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Iterative design of training data to control
intricate enzymatic reaction networks

Bob van Sluijs1, Tao Zhou 1 , Britta Helwig1, Mathieu G. Baltussen 1,
Frank H. T. Nelissen1, Hans A. Heus1 & Wilhelm T. S. Huck 1

Kineticmodeling of in vitro enzymatic reaction networks is vital to understand
and control the complex behaviors emerging from the nonlinear interactions
inside. However, modeling is severely hampered by the lack of training data.
Here, we introduce a methodology that combines an active learning-like
approach and flow chemistry to efficiently create optimized datasets for a
highly interconnected enzymatic reactions network with multiple sub-
pathways. The optimal experimental design (OED) algorithm designs a
sequence of out-of-equilibrium perturbations to maximize the information
about the reaction kinetics, yielding a descriptive model that allows control of
the output of the network towards any cost function. We experimentally
validate themodel by forcing the network to produce different product ratios
while maintaining a minimum level of overall conversion efficiency. Our
workflow scales with the complexity of the system and enables the optimiza-
tion of previously unobtainable network outputs.

Living cells rely on enzymatic reaction networks (ERNs) to produce
energy and building blocks to support cellular processes. Evolution
has shaped these ERNs into interconnected sub-pathways to generate
multiple outputs from multiple inputs, driving product formation
across complex kinetic landscapes. Recently, significant progress has
been made in reconstituting ERNs in vitro with the aim of building a
cell from the bottom up1–4, or to produce value-added chemicals from
sustainable substrates as an advanced biotechnology5–8. However,
most of these networks typically do not capture one of the essential
features of biological ERNs, where several interconnected sub-
pathways function simultaneously to generate multiple outputs.
Controlling such networks remains challenging due to the lack of
sufficiently informative experimental datasets that can be utilized to
train kinetic models which trace the dynamic properties of large ERNs
and enable on-demand design9,10.

Typically, the optimization of ERNs towards specific outcomes,
like increasing the overall efficiency, is achievable by searching a large
combinatorial space of inputs andmeasuring the product formation of
the ERN. Experimentally, this is prohibitively time-, labor-, and cost-
intensive11. Recently Pandi et al. have shown that such a screening
process could be significantly improved by an AI based active learning
protocol12. Additionally, promising advances have been published

recently, utilizing machine learning to derive and individual reaction
mechanisms from large datasets9,10,13–15. Yet, these black box approa-
ches are limited in their ability to guide the design of large ERNs,
however they are often very adept at mapping a specific region of the
input output space, but not the entire space (the entire kinetic land-
scape). Kinetic models based on ordinary differential equations can
track all the intermediates through time by explicitly formulated
reaction rates and hence are especially powerful in guiding the opti-
mization of complex ERNs16. In the context of larger networks, para-
meterizing these models is challenging. Not every interaction can be
observed which complicates the identification of individual rates.
Training data often relies on steady state batch experiments where a
single combination of control inputs is tested. These experiments tend
to be kinetically non-informative and are not sufficient to approximate
the kinetic landscape of complex ERNs. To address this, time-course
datasets which track the responses of ERNs to controlled perturba-
tions are needed. This is demonstrated by both Shen et al. and Hold
et al. in both batch and flow respectively, who characterized networks
by adding the enzymes sequentially and measuring the change in
product formation17–19. However, as the complexity and scale of anERN
increases (substrate competition, allosteric interactions, feedback
loops, futile cycles, etc.) choosing a set of perturbations intuitively
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such that we obtain relevant information about the kinetic landscape
becomes increasingly difficult.

Here, we present a generalizable method that trains a kinetic
model iteratively, by adding new andmore informative experiments to
a training dataset in eachoptimization cycle (akin to active learning). It
incorporates an optimal experimental design (OED) algorithm that
evolves a sequence of out-of-equilibrium perturbations to be maxi-
mally informative. We subsequently test the utility of the model by
using the experimental outcomes of these perturbation experiments
as test data for the previous iteration of the model. Using this
approach,wedemonstrate that a limitednumber of design iterations is
enough to obtain data of sufficient quality to map the kinetic land-
scape of the ERN and obtain a measure of control over it as a multi-
input multi-output (MIMO) system in vitro.

Results
Overview of the nucleotide salvage pathway
The in vitro ERN constructed in this work derives from the nucleotide
salvage pathway (Fig. 1a), which regenerates nucleotides for cellular
processes by recovering bases and nucleosides from the degradation
of RNA and DNA. The network starts with phosphoribosyl pyropho-
sphate (PRPP), which can be converted from glucose via the pentose
phosphate pathway and is coupled by the enzyme UPRT and APRT to
nucleobases uracil and adenine, respectively, to form the monopho-
sphate nucleotides UMP and AMP. For solubility reasons we did not
include guanine as a nucleobase and started fromGMP.UMP,GMP and
AMP are subsequently converted to their corresponding diphosphate
nucleotides (NDPs) by enzymes UMPK, GMPK and AK, respectively,
using ATP as cofactor. Finally, NDPs are converted to NTPs by a single
enzyme, PK. In total, this system consists of six enzymes catalyzing
eight reversible reactions, where PK is shared between three sub-
strates, and resource competition for ATP, PEP and PRPP throughout
the network. Previous works demonstrated all these enzymes could
function in one pot to synthesize labeled nucleotides with an excess

amount of the key compound20–22, yet the overall performance is poor,
controlling multiple state outputs remains a challenge, this requires
the guidance of a kinetic model with sufficient resolution.

Kinetic model of the nucleotide salvage pathway
Translating the reactions of the ERN into a coarse grained model
of ordinary differential equation (ODEs), resulted in an ODE sys-
tem of 15 equations with over 40 kinetic rates (for a full
description of the model and coarse graining process see sup-
plementary information 2). Generally, choosing the right model
can be challenging (Fig S5-11), large enzymatic reaction networks
require more parameterization, this can cause the model to
overfit the training data, reducing its predictive power. This
parameter problem is present in all models, but with ODEs it can
be viewed from the perspective of a parameter’s forwards sensi-
tivity to the observed species (Fig. 1b)23. These sensitivities map
onto the contribution a parameter has to the observed rates of
change over time (Supplementary information 1.6eq.6). When
these sensitivities correlate with one another, the observations
can be approximated by the model by modifying both rates
simultaneously. A positive correlation between the forward sen-
sitivities of kinetic rates implies a similar effect on the rate of
change of the observed species, thus the model can fit the data by
increasing the value of one rate whilst decreasing the value of its
partner, a negative correlation implies an opposing effect on the
rate of change, thus, to fit the data the kinetic rates need both to
either increase or decrease.

This unidentifiability means many combinations of kinetic
rates can approximate the data (not just the ‘true’ rates), which in
turn leads to prediction errors as the experimental conditions
change from those used to generate the initial training data23–25.
Thus, experimental data can be deemed uninformative if the
inability to discern which reactions contribute most to the flux of
a species at a specific time and results in prediction errors as
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Fig. 1 | Overview of the nucleotide salvage pathway and kinetic model para-
meter sensitivities to observed species. a Reaction scheme of the in vitro
reconstructed part of the nucleotide salvage pathway. The network consists of 6

enzymes and 15 substrates/products, resulting in a set of ODEs containing over 40
kinetic parameters. b Positive and negative correlations between the forward
sensitivities between the kinetic parameters with respect to the measured output.
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conditions change. Generally, it is easier to completely identify
rates in simplified models, but their quantitative predictive power
will be limited as mechanistic assumptions are readily broken
(Supplementary information 2, Fig. S10). Conversely, detailed
mechanistic models are more descriptive but it is harder to
identify kinetic rates.

However, from a broadly practical perspective, precisely identi-
fying individual rates is not needed to control the behavior of anERN, a
model just needs to approximate the kinetic landscape adequately and
the remaining uncertainty needs to be manageable. To address this
efficiently, we adapted an active learning approach commonly applied
in machine learning with the singular goal of controlling ERNs. We
utilized optimal experimental design (OED) todesign experiments that
maximize information about the ERN in the data, and subsequently
train a kinetic model and tested its predictive power. This cycle was
repeated until the uncertainty around the predictionswas reduced and
they matched the experimental outcome.

OED and pulsing substrates into the flow reactor
We highlight this experimental workflow in Fig. 2a. First, all enzymes
were individually immobilized on microfluidically produced hydrogel
beads with a diameter of 50μm26. The activity of each enzyme after
immobilization was measured separately. Next, enzyme-loaded beads
were loaded into a microfluidic continuous stirred-tank reactor
(CSTR). The CSTR chamber itself has a volume of 100 μl and the flow
setup has six inlets for each of the input substrates uracil, GMP, ade-
nine, ATP, PEP, and PRPP and a single outlet (Fig. S15). Samples were
collected from the output at different intervals depending on the total
flow rates by a fraction collector and analyzed offline by ion-pair
HPLC27. The analysis of the chromatographic peaks provides a com-
positional pattern of eight input substrate, intermediates, and product
molecules (uracil, UMP, GMP, adenine, ADP, GTP, UTP, and ATP), each
changing at every input combination.

The optimal experimental design workflow is shown in Fig. 2b. In
step one a swarm/evolutionary algorithm evolves an input flow profile
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Fig. 2 | Overview of the experimental flow set-up and the iterative design of
training data to train a kineticmodel. a Schematic of the experimental workflow.
Enzymes are immobilized on gel beads and placed in CSTR with 6 inlets containing
different substrates The output is measured offline on an Ion paired HPLC, 8 spe-
cies (N = 1, indicated by the arrows, from left to right: uracil, UMP, GMP, adenine,
ADP, GTP, UTP, and ATP) can be observed over time. b Computational workflow to
design an information dense dataset and train a kineticmodel. In step one the OED

algorithm evolves control inputs (i.e. inflow rates of the 6 inlets) to be maximally
informative. In step two this data is added to a training dataset which is subse-
quently used to fit a model in step three, resulting in a range of possible parameter
values for each parameter (color). In step four we use the previous iteration of the
model to predict the outcome of the latest experiment, utilizing this round as
test data.
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for eachof the six inputs at three differentflowrates28,29. This algorithm
scores input patterns bymaximizing theD-Fisher information criterion
(Supplementary information 1.6eq.7)30. This criterion is obtained by
computing the determinant of the Fisher information matrix which is
derived from the parameter sensitivities (Supplementary informa-
tion 1.2eq.6). This metric maps onto the volume of the parameter
space where the ODE model can fit to the experimental data30,31. This
means the algorithm is driven to find a combination of input sequen-
ces that breaks the correlation between parameter sensitivities (if only
temporary). The transition between different total flow rates results in
different output compositions and serves as another control para-
meter that increases the information content about substrate con-
version fluxes in the data. At high flow rates input molecules and
monophosphates are detected (as only a fractionof substrate has been
converted); at low flow rates increased NTP formation is observed
(Supplementary information 2.3 Fig. S13 & S14). In step two this data is
added to a training dataset, the model is trained on this data in step
three. In step four the predictive power of the model is assessed by
using the previous iteration of the model to predict the current
experiment (test data), if the predictive power is not sufficient or no
longer improves, the cycle is terminated; if not, the cycle continues,
and the latest iteration of the model and database is used to design a
new experiment in step one32.

Iterative design of training data to build a kinetic model
A total of three iterations of the optimization cycle were performed
(excluding a calibration), each time exchanging the microfluidic chip,
altering the enzyme concentrations (Supplementary information 3.2
Fig. S17-S20). The lower and upper boundary of the concentration
ranges for the substrateswerebased on the enzymeactivity assays and
substrate solubility (Supplementary information 4.4 Fig. S24-S37). The
initial experiment (not part of the cycle) is manually designed and
‘calibrates’ the model (Supplementary information 3.2 Fig. S17). This
allows for the subsequent OED of an informative input sequence since
more knowledge about the system equates to better OED outcomes26.
To illustrate the non-intuitive character of the evolved input sequence
we show the substrate inputs of the final experiment of the optimi-
zation cycle (Fig. 3a) and the complexity of the time-course data
including model convergence (Fig. 3b).

We subsequently place these data in the context of the optimi-
zation cycle (Fig. 4). Figure 4a shows parameter distributions of the
model trained in thefirst iteration (top) and the parameter distribution
of the model trained in the third iteration (bottom). We note a sig-
nificant decline in the distribution width of most kinetic parameters
(Fig. S14). To demonstrate the improved predictive power of the
model, Fig. 4b compares the predicted outcomes (shaded area) of the
model trained after iteration one and iteration two of the OED cycle
(predicting the experiment performed in the third iteration shown in
Fig. 3). The second iteration of the model already shows a drastic
reduction in the variance around the prediction and highlights that the
model can approximate the behavior of the ERN quantitatively.

Trained model controls nucleotide salvage pathway in flow
This presents us with new opportunities for the third iteration of the
model, beyond traditional optimization schemes that often focus on
maximizing the yield of a single product. Here, we demonstrate how
we can use the final iterationof themodel to control aMIMO system to
achieve a range of more complex output states29,33. We opted to tune
the ATP/GTP/UTP output ratios whilst maintaining a minimal conver-
sion efficiency—defined as the percentage of nucleobases converted to
triphosphates—of 60%.

The outcome of this sampling process is shown in Fig. 5a, we
randomly generated 105 substrate input combinations, each input
combinationwas simulated twenty times using different combinations
of estimated kinetic rates. Every dot represents a different condition,

the color indicates the ratio between ATP/UTP/GTP. The 20 sets of
estimated kinetic rates –when simulated- predict different ATP, UTP,
andGTP concentrations. This is reflected by the y-axiswhich shows the
standard deviation of the predicted mean concentrations for these
simulations. It captures the certainty of the model and the likelihood
there will be a prediction error for a given set of input conditions. The
x-axis subsequently shows the conversion efficiency. We selected
seven experimental conditions representing seven ATP/UTP/GTP
ratios in Fig. 5a, including one repeated ratio (experiment 1 & 7) and
oneexperimentwith a lower conversionefficiency (experiment 3). This
experiment serves two purposes: first, to demonstrate that the model
can control a MIMO system and access a part of the output space that
requires an accurate map of the kinetics and finely tuned control
inputs (which is achieved by optimizing the ERN for different tripho-
sphate blends with a high conversion efficiency). Second, to identify
the operable space of the model, for which we test a range of total
input substrate concentrations along with compositional blends of
final products.

Figure 5b shows the predicted confidence interval of the final
yield, and the yield as measured on the HPLC. For experiments 1-5
uncertainties and total output concentrations vary but predictions still
match. For very low input concentrations of UMP, guanine, adenine,
and ATP in experiments 6 and 7, the predictions error increases even
though the simulated standard deviation is low. This relation between
the prediction error, quantified as the percentage the simulated mean
deviates from the HPLC measurement and the summed input con-
centration of the nucleobases is shown in Fig. 5c. It highlights that the
model can predict exact concentrations as long as the total con-
centration of substrate inputs is larger than 0.3mM. The cause can
likely be attributed to a decrease in the signal to noise ratio for the
HPLC measurement, leading to larger variations in the experimental
data (see Supplementary information table S1-2). To test this, we used
different models. More complex models which contained different
rate laws (Fig. S5-6) as well as combinations of allosteric interactions
reported in literature (Fig. S7). However, none of these models per-
formed better and prediction errors increased. This suggests that
these interactions do not play a significant role in this network, at least
not significant enough to overcome a potential overfit of the training
data. In contrast, reducing the complexity of the model increased the
prediction error significantly, we were able to confirm that reactions
catalyzed by the PK, UMPK, AMPK, and AK enzymes need to be rever-
sible, whereas UPRT and APRT can be considered unidirectional
(Fig. S8-11). In summary, this means that a total input concentration
0.3mM marks the practical boundary of the model trained on this
data, knowledge we can leverage to efficiently probe conditions in the
identified operable space.

Discussion
We have presented a methodology to design informative training data
and map the kinetic landscape of an ERN as efficiently as possible. By
designing sufficiently complex experiments wewere able to restrict the
combinations of potential kinetic rates such that they map onto real
product formation fluxes across a large input-output space. This space
could subsequently be sampled for any cost function. To highlight this
versatility, we opted to create different compositional blends of tri-
phosphate compounds which require not one butmultiple finely tuned
input conditions. Finally, we identify the operable space wherein the
model is useful and demonstrate that othermechanistic descriptions of
the systems reduce the predictive power of the model. This under-
scores that the active learning aspect of the OED pipeline is able to
balance the degree to which we parameterize the model, its mechan-
istic assumptions, and its predictive power within three iterations.

Thenumber ofOED iterations required to achieve thisdependson
both the complexity of thenetwork and thequality of the experimental
data. If the system is highly non-linear, more certainty about the rates
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will be needed as smaller deviations from the true value will result in
larger prediction errors. In contrast, very linear and orthogonal net-
works will likely require significantly fewer optimization cycles (and a
simpler model) to enable a form of MIMO control. Overall, this means
the pipeline can be utilized in different contexts as long as there is a
kineticmodelwith control inputs (in Fig. S1weprobed the applicability
of this software to larger systems, specifically by comparing CPU time
needed for the model presented here and the E. coli core metabolism
model). Process optimization for organic synthesis using design of
experiments in flow has been reported, most of which aim to deter-
mine the optimal operational conditions for one reaction34–36. So far
experimental design schemes have not been applied to multiple
organic reaction networks (or placed in the context of an active
learning cycle). However, there is no reasonwhy it cannot be applied to
train a kinetic model which provides more understanding and a high-
level of control over chemical reaction networks10,13.

In future work, more complex cost functions can be defined,
including the identification of key reaction mechanisms and interac-
tions by making the coarse graining process of the model an explicit
part of the active learning process. In this instance, the algorithm—

besides mapping the kinetic landscape- seeks to find input

combinations which either validate or invalidate mechanistic assump-
tions embedded in different models. Currently, we are able to dis-
criminate between different rate laws (broadly classifying them as
descriptive or not) and the inclusion of reaction reversibility, whereas
potential allosteric interactions did not seem to be present in amanner
that effected predicted outcomes. However, the differences were not
explicitly maximized by the algorithm, thus the observed difference in
predictive power was minimal in most cases37. Nevertheless our results
are promising, and are complimentary to other work that has shown
that black box models can identify the reaction mechanism of a single
reaction from bulk data14. Such approaches have not been reported in
the context of a biochemical network nor have they been embedded in
an active learning like approach which offers promise for the future.
Overall, we believe our pipeline is beneficial to all who seek to build
complex biochemical pathways with controlled inputs.

Methods
Materials
Enzymes adenylate kinase (AK) and pyruvate kinase (PK) and all che-
micals were purchased from Sigma and directly used without further
processes. Enzymes adenine phosphoribosyl transferase (APRT) and,
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Fig. 4 | Application of the iterative design of training data and its impact on
identifiability and the predictive power of themodel. aDistribution of fits of the
parameters including either only the first (number of datapoints N = 211) or the 3rd
iteration (number of datapoints N = 166, the box itself shows the quartiles where
middle boxes represent 50%, with a line showing themedian value. The whiskers of
the box show the highest and lowest values), the parameter set is included if the fit
score deviates no less than 15% from the best fit, the y-axis denotes the parameter

value, the catalysis rates are in mM/min, the Km values in mM. We note that after
new rounds are added the distributions of the parameters decreases. b) Prediction
of the last experiment (black triangles) in the dataset using the model trained on
the dataset obtained after the first (shaded blue) and second (shaded orange)
iteration of the cycle, we simulated the model using the best parameter sets
(N = 20), the shade area reflects the standarddeviation around themeanprediction.
Source data are provided in Source Data.
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uracil phosphoribosyl transferase (UPRT) were expressed and purified
as described by Arthur et al.38, Genes for guanosine monophosphate
kinase (GMPK) and, uridine monophosphate kinase (UMPK) were PCR
amplified from E. coli K12 using gene specific primers, cloned into
pET15b, expressed overnight at 30 °C (GMPK) and 18 °C (UMPK) in E.
coli BL21(DE3) and purified according to protocols modified from
Oeschger et al. 39 (GMPK) and Serina et al. 40 (UMPK) to accommodate
Ni2+-sepharose purification. Purified enzymes were dialyzed against
20mM potassium phosphate buffer (pH 7.2) prior to immobilization.
All the enzymes were immobilised on microfluidic produced hydrogel
beads, as reported26. After immobilization, all the enzyme-beads were
freeze dried and stored in -20 °C. 1mg of beads for each enzyme was
suspended in 31 ul IVTT buffer (pH 7.3, 9mM magnesium acetate,
5mM potassium phosphate, 95mM potassium glutamate, 5mM
ammonium chloride, 0.5mM calcium chloride, 1mM spermidine,
8mM putrescine, 1mM dithiothreitol, 10mM creatine phosphate). All
reactions were conducted in this so-called IVTT buffer at room
temperature.

Flow experiments setup
Cetoni Nemesys syringe pumps with Hamilton syringes were used to
control input and the flow profile was programmed using the Cetoni
neMESYS software26,41. Before performing the designed flow profile,
the whole system was equilibrium with buffer for two hours. The
outflowof the CSTRwas collected using a fraction collector, collecting

for either 30 or 15minutes or three droplets per fraction. The ion-pair
HPLC analysis was adapted from ref. 26 and performed on Shimadzu
Nexera X3 HPLC system with an Inertsil ODS-4 column (3μm,
150 × 4.6mm; GL Science) and a guard column (3μm; 10 × 4.6mm) at
40 °C. The elution gradient was as follows: 100% buffer A (100mM
potassium phosphate buffer (pH 6.4) with 8mM ion-pair reagent tet-
rabutylammonium bisulfate, filtered before use) for 13min; 0–77%
linear gradient of buffer B for 22min; 77–100% buffer B (70% buffer A
with 30% acetonitrile) for 1min; and 100% buffer B for 14min. The flow
rate was maintained at 1ml/min. Peaks were identified by comparison
with standard samples. The concentration was obtained from the
integrated peak areas with the calibration curve of each standard.

Software and modeling
An overview of the software that performs the optimizations can be
found in Supplementary Information 1. A generated text-based model
object25 is translated to an SBML and AMICI object modified from
ref. 28 and ref. 42 (Supporting information Fig. S1-S4). AMICI is anODE
compilation package to C + + which is continuously updated43–46. Sev-
eral publicly available tools integratewithAMICI45–49. This is needed for
the expanding repertoire of ever larger kinetic models (most
in vivo)50–54. To quantify the computational cost (and its general
application to larger systems) we tested the speed of the pipeline
presented on an in vivo metabolic core E. coli core metabolism model
(ref. 53) and placed it in the context of our in vitro reactor set-up (see

Simulation Data             HPLC Data
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Fig. 5 | Controlling the nucleotide salvage pathway as a MIMO system and
testing the model by predicting product ratios. a Shows the range of possible
different ratios given different substrate inflow rates, we opted to screen a large
space of experimental and select 7 ratios (number in circle) to test along a range of
summed substrate input concentrations (numbered spots). Each color is a simu-
lated ratio, the standard deviation is the simulated deviation around the predicted
mean (y-axis). The conversion efficiency is the predicted fraction of nucleobases
that is converted to a triphosphate. To calculate the efficiency of the adenine
conversion we first subtract the ATP concentration input from the measured ATP

output. b) shows the experiments, labeled 1-7, with both the simulated con-
centrations including confidence interval (N = 20, The box itself shows the quartiles
where middle boxes represent 50%, with a line showing the median value. The
whiskers of the box show the highest and lowest values) and the HPLC measure-
ment. The ratio between ATP (blue),UTP (gray), andGTP (green) are shown on top.
c) Shows the prediction error defined as the percentage the simulated mean
deviates from the HPLC data on the y-axis (averaging the error for the three tri-
phosphates) and the total concentrations of the input substrates on the x-axis.
Source data are provided in Source Data.
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Fig. S1). This test was run on a single core of Intel Xeon E5-1660 v4 @
3.2 GHz. For more information on the efficiency of AMICI itself (where
the bulk of the calculations are performed), we refer the reader to
refs. 43,44,55–57, or its, by now, numerous applications58–64.

Statistics & reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses; for the experimental data
shown in Fig. 5, the experimental conditions predicting specific ratios
were selected randomly after sampling 105 possible ratios of
ATP/UTP/GTP. Provided these ratios conformed to the required con-
version efficiency (60%) and the chosen set of conditions differed
sufficiently between the summed total inflow concentration of all
substrates to cover the largest possible space and test the model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. Source data
areprovidedwith this paper as a singular sourcedatafile, including the
time-dependent inputs and HPLC quantifications and parameter esti-
mates, archive https://doi.org/10.5281/zenodo.10411170. Source data
are provided in this paper.

Code availability
The package is written in Python 3.8 (python software foundation,
Delaware US). Code can be found at Huckgroup GitHub at http://
github.com/huckgroup/OED, code archived (see ref. 65), https://doi.
org/10.5281/zenodo.10411170 (2023). For more information contact
bob.vansluijs@gmail.com.
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