pi =
detAiPN
j = 1 detAj

< 1 for i = 1,2 ,::, N ð12Þ

If the feasibility condition is fulfilled, it follows from Eq. (9) that at the
community coexistence equilibrium point:

ŵi �
XN
j = 1

ŵjP̂j =0 ð13Þ

where the hats indicate an equilibrium state. From Eq. (13), it can be
inferred that for all species19:

ŵi =
XN
j = 1

ŵj P̂j = ŵ ð14Þ

In which ŵ is the fitness of all species at the coexistence equilibrium
point. Hence, a measure for complementarity is then provided, as the
difference between this equilibrium fitness ŵ and the fitness of each
plant species in monoculture,wmono. Complementarity was calculated
according to ref. 22 (see Eq. (6)). Within our specific model

formulation, this complementarity effect in simulated communities
was calculated using relative fitness as a proxy for biomass:

CE =N ×4RY× �M =N × ŵ�wmono

� � ð15Þ

where we used that 4RY= ω̂�ωmono
ωmono

and �M =ωmono. We assessed the

feasibility, community-level feedback, and local stability of all 262,125
multispecies communities that could be assembled from the pool of
18 species considered in Experiments 1 and 2 described above. Local
stability was indicated by the dominant eigenvalue of the Jacobian
matrix evaluated at the coexistence equilibriumpoint19. For all feasible
and locally stable communities that exhibited negative community-
level feedback (ranging between 2 and 11 species), we computed the
predicted PSF effect (Eq. (4)), pathogen dilution (Eq. (5)), and the
strength of the complementarity effect (Eq. (15)), to test the extent to
which the former two could predict the latter. We note that our
selection of communities assesses the potential of plant-soil feedback
to enable community coexistence conservatively17,18. Alternative
approaches suggest a larger potential of plant-soil feedback to
generate coexistence. Importantly, the inferred theoretical relation-
ships between predicted PSF effects, pathogen dilution, and com-
plementarity were robust under the different specific community
selection approaches taken (Supplementary Discussion).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data required to reproduce the results are provided in the
Figshare75 (https://doi.org/10.6084/m9.figshare.23804619). Sequen-
ces were submitted to the NCBI Sequence Read Archive (SRA) under
the accession number PRJNA863284. Source data are provided with
this paper.

Code availability
All codes used in this study are available on GitHub (https://github.
com/wlzwgz/Dimension-PSF.git).
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