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The impact of reproductive factors on the
metabolic profile of females from menarche
to menopause

Gemma L. Clayton 1,2,4 , Maria Carolina Borges1,2,4 & Deborah A. Lawlor 1,2,3

We explore the relation between age at menarche, parity and age at natural
menopausewith 249metabolic traits in over 65,000UKBiobankwomen using
multivariable regression, Mendelian randomization and negative control
(parity only). Older age of menarche is related to a less atherogenic metabolic
profile in multivariable regression and Mendelian randomization, which is
largely attenuated when accounting for adult body mass index. In multi-
variable regression, higher parity relates to more particles and lipids in VLDL,
which are not observed in male negative controls. In multivariable regression
and Mendelian randomization, older age at natural menopause is related to
lower concentrations of inflammation markers, but we observe inconsistent
results for LDL-related traits due to chronological age-specific effects. For
example, older age at menopause is related to lower LDL-cholesterol in
younger women but slightly higher in older women. Our findings support a
role of reproductive traits on later life metabolic profile and provide insights
into identifying novel markers for the prevention of adverse cardiometabolic
outcomes in women.

Markers of women’s reproductive health, such as age at menarche,
parity and age at menopause, have been associated with several
common chronic conditions, including cardiometabolic diseases1–6

and breast, ovarian and endometrial cancer7–12. Some attempts have
been made to explore the extent to which these associations are cau-
sal, as opposed to explained by residual confounding, using approa-
ches such as Mendelian randomisation (MR) and negative control
designs, which are less prone to bias by key confounders from con-
ventional observational studies. MR studies suggest a direct positive
effect of age at menarche on breast cancer and an indirect inverse
effect via body mass index (BMI)13, as well as a possible bidirectional
relationship between age at menarche and BMI13,14. MR also supports a
protective effect of older age at first birth on type 2 diabetes and
cardiovascular diseases15 and lower mean levels of BMI, fasting insulin
and triglycerides in women andmen16, while a partner negative control
study provides some evidence of a ‘J-shaped’ effect of parity on

coronary heart disease risk5. In addition, evidence from MR studies
indicate that older age at menopause increases the risk of breast,
endometrial and ovarian cancer, reduces the risk of bone fractures and
type 2 diabetes, and do not substantially affect BMI or cardiovascular
diseases risk17.

Metabolites could act as mediators of the relationship of repro-
ductive markers, and related hormonal changes, with chronic
diseases18–20. Determining the effect of women’s reproductive markers
on multiple metabolites would be the first step to exploring this and
could provide crucial insights into mechanisms underlying women’s
long-term health. We have previously shown marked changes in
metabolites, such as lipids, fatty acids, amino acids and inflammatory
markers during pregnancy20, through themenopausal transition21, and
among women on hormonal contraceptives containing oestrogen22.
Many of these same metabolic measures are also related to cardio-
vascular diseases19 and some cancers23–26. The aim of this paper is to
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explore the extent to which women’s reproductive markers have a
causal effect on 249 metabolic measures (covering lipids, fatty acids,
amino acids, glycolysis, ketone bodies and inflammatorymarkers). We
focus on three reproductive traits that represent key events in
women’s reproductive lives: (i) age at menarche, a marker of puberty
timing, (ii) parity, a marker of repeated exposure to the physiological
challenges of pregnancy, and (iii) age at menopause, a marker of
reproductive aging.We explore the causal relationships between these
reproductive markers and metabolic measures by triangulating
evidence27 across multivariable regression, a negative control design
(for parity only), and MR (Fig. 1). Given each of these approaches has
unique strengths and limitations, results that agree across them are
less likely to be spurious27.

In this paper we show that reproductive factors are likely to
impact females’ metabolic profile later in life. Evidence supporting a
relation between later pubertal timing and a less atherogenic meta-
bolic profile is largely explained by adult BMI. Findings linking higher
parity to a more atherogenic profile were supported by the negative
control analyses but imprecisely estimated in Mendelian randomisa-
tion. Evidence supporting a relation between slower reproductive
aging and a less atherogenic metabolic profile was mostly observed
among younger women. These results could contribute to identifying
novel markers for the prevention of adverse cardiometabolic out-
comes in women and/or methods for accurate risk prediction.

Results
We used data from 65,699 UK Biobank female participants with 249
metabolic measures quantified by nuclearmagnetic resonance (NMR).
Self-reported age atmenarche (in years), parity (in number of live born
children) and age at menopause (in years) were reported at baseline
when participants mean age was 56 years old (range: 38–73). NMR
metabolites weremeasured on blood samples taken at baseline or first
repeat assessment (more details in methods). The characteristics of
these participants are shown in Table 1 (and split by each of our
reproductive markers (categorised) in Supplementary data 1–3). At

recruitment (baseline) women were aged (mean) 56 (SD = 8.0) years,
21% drank three or four times a week and 40% were previous/current
smokers. 81% of women had one or more live births whilst the mean
age ofmenarche was 13 years (SD = 1.3). 59% (37,248) women reported
they went through a natural menopause with a mean age of meno-
pause of 49.7 years (SD = 5.1). Supplementary data 4 shows the dis-
tribution ofNMRmetabolicmeasures amongUKBiobank females. The
proportion of women with missing data across metabolic measures
ranged from 0.3% to 6.1%.

We used three approaches relying on different assumptions to
explore the causal role of women’s reproductive markers on later life
metabolic profile. For the first approach (‘multivariable regression’),
we used linear regression models to estimate the association of
reproductive markers with metabolic measures after adjusting for age
at baseline, education and body composition at age 10. In sensitivity
analyses, for the 55 non-derived metabolites, we categorised age at
menarche, parity and age at natural menopause, tested for a linear
trend and, where there was evidence of non-linearity, fit restricted
cubic splines. For the second approach (‘negative control design’ –
only applicable for parity), we used linear regression models to test
whether number of live born children inmenwas associated with their
metabolic measures. Men do not experience the repeated physiolo-
gical stress of pregnancy but are likely to demonstrate the same
associations of confounders (eg. socioeconomic position, BMI,
smoking) with number of live births. Therefore, similar associations of
number of live births with metabolic measures between men and
women would indicate bias (e.g. due to confounding) rather than a
causal effect of being exposed to the physiological stress of pregnancy
on women’s metabolic profile. For the third approach (‘MR’), we
selected single nucleotide polymorphisms (SNPs) as genetic instru-
ments for each reproductive marker from previous genome-wide
association studies (GWAS) andperformed two-sampleMRto estimate
the effect of reproductive markers on metabolic measures using the
standard inverse variance weighted (IVW) method. For both multi-
variable regression and MR analyses, we adopted P-value < 0.00093,

Fig. 1 | Infographic summarising the different approaches taken to assess the
relationship between reproductive traits andmetabolites. The figure illustrates
key assumptions and sources of bias for each method (and differences across
methods) in the context of our study. An exhaustive review of assumptions/biases

for each method is outside the scope of this work. However, we acknowledge that
there are other potential sources of biases that could affect findings such as
selection bias related to the low response in UK Biobank.
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which accounts for the approximate number of independent tests as
detailed in ‘Statistical analyses’.

Age at menarche
In the main multivariable regression analyses (adjusting for age at
baseline, education and body composition at age 10), older age at
menarche was associated with higher concentrations of glutamine,
glycine, albumin, apolipoprotein A1, cholines, phosphatidylcholines,
and sphingomyelins but lower concentrations of alanine, branched-
chain amino acids (isoleucine, leucine and valine), aromatic amino
acids (phenylalanine and tyrosine), fatty acids (monounsaturated fatty
acids (MUFA), omega-3 polyunsaturated fatty acids (PUFA), and satu-
rated fatty acids (SFA)), glycolysis-related metabolites (glucose, lac-
tate, pyruvate), acetoacetate, and glycoprotein acetyls (GlycA)
(P < 0.00093) (Fig. 2 and Supplementary data 5). Older age at
menarchewas also associatedwith numerous lipoprotein-related traits
at P < 0.00093, particularly with higher numbers of particles, size, and
lipid content in high-density lipoproteins (HDL) and lower numbers of
particles, size, and lipid content in very low-density lipoproteins
(VLDL) (Fig. 2). The associations of age at menarche with HDL-related
traits weremostly due to larger HDL subclasses (i.e. medium, large and
very large particles), while associations with VLDL-related traits were
observed across VLDL subclasses (Supplementary Fig. 1 and Supple-
mentary data 5). In sensitivity analyses with further adjustments for
BMI, smoking and alcohol status at baseline,findings for an association
of older age at menarche were largely or completely attenuated
towards the null for most metabolic measures with few exceptions,
such as glutamine, glycine, omega-3 PUFA, pyruvate, lactate, and
acetoacetate (Supplementary Fig. 2). There was evidence of non-
linearity between categories of age atmenarche (<13, 13–14, >14 years)
and 17 metabolites (Supplementary data 6 and Supplementary Fig. 3).
Restricted cubic splinemodels (with 3 knots at ages 11, 13, and 15 years)

Table 1 | Distribution of characteristics of UK Biobank parti-
cipants (females only) with NMR metabolomics data

N = 65,699

Agewhen attended assessment centre,mean (sd) 56.4 (8.0)

Age in 5-y groups, n (%)

40- 6623 (10.1)

45- 8781 (13.4)

50- 10,378 (15.8)

55- 12,299 (18.7)

60- 16,089 (24.5)

65- 11,529 (17.5)

Ethnic background, n (%)

White 62,063 (94.8)

Mixed 420 (0.6)

Asian 1069 (1.6)

Black 1059 (1.6)

Chinese 220 (0.3)

Others 609 (0.9)

Qualifications, n (%)

None of the above 10,955 (16.9)

O level or CSEs or other 25,619 (39.4)

A level 7626 (11.7)

College/ university 20,749 (31.9)

Townsend deprivation index at recruitment,
mean (sd)

−1.4 (3.0)

Comparative body size at age 10, n (%)

Average 32,767 (50.7)

Thinner 20,416 (31.6)

Plumper 11,435 (17.7)

Body mass index (BMI), mean (sd) 27.1 (5.2)

Alcohol intake frequency., n (%)

Daily or almost daily 10,516 (16.0)

Three or four times a week 13,712 (20.9)

Once or twice a week 16,872 (25.7)

One to three times a month 8655 (13.2)

Special occasions only 9630 (14.7)

Never 6186 (9.4)

Smoking status, n (%)

Never 38,915 (59.5)

Previous 20,609 (31.5)

Current 5834 (8.9)

Age when periods started (menarche), mean (sd) 13.0 (1.6)

Categories of age at menarche, n (%)

<13 years 24,811 (39.0)

13–14 years 28,057 (44.1)

>14 10,762 (16.9)

Number of live births, n (%)

0 12,367 (18.9)

1 8900 (13.6)

2 28,526 (43.5)

3+ 15,767 (24.0)

Had menopause, n (%)

Premenopausal 15,418 (24.5)

Postmenopausal 37,248 (59.1)

Surgical 7564 (12.0)

Other 2758 (4.4)

Table 1 (continued) | Distribution of characteristics of UK
Biobank participants (females only) with NMR metabo-
lomics data

N = 65,699

Age at menopause (last menstrual period),
mean (sd)

49.7 (5.1)

Categories of age at menopause, n (%)

<40 1520 (4.1)

40–44 3378 (9.1)

45–49 8903 (23.9)

50–51 8740 (23.4)

52–54 9144 (24.5)

55+ 5606 (15.0)

Statin use - Nurses int., n (%)

No Statins 58,279 (88.7)

Statins 7420 (11.3)

Ever used hormone-replacement therapy (HRT), n (%)

No 40,330 (61.7)

Yes 25,036 (38.3)

Years on HRT, n (%)

Never 40,330 (64.8)

0–2 6294 (10.1)

3–6 5504 (8.8)

7–10 5192 (8.3)

>10 4908 (7.9)

Age at natural menopause therefore excluded women who had not yet gone through the
menopause or who had a surgical menopause or who answered ‘other’.
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generally showed an increase in albumin, apolipoprotein A1, cholines,
docosahexaenoic acid (DHA), linoleic acid (LA), and phosphati-
dylcholines with older age at menarche until approximately age 13, in
line with our linear association, and then began to flatten and/or
decrease (Supplementary data 7 and Supplementary Fig. 4). Whilst
older age atmenarchewas related to a decrease inGlycAuntil ~13 years
and then began to flatten.

For the MR analyses, we selected 389 SNPs as instruments for age
at menarche, which explained 7.4% of its phenotypic variance with a
corresponding mean F statistic of 63 (Supplementary data 8). Overall,
MR estimates using IVW were in agreement with multivariable
regression estimates in direction and magnitude (Fig. 2 and Supple-
mentary Fig. 1); however, due to the higher degree of uncertainty for
IVW estimates, no result passed our threshold for multiple testing

correction (P <0.00093). Following reviewer’s comments, we repe-
ated the IVW analyses for a larger sample of women
(N = 216,514–239,803) for the eight biomarkers assayed using clinical
chemistry techniques that matched measures in the NMR metabo-
lomics platform — i.e. albumin, apolipoprotein A1, apolipoprotein B,
glucose, HDL-cholesterol, low-density lipoprotein (LDL)-cholesterol,
total cholesterol, and triglycerides. These results provided further
evidence of older age at menarche being related to higher albumin,
apolipoprotein A1, HDL-cholesterol, and lower triglycerides
(P < 0.00093) (Fig. 5). Given the a priori evidence of bidirectional
effects between age at menarche and BMI, we also performed multi-
variable IVW accounting for adult BMI to estimate the direct effects of
age at menarche on metabolic measures, which resulted in estimates
partly or completely attenuated to the null for most metabolic
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Fig. 2 | Multivariable regression (red) and Mendelian randomisation (black)
estimates for the associations between older age at menarche and metabolic
measures. Results are mean differences presented as standard unit changes in
metabolicmeasure per 1 year increase in age atmenarche. Circles denote themean
differences and indicate p-value < 0.00093 (filled circles) or ≥0.00093 (hollow
circles). Horizontal bars denote 95% confidence intervals. Multivariable regression

models (ordinary least squares, two-sided regression coefficients reported) were
adjusted for age at recruitment, body size at age 10 and education (N = 61,920).
Mendelian randomisation models were estimated using the inverse variance
weighted method (N = 62,209). Abbreviations for Figs. 2–4 and 6 are given in
‘Abbreviations’ at the end of the manuscript. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-44459-6

Nature Communications |         (2024) 15:1103 4



measures with few exceptions, such as glutamine and glycine (Sup-
plementary Figs. 5 and 6).

Parity
In the main multivariable regression analyses (adjusting for age at
baseline, education andbody composition at age 10), higher paritywas
related to higher concentrations of glycine and leucine, but lower
concentrations of histidine, fatty acids (DHA, Omega 3, Omega 6
PUFA), pyruvate, ketone bodies (acetate, acetoacetate, acetone and β-
hydroxybutyrate), and apolipoprotein A1 (P <0.00093) (Fig. 3 and
Supplementary data 9). Higher parity was also associated with
numerous lipoprotein-related measures at P < 0.00093, particularly
with lower and higher number of particles, size, and lipid content for
HDL and VLDL, respectively, as well as lower size of LDL particles

(Fig. 3). The associations of parity with lipoprotein-related measures
were observed across most VLDL and HDL subclasses, whereas asso-
ciations with LDL-related measures were mostly driven by larger LDL
particles (Supplementary Fig. 7 and Supplementary data 9). In sensi-
tivity analyses with further adjustments for BMI, smoking and alcohol
status at baseline, higher parity associations were consistent for gly-
cine, histidine, fatty acids, pyruvate, ketone bodies, apolipoprotein A1,
andpartly attenuated towards the null for VLDL- andHDL-related traits
(Supplementary Fig. 8). There was some evidence of non-linearity
between parity (0,1,2,3+) and 28 metabolites (Supplementary data 6
and Supplementary Fig. 9). However, restricted cubic spline models
(with knots at 1, 2, and 3) generally showed monotonic relationships
for thosewith no to fourpregnancies, consistentwith themain analysis
models (Supplementary data 10 and Supplementary Fig. 10).
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Fig. 3 | Multivariable regression (red) and Mendelian randomisation (black)
estimates for the associations between higher parity andmetabolic measures.
Results are mean differences presented as standard unit changes in metabolic
measure per 1 additional birth. Circles denote themean differences and indicate p-
value < 0.00093 (filled circles) or ≥0.00093 (hollow circles). Horizontal bars
denote 95% confidence intervals. Multivariable regression models (ordinary least

squares, two-sided regression coefficients reported) were adjusted for age at
recruitment, body size at age 10 and education (N = 63,652). Mendelian randomi-
sation models were estimated using the inverse variance weighted method
(N = 62,209). Abbreviations for Figs. 2–4 and 6 are given in ‘Abbreviations’ at the
end of the manuscript. Source data are provided as a Source Data file.
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Weusedmales as a negative control sincemen cannot experience
the effects of being exposed to the stress test of pregnancy. Therefore,
similar results between men and women would be indicative of bias,
such as due to confounding by sociodemographic (e.g. education
attainment) and biological (e.g. infertility) factors, rather than by an
effect of repeated exposure to pregnancy. When using number of
children in males as a negative control, we observed that associations
for leucine, histidine, pyruvate, and ketone bodies were similar
between men and women (i.e. directionally consistent, similar effect
estimates and 95% confidence intervals overlapped between male and
female estimates). On the other hand, association estimates for fatty
acids, apolipoprotein A1, and lipoprotein-related traits were weaker or
consistentwith the null, and glycinewas in opposite direction, inmales
compared to females (Fig. 4). For theMRanalyses, we selected 32 SNPs

as instruments for parity, which explained 0.2% of its phenotypic
variance with a corresponding mean F statistic of 31 (Supplementary
data 8). It is unclear whether estimates from multivariable regression
andMR analyses are consistent with eachother due to the high level of
uncertainty in the latter (Fig. 3 and Supplementary Fig. 7), which per-
sisted even when using the larger sample of women with selected
biomarkers assayed by clinical chemistry (Fig. 5).

Age at natural menopause
In the main multivariable regression analyses (adjusting for age at
baseline, education and body composition at age 10), older age at
menopause was related to higher glycine, PUFA (e.g. DHA and LA),
albumin, apolipoprotein B and sphingomyelins, but lower concentra-
tion of MUFA, pyruvate, acetoacetate, creatinine and GlycA
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Fig. 4 | Multivariable regression estimates for the associations of parity
(females, red) or number of children (males, black) with metabolic measures:
negative control analysesModels adjusted for age at baseline, education, and
body composition at age 10. Results are mean differences presented as standard
unit changes inmetabolicmeasure per 1 year increase in age atmenopause. Circles

denote the mean differences and indicate p-value < 0.00093 (filled circles) or
≥0.00093 (hollow circles). Multivariable regression models (ordinary least
squares, two-sided regression coefficients reported) were used. (N = 63,652 for
females, N = 53,387 for males). Abbreviations for Figs. 2–4 and 6 are given in
‘Abbreviations’. Source data are provided as a Source Data file.
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(P < 0.00093) (Fig. 6 and Supplementary data 11). Older age at meno-
pause was also associated with numerous lipoprotein-related traits at
P <0.00093, particularly with higher number of particles and lipid
content in LDL, larger size of HDL particles, and lower size of VLDL
particles (Fig. 6). The associations between age atmenopause and LDL-
related traits were observed across LDL subclasses (i.e. from small to
large), whereas associationswithHDL-related traitsweremostly driven
by larger HDL particles (Supplementary Fig. 11). In sensitivity analyses
with further adjustments for BMI, smoking and alcohol status at
baseline, associations between older age at natural menopause and
metabolites remained similar, except for associationswithHDL-related
traits which were partly attenuated (Supplementary Fig. 12). Therewas
evidence of non-linearity across 24metabolites (Supplementary data 6
and Supplementary Fig. 13) in the multivariable regression when
menopause was categorised (<49, 49–50, 51–53, >53 years). Restricted
cubic spline models (with 4 knots) were generally consistent with the
main analysis (assuming a linear association) until age at menopause
~55 years when most metabolites decreased (Supplementary data 12
and Supplementary Fig. 14).

For theMR analyses, we selected 290 SNPs as instruments for age
at naturalmenopause, which explained 8.2% of its phenotypic variance
with a corresponding mean F statistic of 141 (Supplementary data 8).
Estimates from multivariable regression and MR analyses were incon-
sistent in direction for manymetabolic measures (Fig. 6). In particular,
in contrast to results from multivariable regression, MR analyses
indicated older age atmenopause to be related to lower concentration
of fatty acids (e.g. LA), albumin, apolipoprotein B, as well as lower

number of particles and lipid content in LDL across subtypes (from
small to large) (Fig. 6 and Supplementary Fig. 11). For some metabo-
lites, such as GlycA and HDL-related traits, results were consistent in
direction between multivariable regression and MR. For alanine, glu-
tamine and glucose, MR analysis suggested older age ofmenopause to
be related to lower circulating metabolite levels, which had not been
observed in multivariable regression analysis (Fig. 6 and Supplemen-
tary data 11). As expected, there wasmore uncertainty in MR estimates
and only results for glutamine and some LDL- and VLDL-related mea-
sures passed the threshold for multiple test correction (P <0.00093).
Repeating the MR analyses in the larger sample of women
(N = 216,514–239,803) with selected biomarkers assayed by clinical
chemistry confirmed that older age at natural menopause was related
to lower albumin, LDL-cholesterol, and total cholesterol at
P <0.00093 (Fig. 5).

We performed further analyses to investigate reasons underlying
discrepant findings between multivariable regression and MR esti-
mates for somemetabolicmeasures (seeMethods: Additional analyses
for age at natural menopause: exploring the role of medication and
chronological age). These analyses were restricted to the eight clinical
chemistry biomarkers matching measures in the NMR platform to
maximise statistical power since they have been measured in the full
UK Biobank sample. First, we hypothesised that discrepant findings
were related to differences in the sample used for multivariable
regression, which excludes women with missing data on age at
menopause because they had yet to go through it or had a surgical
menopause (hereafter ‘selected sample’), and two-sample MR, which

Age at menarche Number of children ever born Age at natural menopause
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NMR metabolomics Blood biochemistry

Fig. 5 | Mendelian randomisation estimates for the relation between older age
at menarche, number of children ever born, older age at menopause - and
metabolic measures among females measured using NMRmetabolomics
(black, squares) or clinical chemistry methods (pink, circles). Results are mean
differences presented as standard unit changes in metabolic measure per 1 year
increase in age at menarche, 1 additional birth, and 1 year increase in age at natural

menopause, respectively. Circles/squares denote the mean differences and indi-
cate p-value <0.00093 (filled circles/squares) or ≥0.00093 (hollow circles/
squares). Horizontal bars denote 95% confidence intervals. Mendelian randomi-
sation models were estimated using the inverse variance weighted method for
N = 62,209 for NMR metabolomics and N = 239,803 for clinical chemistry mea-
sures. Source data are provided as a Source Data file.
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includes women even if they are missing data on age at natural
menopause (hereafter ‘full sample’). To test that, we compared esti-
mates from multivariable regression on the selected sample to MR on
both the selected sample and full sample. In agreement with our
hypothesis, multivariable regression and MR estimates for LDL-
cholesterol and related traits are comparable when restricting to the
selected sample. In contrast, for albumin, discrepant results were
related to differences betweenmultivariable regression andMR rather
than between selected and full sample (Supplementary Fig. 15). Sec-
ond, givenwomenwithmissing data on age atmenopause are typically
pre-menopausal and younger, we explored age-stratifiedmultivariable
and MR estimates, which revealed a strong effect modification by
chronological age on the association of age at menopause with LDL-

cholesterol and related traits – e.g. older age at menopause is related
to substantially lower LDL-cholesterol in younger women (≤50 y) (e.g.
multivariable regression (MV): −0.018 SD, 95% CI: −0.021, −0.015), but
slightly higher LDL-cholesterol in older women (>63 y) (e.g. MV: 0.004
SD, 95% CI: 0.003, 0.006) (Supplementary Fig. 15). Differences related
to chronological age at baseline were also observed for other bio-
markers, such as albumin. When excluding women taking statins at
baseline, we observed that the association between age at menarche
and LDL-cholesterol estimated by multivariable regression was partly
attenuated (−0.001 SD, 95% CI: −0.002, 0.000). However, excluding
women using statins or hormone replacement therapy (HRT) at
baseline did not substantially altered the chronological age patterned
results (Supplementary Fig. 16).
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Fig. 6 | Multivariable regression (red) and Mendelian randomisation (black)
estimates for the associations between older age at natural menopause and
metabolic measures. Results are mean differences presented as standard unit
changes in metabolic measure per 1 year increase in age at menopause. Circles
denote the mean differences and indicate p-value < 0.00093 (filled circles) or
≥0.00093 (hollow circles). Horizontal bars denote 95% confidence intervals.

Multivariable regression models (ordinary least squares, two-sided regression
coefficients reported)were adjusted for age at recruitment, body size at age 10 and
education (N = 36,253).Mendelian randomisationmodels were estimatedusing the
inverse variance weighted method (N = 62,209). Abbreviations for Figs. 2–4 and 6
are given in ‘Abbreviations’ at the end of themanuscript. Source data are provided
as a Source Data file.
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Exploring the plausibility of MR assumptions
Weconducted a series of sensitivity analyses to explore the plausibility
of keyMRassumptions, required for themethod to provide a valid test
of the presence of a causal effect.

First, we tested whether MR findings are likely to be biased by
population stratification, assortative mating and indirect genetic
effects of parents using two approaches: (i) performing two-sample
MR analyses using (sex-combined) data from a recent within-siblings
GWAS, and (ii) conducting two-sample MR on negative control out-
comes (i.e. skin colour and skin tanning ability). Two-sample MR esti-
mates for the effect of genetic susceptibility for older age atmenarche,
parity, and age at natural menopause on five available biomarkers was
broadly consistent when estimated among unrelated individuals or
between siblings. Results for age at menarche were slightly over-
estimated for triglycerides and underestimated for glycated hae-
moglobin in unrelated individuals, while results for a positive relation
between age at natural menopause and HDL-cholesterol was sup-
ported by analyses between siblings but not among unrelated indivi-
duals (Supplementary Fig. 17). We did not observe an association of
genetically-predicted reproductive markers with skin colour or tan-
ning (Supplementary data 13). Taken together, these sensitivity ana-
lyses indicate that our main MR estimates are unlikely to be
substantially biased by population stratification, assortativemating, or
indirect genetic effects of parents.

Second, we explored the presence of bias due to pleiotropic
variants by using MR methods other than IVW: the weighted median
estimator andMR-Egger. Thesemethods can provide valid tests for the
presence of a causal effect under different (and weaker) assumptions
about the nature of the underlying horizontal pleiotropy compared to
IVW. Estimates from IVW and weighted median were consistent in
direction for most relationships between reproductive markers and
metabolic measures. In most instances, estimates from MR-Egger
method were uninformative given the high degree of uncertainty
(Supplementary Figs. 18–20).

Third, we assessed potential bias due to sample overlap from
including UK Biobank individuals in genetic association estimates for
both exposures and outcomes. This was achieved by using data from
previous GWAS that did not include UK Biobank, available for age at
menarche and age at natural menopause, to select SNPs (and genetic
associations estimates with exposures) for two-sample MR analyses
(Supplementary data 14). When using SNPs selected from previous
GWASes that did not include UK Biobank participants, results for of
age at menarche and age at natural menopause were largely con-
sistent, although less precise, compared to estimates from the main
analyses using data with overlapping samples (Supplementary Figs. 21
and 22).

Discussion
Our findings indicate that reproductive markers across women’s life-
span are associated with distinct metabolic signatures in later life. Age
at menarche, parity and age at natural menopause were related to
numerous metabolic measures, representing multiple dimensions of
metabolism, including amino acids, fatty acids, glucose, ketone bod-
ies, and lipoprotein metabolism.

Age at menarche
Age atmenarche is frequently used as a proxy of puberty onset among
females in epidemiological studies2,28. Our findings for the relation of
age at menarche with metabolic measures were broadly concordant
between multivariable regression and MR analyses, and were suppor-
tive of older puberty onset being related to a less atherogenic meta-
bolic profile among adult women.

Both multivariable regression and MR estimates were markedly
attenuated when accounting for adult BMI for most metabolic mea-
sures with few exceptions (e.g. glutamine and glycine), suggesting that

the effect of age at menarche on adult metabolites are largely
explained by adult BMI. There is evidence of a bidirectional relation-
ship between puberty timing and adiposity, where pre-pubertal adip-
osity influences puberty timing, which in turn influences post-pubertal
adiposity13,28,29. In addition, genetic variants influencing age at
menarche are known to influence BMI before and after puberty28,29.

The complex relationship between puberty timing and adiposity
complicates inferences of the effect of age at menarche on the meta-
bolic profile or disease risk in adulthood since the observed associa-
tions could reflect adult BMI mediating the effect of early age at
menarche on metabolic measures or a confounding path from pre-
puberty BMI. A previous one-sample MR study28 investigating the
effect of age at menarche on NMR metabolic measures reported that
results were largely attenuatedwhen accounting for BMI at 8 years old,
which suggests that the estimated effect of age at menarche on the
metabolic profile is largely confounded by pre-pubertal adiposity,
though larger MR studies with repeat BMI and metabolic profiles
before and after menarche are needed to rule out a potential causal
mediated effect (i.e. older age at puberty resulting in higher BMI and,
as a result, an atherogenicmetabolic profile). In our study, accounting
for self-reported adiposity in childhood in multivariable regression
models did not substantially change effect estimates. This discrepancy
might be related to residual confounding in our study (e.g. due to
higher measurement error in our measure of childhood adiposity) or
different age distributions between ours (mean= 55 years) and this
previous study (mean = 18 years).

Parity
Pregnant women undergo marked changes in physiology (e.g. lipid/
glucosemetabolism, adiposity, vascular function, hormone levels, and
inflammatory response) and lifestyle (e.g. diet and physical activity30),
most of which return to their pre-pregnancy state after delivery20,30.
However, there are concerns that some of these changesmight persist
and accumulate over multiple pregnancies, impacting women’s car-
diovascular health in the future, or that pregnancy acts as a stress test,
unmasking an underlying high risk for cardiovascular disease30,31. We
used parity as a marker of being exposed to the physiological stress of
multiple pregnancies.

In multivariable regression analyses, we found that higher parity,
defined as number of children ever born, was associated with unfa-
vourable changes in the metabolic profile (e.g. higher number of par-
ticles and lipid content in VLDL). Evidence from MR analyses is
uncertain due to the high imprecision in effect estimates. Using males
as a negative control, we showed that the associations between num-
ber of children ever born and metabolic measures among men were
largely null for lipoprotein-related measures. This inconsistency
between female and male findings reinforces that the metabolic sig-
nature associatedwith parity among females is likely to reflect a causal
effect of parity on themetabolome rather than spurious results due to
confounding or selection bias (assuming confounding structures and
selection mechanisms are similar between men and women). A possi-
ble mechanism is that higher parity leads to greater insulin resistance
in pregnant women and subsequently increases the production and
secretion of hepatic triglycerides, which can lead to an increased lipid
content in VLDL particles.

In line with our findings, other studies have reported that higher
parity is related to higher cardiovascular disease risk in women32.
Negative control analyses (comparing associations of number of chil-
dren in women and men) have been conducted previously in two UK
cohorts, with one suggesting that associations with lipids and body
composition inwomenmaybedue to confounding (as associations are
similar in women and men)33,34 and the second, the largest of these
studies to date, and the only one to look at disease end points, finding
evidence of a stronger association for risk factors and coronary heart
disease in women thanmen suggesting parity itself has some influence
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on cardiovascular disease risk5, Furthermore, studies in women only
that are able to control for pre-pregnancy measures, suggest preg-
nancy and parity have a potentially lasting effect on adverse lipid
profiles35,36.

Age at natural menopause
Observational studies suggest that menopause is associated with a
worse cardiometabolic profile over and above chronological
aging.21,37–41 Previous cross-sectional39 and longitudinal studies21,40,42

indicate that the menopause transition is associated with a shift
towards a more atherogenic lipoprotein profile, such as characterised
by higher concentration of apolipoprotein B and LDL-cholesterol, and
possibly higher circulating glucose40 and inflammatory markers21,39,40.
In addition, females experience a marked change in their metabolic
profile at the age of late 40s and early 50s, which is not observed in
males39, providing further support for a role of menopause.

In our study, we focused on age at natural menopause as an
indicator of reproductive aging. Findings from multivariable regres-
sion andMR were supportive of older age atmenopause being related
to lower systemic inflammation, as indicated by GlycA. On the other
hand, MR indicated that older age at menopause is related to lower
glucose and a less atherogenic lipoprotein profile (e.g. lower circulat-
ing apolipoprotein B and LDL-cholesterol) in line with previous stu-
dies, whilemultivariable regression did not support that. Multivariable
regression results should be interpreted with caution as it was not
possible to include ~40% of women, who did not have data on age at
natural menopause, mostly due to being premenopausal (25%) or
having a surgical menopause (12%). In addition, multivariable regres-
sion estimates were attenuated when excluding women reporting
statins intake at baseline. In sensitivity analyses, we observed that
multivariable regression and MR estimates are fairly consistent when
stratified by chronological age, with older age at menopause being
related to lower LDL-cholesterol in youngerwomen (≤50 y) but slightly
higher LDL-cholesterol in older women (>58 y).

Previous longitudinal studies indicated that LDL-cholesterol40 and
related traits increase sharply through the menopause transition and
early postmenopausal years and then plateau with increasing post-
menopausal years43 This is in line with our cross-sectional analyses, in
which we observed a non-linear pattern for several metabolites, such
that mean metabolite levels increase linearly with age at menopause
until 50–55 years old and then decline. Taken together, these findings
might explain the pattern by chronological age in the association
between timing of menopause and LDL-related traits. Menopause is a
continuousdynamicprocess of progressive decline in ovarian function
and circulating oestrogen levels. Therefore, we speculate that, among
younger women (≤50 y) at baseline, those reporting a younger age at
menopause are more likely to have fully experienced the menopause
transition at the study baseline compared to those reporting an older
age at menopause who may still be perimenopausal, which could
explain the association between older age at menopause and lower
LDL-related traits in this younger age group.On the other hand, among
women older than 58 years at baseline, most will have experienced the
full menopausal transition; in this age group, women reporting
younger age at menopause will have been postmenopausal for many
years, while women reporting older at menopause might still be in
their early postmenopausal years, whichmight explain the association
between older age at menopause and slightly higher LDL-related traits
in this age group. In addition, we hypothesised these results could be
related to higher intake ofmedications among older women, however,
the chronological age-patterned results did not change substantially
when excluding women reporting using statins or HRT at baseline. We
note that such findings should be interpreted with caution given the
lack of granularity in how we defined statins and HRT treatment and
thepotential for collider stratificationbias44. Although these results are
intriguing, larger longitudinal studies with longer follow-up will be

needed to tease apart the complex nature, and possible time-varying
effect of reproductive aging on metabolic profiles.

The largest two-sampleMRanalysis to date indicate that older age
at menopause is related to lower risk of type 2 diabetes in females, but
no difference in risk of cardiovascular disease or dyslipidemia (data
combining males and females)45. This is in agreement with our MR
analyses suggesting older age at naturalmenopause is related to lower
glucose, and with evidence from randomised controlled trials of oes-
trogen therapy pointing to a protective effect on type 2 diabetes but
no change in risk of cardiovascular diseases46–48. The mechanisms
underlying the putative protective effect of older menopause on the
risk ofmetabolic diseases inMR studies is unclear, butmight reflect an
effect of exposure to sex hormones or of slower cell aging, given
genetic variants associated with age at natural menopause are highly
enriched for genes in DNA damage response pathways45,49. The con-
sistent results between MR of age at menopause and randomised
controlled trials of oestrogen therapy for type 2 diabetes indicates that
prolonged exposure to sex hormones is likely to be involved. More-
over, oestrogen regulates LDLparticle receptor and clearance from the
circulation50,51, meaning that the sharp decrease in levels of oestrogen
during menopause could plausibly explain some differences observed
between menopause and lipoprotein traits41.

Strengths and limitations
To the best of our knowledge, this is the largest study to examine the
long-term impact of key events in reproductive life on the multiple
metabolic measures in women. The use of large-scale metabolomics
data and the integration of multiple analytical approaches are key
strengths of our study as these allowed us to strengthen the inference
of the causal impact of these reproductive markers on the metabolic
health of females.

It is important to note that the validity of our findings rely on the
plausibility of the assumptions underlying each analytical approach.
For multivariable regression, we cannot exclude the possibility of bias
due to residual confounding, especially givenwewere unable to adjust
for key confounders in multivariable regression as measures of these
were not available at or before the exposure to reproductive factors.
For the use of negative controls, we rely on the unverifiable assump-
tion that residual confounding and selection bias are similar in females
and males analyses. It is plausible that factors relating to metabolites,
such as age, ethnicity, socioeconomic position, and BMI, relate simi-
larly to number of children in females and males and hence that con-
founding structures are similar. For MR, we have conducted extensive
sensitivity analyses supporting the validity of our results; however, we
cannot rule out the possibility of bias due to violations of the core
instrumental variable assumptions. In addition, MR analyses for parity
were uninformative given the low proportion of phenotypic variance
explained by the genetic instruments.

When assessing non-linearity, ourmultivariable regression results
were generally consistent between the main analysis model (assuming
a linear relationship) and categories for most metabolites. For meta-
bolites that showed evidence of non-linearity,many seemed to plateau
and decrease with older ages of menarche and menopause and simi-
larly with higher parity (however, this was also where we had the least
amount of data, which could be driving some of the non-linearity). We
were unable to fit non-linear associations in an MR framework given
this would requiremuch larger sample sizes; future studies with larger
sample sizes shouldbebetter powered to examinepotential non-linear
effects using MR and contrast those found in the multivariable
regression.

Whilst some key sources of biasmay remain in eachmethod, a key
strength of our study is exploring and focusing on results that are
consistent across the different methods. As the sources of bias differ
between the methods causal inference is strengthened where there is
consistency, as we see, for example, in associations between
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multivariable regression and MR for age at menarche, multivariable
regression and negative control analyses for parity and multivariable
regression and MR for age at natural menopause in relation to HDL-
relatedmeasures and GlycA (but not LDL-related and othermeasures).

Across all analytical approaches, we cannot discard the presence
of selectionbias fromusingUKBiobankdata given the low recruitment
rate of the study (5%) and inclusion of healthier/wealthier individuals
compared to the general UK population52. In addition, the metabolic
traitsmeasuredby theNMRmetabolomicsplatformcover a limited set
of metabolic pathways53, and, therefore, future studies including data
from more sensitive metabolomics techniques, such as mass spec-
trometry, may improve coverage of the metabolome and provide
insights into additional biological processes related to reproductive
events. Triangulating results across different methods is useful for
causal inference and where there are discrepant results it is important
to explore these. We have found that the discrepant results between
MR and multivariable regression for the association of age at meno-
pause with some of the metabolites (notably LDL-cholesterol and
related metabolites) are due to the exclusion of women with missing
data on age at menopause in multivariable regression and a potential
effect modification by chronological age in the association between
age at menopause and some metabolic measures. However, we
acknowledge we lack power to fully explore the mechanisms for this
given the current number of UK Biobank participants with NMR data.

Overall, we found supportive evidence that reproductive factors
may affect females’metabolic profile later in life. Evidence supporting
a relation between later pubertal timing and a less atherogenic meta-
bolic profilewas largely explainedby adultBMI, but studieswith repeat
assessment of metabolites and BMI are necessary to determine whe-
ther this reflects confounding by BMI or a causal effect of age at
puberty that is mediated by BMI. Findings linking higher parity to a
more atherogenic profile were supported by the negative control
analyses but imprecisely estimated in Mendelian randomisation. Evi-
dence supporting a relation between slower reproductive aging and a
less atherogenic metabolic profile was mostly observed among
younger women. These results could contribute to identifying novel
markers for the prevention of adverse cardiometabolic outcomes in
women and/or methods for accurate risk prediction.

Methods
This study was approved under UK Biobank Project 30418 and 81499.
UK Biobank received ethical approval from the Research Ethics Com-
mittee (REC reference for UK Biobank is 11/NW/0382).

Study participants
UK Biobank is a population-based cohort consisting of approximately
500,000 men and women recruited between 2006 and 2010 from
across the UK (age range at recruitment: 38 years to 73 years old)54. UK
Biobank participants have provided a range of information via ques-
tionnaires and interviews, including on sociodemographic, lifestyle,
health, and reproductive factors; as well as biological samples and
physical measures (data available at www.ukbiobank.ac.uk). A subset
of approximately 20,000 were selected for repeat assessment
between 2012 and 2013. A full description of the study design, parti-
cipants and quality control (QC) methods have been described in
detail previously55.

Reproductive traits
Women were asked a detailed set of questions about their reproduc-
tive health via a self-reported questionnaire. Parity was based on the
number of live births reported whilst in men number of children were
reported. Age at menarche and age at natural menopause were
reported in years. Age at natural menopause therefore excluded
women who had not yet gone through the menopause (N = 25,740)
because they were premenopausal (N = 15,418) or who had a surgical

menopause or other reason (N = 10,322). (Table 1, Supplemen-
tary data 3).

NMR metabolic measures
Metabolic traits were measured using a targeted high-throughput
NMRmetabolomics (Nightingale Health Ltd; biomarker quantification
version 2020)56. This platform provides simultaneous quantification of
249 metabolic measures, consisting of concentrations of 165 meta-
bolic measures and 84 derived ratios, encompassing routine lipids,
lipoprotein subclass profiling (including lipid composition within
14 subclasses), fatty acid composition, and various low-molecular
weight metabolites such as amino acids, ketone bodies and glycolysis
metabolites. Technical details and epidemiological applications have
been previously reviewed18,53. Pre-release data froma randomsubset of
126,846 non-fasting plasma samples collected at baseline or first
repeat assessment were made available to early access analysts.
121,577 samples were retained for analyses after removing duplicates
and observations not passing quality control (QC) (i.e. sample QC flag
Low protein, biomarker QC flag Technical error, or samples with
insufficient material). All metabolic measures were standardised and
normalised prior to analyses using rank-based inverse normal
transformation.

Clinical chemistry measures
We used data on the eight biomarkers assayed using clinical chemistry
techniques, as previously described57, that matched measures in the
NMR metabolomics platform — i.e. albumin, apolipoprotein A1, apo-
lipoprotein B, glucose, HDL-cholesterol, LDL-cholesterol, total cho-
lesterol, and triglycerides. These measures are available in most UK
Biobank participants and were used in Mendelian randomisation ana-
lyses, as described under ‘Statistical analyses’, to increase statistical
power and check agreement with results from NMR metabolic mea-
sures. All biomarkers were standardised and normalised prior to ana-
lyses using a rank-based inverse normal transformation.

Summary data on genetic associations withmetabolicmeasures
Genotype data was available for 488,377 UK Biobank participants, of
which 49,979 were genotyped using the UK BiLEVE array and 438,398
using the UK Biobank axiom array. Pre-imputation QC, phasing and
imputation are described elsewhere58. Genotype imputation was per-
formed using IMPUTE2 algorithms59 to a reference set combining the
UK10Khaplotype andHRC referencepanels60. Post-imputationQCwas
performed as described in the “UK Biobank Genetic Data: MRC-IEU
Quality Control” documentation61. Genetic association data for meta-
bolic measures was generated using the MRC IEU UK Biobank GWAS
pipeline62. Briefly, we restricted the sample to individuals of ‘European’
ancestry as defined by the largest cluster in an in-house k-means
cluster analysis performed using the first 4 principal components
provided by UK Biobank in the statistical software environment R
(n = 464,708). Genome-wide association analysis (GWAS) was con-
ducted using linear mixed model (LMM) association method as
implemented in BOLT-LMM (v2.3)63. Population structure was mod-
elled using 143,006 directly genotyped SNPs (MAF >0.01; genotyping
rate > 0.015; Hardy–Weinberg equilibrium p-value < 0.0001 and LD
pruning to an r2 threshold of 0.1 using PLINKv2.00). Models were
adjusted for genotyping array and fasting time and were restricted to
the subsample of women.

Covariables
For multivariable regression analyses, confounders were defined a
priori based on them being known or plausible causal factors for
reproductive traits and cardiovascular risk via higher/lower metabo-
lites. A minimal set of adjustments were made in the main multi-
variable regression analyses as most confounders were not assessed
prior to or around when the reproductive traits occurred. Specifically,

Article https://doi.org/10.1038/s41467-023-44459-6

Nature Communications |         (2024) 15:1103 11

http://www.ukbiobank.ac.uk


we adjusted for education as a categorical variable (University, A-
levels, O levels (or equivalent) or other), age at baseline and retro-
spectively reported body size at age 10 (average, thinner, plumper) in
all regression analyses. In additional analyses we also partially adjusted
for the full set of defined confounders using baseline measurements
(mostly after the occurrence of exposures) as correlates of the before
exposure measures (see below in statistical analyses).

Statistical analyses
We used multiple approaches (i.e. multivariable regression, negative
control andMR) relying on different assumptions to explore the causal
role of reproductive traits on later life metabolic profile. Information
on ‘Statistics & Reproducibility’ is provided at the end of this section.
All analyses were conducted using Stata16 (StataCorp, College Station,
TX) or R 4.1.1 (R Foundation for Statistical Computing, Vienna, Austria)
and results presented as differences in means for each metabolic trait
in standard deviation (SD) units per 1 child difference for number of
children and per 1 year difference for age at menarche and age at
menopause, facilitating the comparison of results from different
methods.

For bothmultivariable andMRanalyses,we corrected formultiple
testing using the Bonferroni method considering 3*18 = 54 indepen-
dent tests (P =0.05/54≈0.00093). This was based on the three expo-
sures included in our analyses (i.e. age at menarche, parity, and age at
natural menopause) and the 18 independent features explaining over
95% of variance in the highly correlated NMR metabolic measures in
our dataset as estimated by principal component analysis64.

Multivariable regression. In the main analyses we used linear
regression, with three sets of models: (1) no adjustments, (2) adjusted
for education, age at baseline and body composition at age 10 and (3)
model (2) additionally adjusted for baseline variables collected at the
first assessment at (mean) age 56 years (SD=8) including BMI, smoking
and alcohol status. By adjusting for the baseline variables at the first
assessment we can either block the confounding path or create bias if
these variables are mediators. If the results change between model (2)
and (3) it is hard to distinguish whether its the correct adjustment for
confounding or whether it is a mediated path. Because of this we
considered model (2) to be the best causal estimate and present
models (1) and (3) in supplementary material. For age at menarche,
education will have been measured after the exposure. However, as it
is influencedbyparental education, incomeandoccupation (occurring
before menarche), and unlikely to be determined by age at menarche,
we a priori considered it as a proxy of early life65. In sensitivity analyses
we assessed whether there was a non-linear relationship between each
reproductive trait and non-derived metabolites. For ease of presenta-
tion, we excluded measures that were derived (eg ratios) or related to
lipoprotein subfractions as these are highly correlated with one or
more of the 55 non-derivedmetabolites.We compared the categorised
reproductive trait entered into the model as a categorical variable and
as a continuous variable using a likelihood ratio test. Age at menarche
and age at menopause were categorised into tertiles (<13, 13–14, >14
years) and quartiles (<49, 49–50, 51–53, >53 years), respectively. Parity
was categorised as 0, 1, 2, and 3+. Results were plotted against the first
reference category and the p-value for linear trend reported. For any
metabolites that showed evidence of non-linearity, restricted cubic
splines (with either 3, 4, or 5 knots placed at percentiles as suggested
by Harrell66 for each reproductive trait) were fit and compared to the
main analysismodel (assuming a linear association) using AIC (BIC and
root mean square error also shown).

Negative control analyses. Negative control analyses aim to emulate
a condition that cannot involve the hypothesised causal mechanism
but is likely to have similar sources of bias thatmay have been present
in the association of interest5,27. We used males as negative controls to

assess potential biases in the association between parity (proxied by
number of live births) and metabolic measures in women. If associa-
tions betweennumber of live births andmetabolicmeasures inwomen
reflect a causal effect of parity on women’s metabolic health, one
would expect number of live births to be associated with metabolic
measures in women but not in men, given men do not experience
pregnancy. Similar to themultivariable regression analyses,we test the
association between number of children (men) and their measured
metabolites and present three sets of models: (1) with no adjustments,
(2) adjusted for education, age at baseline and retrospectively self-
reported body composition at age 10 and (3) model (2) additionally
adjusted for baseline variables collected at the first assessment at
(mean) age 56 years (SD = 8) including BMI, smoking and alcohol
status.

Mendelian randomisation. We used two-sample MR to explore the
effect of older age atmenarche, higher parity, and older age at natural
menopause on women’s metabolic profile. Publicly available GWAS
summary data were used for SNP-reproductive traits associations
(sample 1) and UK Biobank summary GWAS data for SNP-metabolite
associations (sample2). This approachdoes not require all participants
to have data on both exposure and outcome, and, therefore, allows us
to retain the largest possible sample sizes, meaning that power to
detect a causal effect is increased67.

Selection of genetic instruments
Age atmenarche. Genetic instruments were selected from a GWAS of
age atmenarche,which included 329,345womenof Europeanancestry
(Supplementary data 14)68. Linear regression models were used to
estimate the association betweengenetic variants and age atmenarche
(in years) adjusting for age at study visit and study-specific covariables.
For our analyses, we selected the 389 independent SNPs reported by
the GWAS to be strongly associated with age at menarche (P-
value < 5*10-8) in the discoverymetanalyses. Given the age atmenarche
GWAS included UK Biobank participants (maximum estimated sample
overlap: ~20%), we have also selected an additional set of age at
menarche-associated genetic variants (N = 68 SNPs) using data from a
previous GWAS that did not include UK Biobank (details in ‘Sensitivity
analyses’ below and Supplementary data 14)69.

Parity. Genetic instruments were selected from a GWAS of number of
children ever born, as a proxy of parity, which included 785,604 men
and women of European ancestry from 45 studies (Supplementary
data 14)70. Number of children ever born was treated as a continuous
measure and included both parous and nulliparous women. Linear
regression models were used to estimate the association between
genetic variants and number of children ever born adjusting for prin-
cipal components of ancestry, birth year, its square and cubic, to
control for non-linear birth cohort effects. Family-based studies con-
trolled for family structure or excluded relatives. The sex-combined
metanalysis also included interactions of birth year and its polynomials
with sex. For our analyses, we used the 32 independent SNPs reported
by the GWAS to be strongly associated with number of children ever
born (P-value < 5*10-8) in either the sex-combined (28 SNPs) or female-
specific (4 SNPs) metanalyses and summary association data from the
female-specific metanalyses. The GWAS included UK Biobank (max-
imum estimated sample overlap: 14%).

Age at naturalmenopause. Genetic instruments were selected from a
GWAS of age at natural menopause conducted in 201,323 women of
European ancestry (Supplementary data 14)17. Linear regression mod-
els were used to estimate the association between genetic variants and
age at natural menopause (in years). For our analyses, we selected 290
SNPs reported by the GWAS to be strongly associated with age at
natural menopause (P-value < 5*10-8). Where available, we used
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association data from the sample combining discovery and replication
stages (N = 496,151). Given the age at menarche GWAS included UK
Biobank participants (maximum estimated sample overlap: 13% con-
sidering the GWAS combined discovery and replication samples), we
have also selected an additional set of age at natural menopause-
associated genetic variants (N = 42 SNPs) using data from a previous
GWAS that did not include UK Biobank (details in ‘Sensitivity analyses’
below and Supplementary data 14)49.

Main analyses
We used a standard two-sample MR method, the inverse variance
weighted (IVW) estimator, to explore the effect of age at menarche,
parity and age at natural menopause on women’s metabolic profile by
combining genetic association estimates for reproductive traits
(extracted from published GWASes data) with genetic association
estimates for the metabolic measures (generated from UK Biobank
data). Given a priori evidence of a potential bidirectional relationship
between age at menarche and BMI, we also used multivariable IVW to
test the effect of age at menarche on metabolic measures accounting
for adult BMI. For multivariable IVW analysis, apart from the data
previously described, we used summary genetic association data for
BMI extracted from the 2015 metanalysis by the GIANT consortium
(N = 339,224 individuals not including UK Biobank participants)71.

Sensitivity analyses
Several sensitivity analyses were conducted to explore the plausibility
of the three core MR assumptions, which are required for the method
to provide a valid test of the presence of a causal effect.

Assumption 1: the genetic instrumentmust be associatedwith the
reproductive trait. We selected genetic variants reported to be
strongly associated with reproductive in the largest available GWAS
and estimated the proportion of phenotypic variance explained (R2)
and F-statistics for the association of SNPs with reproductive traits
among females as an indicator of instrument strength.

Assumption 2: the association between genetic instrument and
outcome is unconfounded. One of the main motivations for using MR
is to avoid unmeasured confounding. However, there is growing evi-
dence that, in some instances, MR studies can be confounded when
using data from unrelated individuals due to population stratification,
assortative mating and indirect genetic effects of parents72,73. We used
two approaches to explore whether these were likely to bias our main
results. First, we used sex-combined data from a recent within-sibship
GWAS, including up to 159,701 siblings from 17 cohorts, to test the
effect of genetic susceptibility to higher age at menarche, parity and
age at menopause on metabolic markers (i.e. LDL-cholesterol, trigly-
cerides, HDL-cholesterol, C-reactive protein, and glycated
haemoglobin)72. C-reactive protein and glycated haemoglobin were
used as proxies for inflammation and hyperglycaemia, respectively,
given GlycA and glucose were not available. Within-sibling MR designs
control for variation in parental genotypes, and so should not be
affected by population stratification, assortative mating and indirect
genetic effects of parents72–74. Second, we performed IVW on negative
control outcomes (i.e. skin colour and skin tanning ability) since these
could not conceivably be affected by the exposures and any evidence
for an association between reproductive traits and, these negative
control outcomes would be indicative of residual population stratifi-
cation in the exposure GWAS75.

Assumption 3: the genetic instrument does not affect the out-
come except through its possible effect on the exposure. A key vio-
lation of this assumption is known as horizontal pleiotropy, where
genetic variants influence the outcome through pathways that are not
mediated by the exposure76. We explored the presence of bias due to
horizontal pleiotropy by using other MR methods: the weighted
median estimator and MR-Egger. These methods can provide valid
tests of a causal effect under different (andweaker) assumptions about

the nature of the underlying horizontal pleiotropy. The weighted
median estimator requires that at least 50% of the weight in the ana-
lysis stems from valid instruments. The MR-Egger estimator assumes
that the instrument strength is independent of its the direct effects on
the outcome (i.e. INSIDE assumption).

In addition to the core assumptions, the two-sampleMRapproach
assumes that genetic associations with exposure and outcome were
estimated from two comparable but non-overlapping samples. We
restricted our analyses to European adult individuals to ensure that
samples were comparable. We assessed potential bias due to sample
overlap by conductingMRusing SNPs selected frompreviousGWASof
age atmenarche and age at naturalmenopause that did not includeUK
Biobank (Supplementary data 14).

Statistics & reproducibility
No sample size calculation was conducted for this analysis, as it was
based on secondary data from UK Biobank. We used phase 1 data on
metabolic traits assessed using a targeted high-throughput NMR
metabolomics platform (Nightingale Health Ltd; biomarker quanti-
fication version 2020). Pre-release data from a random subset of
126,846 non-fasting plasma samples collected at baseline or first
repeat assessment were provided, and after removing duplicates and
observations not passing quality control (QC), 121,577 samples were
retained for analyses. Duplicates (of those with repeated metabolite
measures) were removed from our final dataset and therefore all
analyses are based on independent observations. By definition we
excluded women who had not yet gone through the menopause or
who had a surgical menopause in the multivariable regression ana-
lyses for age at menopause. Whilst for the two sample mendelian
randomisation this includes all women’s genetically predicted age at
menopause. As this is a cohort study exploring reproductive traits it
is not possible randomise our exposures: age at menarche, parity,
and age atmenopause. However, in the regression analyses, based on
prior knowledge and the data, we controlled for as many con-
founders as possible using multivariable regression. In the main
analysis we adjusted for the following confounders: adjusted for
education, age at baseline and body composition at age 10. By doing
so, we aimed to ensure that our estimates of interest were influenced
mainly by the effects of the reproductive traits we were studying,
minimising potential bias from other factors. For the mendelian
randomisation analyses, conceptually this can be thought of as a
natural experiment where genetic variants instrumenting for expo-
sures are randomly allocated at conception. Sensitivity analyses
testing these assumptions were carried out. For example, in the
multivariable regression we present and compare three sets of
models each adjusting for different covariates. Blinding was not
applicable in this cohort study as the exposure information (age at
menarche, parity, and age at menopause) is inherent to the partici-
pants and is not influenced or altered by the study design (other than
through selection as described).

Additional analyses for age at naturalmenopause: exploring the
role of medication and chronological age
We performed further analyses to investigate reasons underlying dis-
crepant findings between multivariable regression and MR estimates
for some metabolic measures. These analyses were restricted to the
eight clinical chemistry biomarkers matching measures in the NMR
platform tomaximise statistical power since they have beenmeasured
in the full UK Biobank sample.

First, we hypothesised that discrepant findings were related to
differences in the sample used for multivariable regression, which
excludes women with missing data on age at menopause (hereafter
‘selected sample’), and two-sample MR, which includes women even if
they are missing data on age at natural menopause (hereafter ‘full
sample’). To test that, we compared estimates from multivariable
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regression on the selected sample to MR on both the selected sample
(one-sample MR) and full sample (two-sample MR).

Across analyses, we excluded women who were related, of non-
European ancestry, or did not pass the quality control for the genetic
data, as described in the MRC IEU QC pipeline - version 2 (https://doi.
org/10.5523/bris.1ovaau5sxunp2cv8rcy88688v) (‘full sample’ =
208,062). Formultivariable regression andone-sampleMR, the sample
was further restricted to the ‘selected sample’, consisting of women
with complete data on age at menopause, education, age at baseline
and body composition at age 10 (N = 123,278). For two-sample MR, all
women, regardless of missing data on age at natural menopause, were
included when estimating the instrument-outcome association,
although women with missing data on age at natural menopause were
inherently excluded when estimating the instrument-exposure
association.

Multivariable regressionmodels were adjusted for education, age
at baseline and body composition at age 10. For the MR analyses, we
derived a weighted polygenic score (PGS) for age at menopause
including the SNPs andweights from the sameGWASused for themain
analyses (Supplementary data 14). One-sample MR was performed
using two-stage least square regression, accounting for the genotyping
array and the top 40 principal components of ancestry. Two sample
MRwas performed using theWald ratio estimator of the PGS-outcome
association by the PGS-exposure association estimates adjusted by
genotyping array and the top 40 principal components of ancestry.

These multivariable regression, one-sample and two-sample MR
analyses were performed on the combined sample and on four sub-
groups defined by chronological age (≤50 y, >50 y & ≤58 y, >58 y & ≤63
y, and >63y).

In addition, we repeated these analyses after excluding women
reporting at baseline use of statins, derived from data field 20003
(codes: 1140861958, 1140888594, 1140888648, 1140910632,
1140910654, 1141146234, 1141192410) or hormone replacement ther-
apy (HRT), derived from data field: 3546.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank received ethical approval from the Research Ethics Com-
mittee (REC reference 582 for UK Biobank is 11/NW/0382). The NMR
metabolomic data is available within UK Biobank The current analysis
was approved under UK Biobank Project 30418 and 81499. Bonafide
researchers can request access to UK Biobank data via the Access
Management System (AMS). The age at menarche, age at natural
menopause and number of children were obtained from https://www.
nature.com/articles/ng.384168, https://www.nature.com/articles/
s41586-021-03779-745, and https://www.nature.com/articles/s41562-
023-01528-670, respectively. Please see Supplementary data 14 for
more information, respectively. Source data are provided with
this paper.

Code availability
Analysis scripts and the analysis plan can be found on the following
GitHub page: https://github.com/gc13313/nmr_repro. https://doi.org/
10.5281/zenodo.10371915.
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