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The impact of exercise on gene regulation
in association with complex trait genetics

Nikolai G. Vetr 1 , Nicole R. Gay 1, MoTrPAC Study Group* &
Stephen B. Montgomery 1

Endurance exercise training is known to reduce risk for a range of complex
diseases. However, the molecular basis of this effect has been challenging to
study and largely restricted to analyses of either few or easily biopsied tissues.
Extensive transcriptome data collected across 15 tissues during exercise
training in rats as part of the Molecular Transducers of Physical Activity Con-
sortium has provided a unique opportunity to clarify how exercise can affect
tissue-specific gene expression and further suggest how exercise adaptation
may impact complex disease-associated genes. To build thismap, we integrate
this multi-tissue atlas of gene expression changes with gene-disease targets,
genetic regulation of expression, and trait relationship data in humans. Con-
sensus from multiple approaches prioritizes specific tissues and genes where
endurance exercise impacts disease-relevant gene expression. Specifically, we
identify a total of 5523 trait-tissue-gene triplets to serve as a valuable starting
point for future investigations [Exercise; Transcription; Human Phenotypic
Variation].

Endurance exercise is associated with multiple positive health
outcomes1,2. However, themolecular basis of these positive effects has
been challenging to study, with past work restricted to molecular
assays in either few or easily accessible tissues3. Even when prior dif-
ferential analyses have identified exercise-responsive genes, there is
often limited evidence for their shared molecular impact on disease.
To address this challenge, we have combined the extensive, multi-
tissue transcriptome data from the Molecular Transducers of Physical
Activity Consortium (MoTrPAC) preclinical endurance exercise train-
ing (EET) study in rats4 with data from the Genotype-Tissue Expression
(GTEx) project, where genetic differences in expression levels have
been previously connected to 114 traits and diseases from publicly
available GenomeWide Association Studies (GWAS) distributed across
several phenotypic and plausibly exercise-responsive categories5

(note: acronyms and abbreviations used in this paper are summarized
in Supplementary Table 1). The MoTrPAC EET study provided differ-
ential expression results after treadmill exercise training for both
female and male F344 rats, with multiple tissues harvested at 1, 2, 4,
and 8 weeks of training. All samples were harvested 48 h after the last

exercise bout, and the 8-week time point was taken to correspond to
the adapted state, as it allowed for the greatest degree of long-term
adaptation to exercise to have occurred, as well as the least degree of
unadapted acute response (eg inflammation). In rats, as in humans,
exercise capacity is a genetic trait with well-studied relationships
across a range of human-relevant complex traits and diseases6–8.
Combined, these data provided a cross-tissue, whole organism mole-
cular view of adaptation to exercise that is unattainable in human
participants.

To assess the relationship of exercise adaption and complex dis-
ease risk in distinct tissues, we applied a combination of heritability
and transcriptome-wide association study (TWAS) analyses (Fig. 1a).
These analyses are state-of-the-art in human genetics but have yet to
be broadly applied cross-species in the context of exercise adaption.
They allow us to investigate exercise adaptation genes and gene sets
for their relationship to specific complex diseases. We applied LDSC9,
which can accommodate linkage disequilibrium to estimate SNP-
heritability captured by sets of exercise adaption genes (h2

SNP)
10,

alongside MESC11, which incorporates both GWAS and Expression

Received: 1 February 2023

Accepted: 1 February 2024

Check for updates

1Stanford University, Stanford, CA, USA. *A list of authors and their affiliations appears at the end of the paper. e-mail: nikgvetr@stanford.edu;
smontgom@stanford.edu

Nature Communications |         (2024) 15:3346 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5690-731X
http://orcid.org/0000-0002-5690-731X
http://orcid.org/0000-0002-5690-731X
http://orcid.org/0000-0002-5690-731X
http://orcid.org/0000-0002-5690-731X
http://orcid.org/0000-0001-9138-9354
http://orcid.org/0000-0001-9138-9354
http://orcid.org/0000-0001-9138-9354
http://orcid.org/0000-0001-9138-9354
http://orcid.org/0000-0001-9138-9354
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45966-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45966-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45966-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45966-w&domain=pdf
mailto:nikgvetr@stanford.edu
mailto:smontgom@stanford.edu


Quantitative Trait Loci (eQTL) summary statistics to estimate the
proportion of h2

SNP mediated by gene expression within and across
tissues to assess the relationship between genetic variability and
adaptive exercise training response. Finally, we leveraged published
S-PrediXcan12,13 output, which estimates gene by tissue-level associa-
tions and directions of effect for specific diseases to identify genes
where changes in gene expression due to exercise adaptation have the
potential to alter disease risk.

Using these data and approaches, we identify gene and tissue
combinations where expression levels could mediate disease risk
and where exercise training had the potential to induce expression
differences capable of overwhelming the impact of human standing
variationmeasured in the GTEx study, both overall and with respect
to its genetic component. We further assess if specific diseases and
traits are enriched for genes differentially expressed in exercise
training, both in their overall occurrence and in their directionality
of effect. Combining these approaches, we identify specific genes
that lie at this intersection of biological relevance as candidates
where exercise effects could override expression-mediated dis-
ease risk.

Results
Exercise training has unique disease gene signatures across
tissues
Exercise training induces differential expression of rat genes across
multiple body tissues, and many of these genes can be mapped to
human orthologs: 94.5% of all unique, differentially expressed (DE)
genes (87–98% across tissues), and 79%of all expressed genes (85–93%
across tissues). However, most of these changes exhibit marked tissue
specificity. As observed in themainMoTrPACPASS1Bpaper4, we found
that after long-term exercise training, there was limited overall con-
cordance of adaptive differential expression across tissues in the
subset of rat genes with identifiable human orthologs (hereafter
‘genes’, unless otherwise noted). Only two pairs of tissues in females—
the skeletalmuscles vastus lateralis and gastrocnemius, aswell aswhite
adipose and the colon—produced Spearman’s ‘ρ’s at a level greater
than 0.3 (Supplementary Fig. 1b). Further, there was little overlap in
differentially expressed gene sets (DEGs) corresponding to each tissue
(Fig. 1b). Approximately 78% of DE genes were unique and differen-
tially expressed in only one tissue, and 95%of genesmatched atmost a
pair of tissues. Only one pair of tissues showed a Jaccard index >0.1

Fig. 1 | Tissue-specific differential gene expression from exercise impacts
unique sets ofdiseaseprocesses. In (a), we provide a general overviewof thework
described here, from human genetic and transcriptomic data and rats subjected to
an Endurance Exercise Training (EET) experimental perturbation to triplets of
causally entangled genes, tissues, and traits. In (b), we subset Differentially
Expressed (DE) Genes to just those determined to be DE at 8W in a sex-consistent

manner, and visualize their distribution and tissue-specific composition across
uniquely DE genes (genes DE in only one tissue), pairs (in two tissues), triplets, etc.
To check for overlap in these gene sets, we also plot the upper triangle of a Jaccard
Similarity matrix. In (c), we present alternative ways to characterize Open Targets
associations across these gene sets.
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(the gastrocnemius and the vastus lateralis, Jaccard Similarity ≈0.21).
This indicates that unique genes and pathways adapt to exercise
training in different tissues and likely impact different subsets of
disease-relevant genes. To this point, we observed 370 high-scoring
(Open Targets evidence score > 0.8, an arbitrary threshold chosen to
select gene × trait relationships with high levels of supporting evi-
dence) disease genes from 251 traits across our 15 surveyed tissues
(Fig. 1c) that were consistently responsive to exercise training in both
males and females, with an average of 18.2 genes per tissue. When we
excluded easily biopsied tissues such as blood, skeletal muscles, and
adipose, we found 178 well-established disease genes associated with
an adaptive exercise training response. This corresponded to 143 traits
and included 101 traits without any gene-trait associations in an easily
biopsied tissue. Notably, these included well-studied genes such as
LDLR (DE in {CORTEX, HIPPOC, SKM-GN, SKM-VL} and APOB (DE in
{COLON, KIDNEY, LUNG}), both confidently associated with hyperch-
olesterolemia; SLC6A8 (DE in {HEART, LIVER, LUNG}), associated with
creatine transporter deficiency; FOXP3 (DE in {HEART, SPLEEN}, asso-
ciated with immune dysregulation; and BRCA2 (DE in ADRNL), asso-
ciated with breast neoplasia.

Exercise effects on regulation of gene expression
We sought to identify where changes in gene expression due to exer-
cise training could potentially overcome either genetic or standing
variability measured in GTEx. Here, our hypothesis was that exercise
behavior may be more impactful than baseline variance or genetics at
these loci for the component of disease risk mediated by gene
expression. For each gene and tissue where we could detect non-zero
genetic h2

SNP (IHW α =0.10), we calculated genetic variance as the
product of the estimated heritability and observed total phenotypic
variance (Fig. 2). At 8W, we observed an average of 1 (range: 0–10)
genes per tissue in at least one sex with effect sizes in trained rat that
were > 2SD the genetic component of expression variability of the
matched sex inhumans (SDgeno), and 52 (range: 1–586) genes per tissue

with DE > 2SD overall expression variability (SDpheno), with the latter
set featuring ≈ 50 genes per tissue whose h2

SNP could not be sig-
nificantly distinguished from 0 after multiplicity adjustment. Inter-
secting these genes with Open Targets, we observed 30 unique > 2
SDpheno DE genes with > 0.8 evidence scores, though only 14 of these
were expressed in less accessible tissues. APOB was included in the
latter group, mentioned above (DE in male lung at ≈ +9.7 SDpheno, and
in the female colon at≈ +2.4 SDpheno).

Heritability of complex disease enriched in or near training-
responsive genes
We investigated whether exercise specifically modulates any traits or
diseases by building on a previous approach14 to identify these effects.
First, we computed the trait or disease heritability for gene sets that
were differentially expressed due to exercise training in each tissue at
8W in both sexes and in the same direction.We observed the strongest
magnitude of enrichments in blood phenotypes in the blood tissue,
especially traits corresponding to densities of immune cells (Fig. 3).

Across the 43 traits with at least one significant enrichment at
Bonferroni-adjusted α =0.05, the largest significant enrichment factor
corresponded most often to the spleen (22/43 ≈ 51%), especially in
Blood (9/14) and Immune (6/7) phenotypes, with an average enrich-
ment factor of ≈2.85 across significant enrichments. The proportion of
heritability captured by these gene sets is on the order of≈ 10%
(Supplementary Fig. 2a) and corresponds to broadly independent
signals across tissues (Supplementary Fig. 2b–c). This approach pro-
vides a general prioritization for assessing which traits or diseases
could be most impacted by exercise training. However, we performed
simulation experiments using randomly sampled gene sets of equiva-
lent size to our original tissue-specific gene sets. These produced
highly similar distributions of p-values to those observed for the
empirical data. As such, these results (Fig. 3) should be interpreted less
in the framework of null-hypothesis significance testing and more
descriptively, as a relative ordering of estimated magnitudes of effect.

Fig. 2 | Tissue-specific differential gene expression from exercise can exceed
natural variation. In this figure we visualize the procedure used to obtain Stan-
dardized Effect Sizes. In the numerator of (a) lies a truncated kernel density esti-
mate of the distribution of log2FCs induced by exercise at the 8w timepoint. A
stacked histogram of estimates for h2

SNP for expression scores from GTEx (p <0.10
after IHWcorrection) is on the left in the denominator. On the right are the inverse-
gamma distributions serving to regularize log2-normalized expression scores.
Together, this results in a value equal to the estimated genetic variance of
expression. Taking its square root yields a standard deviation, which we use to
divide exercise-induced log2FC. In (b), we plot the empirical quantile function for

distributions of ratios of each tissue’s exercise-induced log2(gene expression) /
SD(log2(gene expression)). As most of the interesting behavior is contained in the
tails of each distribution, we applied two separate transforms to the axes of each
plot. The horizontal axis, corresponding to a given quantile in (0,1), was logit-
transformed. The vertical axis, corresponding to the ratio of DE /
SD(log2expression), received an inverse hyperbolic sine transformation. The upper
panels are in units of standardized phenotypic effect, and the lower in units of
standardized genetic effect for those genes and tissues with significant non-zero
h2
SNP (IHW α =0.10, one-sided). Source data for this figure are provided as a Source

Data file.
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PrediXcan-significant genes overlap adaptive training-
response genes
We examined the intersection of genes that are differentially expres-
sed at “8w_F1_M1" and “8w_F-1_M-1” (i.e., sex- and direction-consistent
after 8 weeks of training) and IHW-significant PrediXcan hits (Fig. 4a).
We were able to identify substantial enrichment in many of the traits,
trait categories, tissues, and tissue-by-trait pairs through the use of a
hierarchical Bayesian model able to partially pool estimates of differ-
ence effects towards the means of their respective populations. Here,
we see confident (>95% posterior probability) enrichments across all
levels of the model hierarchy (Fig. 4e–g). Specifically, we observed
confident positive differences in the colon, kidneys, small intestines,
spleen, hippocampus, lungs, and heart, in order of decreasing pos-
terior mean, as well as in the Endocrine and Cardiometabolic cate-
gories. We also noted several specific trait enrichments across
cardiometabolicmarkers, mainly cholesterol and saturated fatty acids.
At the trait × tissue level, posterior output were broadly uncertain in
most pairs’ directionality of enrichment, with a smaller number
showing stronger confidence in positive enrichment (Fig. 4b).

Conversely, none of the frequentist analyses of this overlap pro-
duced significant results at FWER α =0.05 (-log10(0.05)≈ 1.30, one-
sided), with the most significant result corresponding to the multi-
tissue GSEA for high cholesterol at an adjusted p-value of ≈0.064
(Supplementary Fig. 3, ES ≈0.63, log2err≈0.48). However, results
were broadly concordant across the two approaches, and more
confident posterior distributions corresponded to lower frequentist
p-values, with intermediate positive Spearman’s ρs for pairwise and
trait-wise comparisons (Supplementary Fig. 3a–c). Frequentist meta-
analysis of tissue and trait-category enrichments were in less confident
agreement, with the latter showing mild disagreement, though at
p ≈0.53 (output from stats::cor.test in R).

Exercise induces both more and less disease-like differential
gene expression
To identify the direction of training effect in these intersecting gene
sets, we queried the posterior output from a secondmultilevel model,
visualizing posterior means for each tissue and tissue-by-trait combi-
nations as a dot plot (Fig. 5). Given the reduced capacity for signal in
these data (focal totals no longer being the set of DEGs, but the set of
DEGs∩ PrediXcan hits), we report on confident effects when a pos-
terior mass is >90% to one side of 0. As such, the strongest confident
mean enrichments for positive effects were observed in body fat per-
centage, asthma, and body mass index (BMI), and the strongest mean
depletions in standing height andhigh cholesterol, thoughof the latter
only standing height was “confident". Otherwise, body fat percentage
was the only trait with posterior difference >95% in either direction. As
traits varied in the degree to which they could be considered harmful
or beneficial, we could not evaluate gross tissue effects across traits,
but at the tails of each trait’s hyperdistribution, blood, spleen, and the
two skeletal muscles had the strongest degree of deviation from null
expectation. Additionally, ≈83% of the posterior mass of our GSNP

weight parameter θ fell above 0.5, with ≈28% falling above 0.9.
When examining the direction of trajectories for 8-week gene sets

linked to the two non-anthropometric traits, we noticed a regression
towards a mean proportion of 0.5 across tissues. This is likely due to
underlying genes only being differentially expressed at later time
points (Fig. 6). Examining which genes and tissues correspond to both
high deviation from the mean and relatively large amounts of DE, we
observed blood genes associated with lower cholesterol in males
(NDUFA13, FADS2, PNKD, AAMP, and OGDH), as well as the male
training vastus lateralis gene TMBIM1, the female-specific training gene
APOB in colon, and the female training gene ABCG8 in liver. With
respect to increased risk of asthma, blood genes again had the largest

Fig. 3 | Genetic variation near exercise training genes is enriched in heritability
acrosshumanphenotypes.Here,we visualize conditional heritability enrichments
(LDSC) ofmultiple traits within differentially expressed, sex-independent gene sets
corresponding to different tissues. Colors distinguish tissues, with opaque dia-
monds corresponding to IHW-significant hits (α =0.05), and size proportional to
themagnitude of log10(p-value) (two-sided, adjusted formultiple comparisonswith
IHW). Thehorizontal axis corresponds to theheritability enrichment factor, and the

vertical to GWAS traits, grouped into high-level categories. Traits lacking an IHW-
significant (α =0.05) hit in at least one tissue are excluded from this visualization,
and the horizontal axis has been truncated to exclude non-significant enrichments
above that of the maximum significant enrichment, as well as estimated enrich-
ments < 0, which are strictly impossible. Source data for this figure are provided as
a Source Data file.
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relative effect sizes in males (BAG6, CCNG, CRAT, PTPA, and FAM89B),
with female training genes exhibiting the largest effects inATP6V1G2 in
the vastus lateralis, ENDOU in white adipose, and CCNF in blood.

Discussion
In our study, we have identified multiple tissues and tissue-by-gene
pairswhere exercisemaymodify disease risk throughgene expression.
Despite human-rat differences, our unbiased approach identified

multiple results that echo established exercise-disease relationships.
However, some findings were unexpected.

Gene sets that responded to exercise were enriched for PrediXcan
genes linkedwith cardiometabolic traits (Fig. 4e, f). The intersection of
thesegenes seems to leanaway fromdisease-like effects (Fig. 5), butwe
also found disease-like effects for genes associated with asthma and
body fat percentage (Fig. 5). These associations, however, did not
exhibit intersect sizes larger than expected by chance, and the latter

Fig. 4 | Exercise training genes are enriched for genes where expression is
associated with trait variation across multiple trait categories. Here, we
visualize fitted output from our PrediXcan-DEG intersect enrichment model (n =
10,000 nominal iterations across four independent chains). In (a), we show the
sizes of gene sets in the intersect of PrediXcan hits (IHW α =0.05) across different
traits (horizontal axis) and sex-homogeneous, differentially expressed genes
(DEGs) at 8W in different tissues (vertical axis). Cell colors correspond to the size of
the intersecting gene set. Numbers in each cell give the size of each intersect, with
cell corners labeling cells whosemarginal posterior difference parameter has >95%
of its mass to one side of 0. Marginal counts give the maximum number of Pre-
diXcanhits in each trait (verticalmargin) orDEGs in each tissue (horizontalmargin),
after constraining the total pool to mutually expressed genes. In (b), we plot the
histogram of posterior masses > 0 for trait × tissue difference effects, with colors
drawn from cell labels in (a). In (c), the vertical axis corresponds to logit-
transformed frequencies of PrediXcan hits in the DEGs from (a), and the horizontal

axis represents the corresponding frequency in all genesoutside this set. Only traits
from six trait categories are depicted, with colors corresponding to tissues and
shapes to categories. In (d), the vertical axis maps to the proportion of positive
effects in the PrediXcan-DEG intersect across traits and tissues, and the horizontal
axis to the sameproportionoutside that intersect. Point diameter isproportional to
the square root of intersect gene set size, with colors and shapes retaining their
meaning from (c). In (e–g), marginal posterior distributions from our intersect
enrichmentmodel are shown as violin plots, with internal lines representingmiddle
90% credible intervals and internal points representing posterior means. Internal
line and point colors arewhitewhen the credible interval overlapswith 0, and black
otherwise. Violins are arranged in order of increasing posterior mean, with the
horizontal axis on the logit scale. In (e), we plot these at the tissue level, in (f) at the
trait category level, and in (g) at the trait level. Source data for this figure are
provided as a Source Data file.
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showed only weak evidence of depletion (Fig. 4f). Additionally, when
aggregating across traits, several of the most “classically" exercise-
responsive tissues – the skeletalmuscles and white adipose—appeared
to be among themost depleted for PrediXcan hits (Fig. 4d), though no
marginal posterior distributions for difference parameters there
reached our 95% posterior mass threshold. Overall, estimates for
enrichments and depletions in both intersect and directionality effects
were small, even for confidently non-zero effects, predominately
varying within 0 ±0.3 on the log-odds scale (Figs. 4e–g, 5). This cor-
responds to a maximum difference of ≈7.5% on the probability scale
(inv-logit(0.15)-inv-logit(-0.15)), and is consistentwith the
relatively small deviations observed from the 1-to-1 lines in Fig. 4c–d.
Interpretation of these exercise biological findings should not lose

sight of this context: small, subtle, but nevertheless discernible
association.

In the case of body fat percentage (BF%), it may be that absent
dietary control – for example, when rats are fed ad libidum – genes are
regulated in amanner that elicits increased fat storage as an adaptation
to higher energy expenditure15. Thus, even though exercise may often
be done by humans with the goal of reducing BF% through increased
caloric expenditure, an interaction with diet modulates this response.
However, white fat itself does not appear to be enriched for positive
effects on BF%, with the most pronounced enrichments evident in
blood and heart. Similarly, the strongest depletion for positive effects,
bothwithin anthropometric traits andoverall, occurred in the standing
height phenotype. Evidence for exercise effects on height is weak and

Fig. 5 | Exercise training genes can be enriched for more or less disease-like
effects.We visualize the posterior means of multilevel trait and trait × tissue terms
from a Bayesian model corresponding to the proportion of genes imparting a
positive effect on traits aligned along the horizontal axis. Diamonds mark traits or
trait × tissue pairs whose difference effect’s posterior mass falls entirely to one side

of 0, either prepending the trait name or else marking the trait × tissue symbol.
Points sizes are in proportion to the square root of sample size, and traits are
arranged on the horizontal axis according to the monotonic decrease in their
posterior means. Source data for this figure are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45966-w

Nature Communications |         (2024) 15:3346 6



ambiguous. However, particularly intense exercise may have an
attenuating effect on growth16–18, especially under nutritional stress,
which may partially underlie the associations observed here.

Asthma also emerged as a trait with shared transcriptional effects
as exercise. This may be due to similar etiology between the general
asthmatic condition measured by self-report and exercise-induced
bronchoconstriction (EIB), where lung epithelial stress from exercise
and increased drying and cooling of the airways due to increased
ventilation triggers an inflammatory response alongside shortness of
breath19. Though no individual tissues were found to be confidently
enriched in positive effects for this phenotype (Fig. 5), DE genes in the
spleen—a key immune and inflammatory response regulator20 –

emerged as having the greatest enrichment in h2
SNP, comprising nearly

four times baseline expectation and accounting for ≈10% of trait her-
itability overall (Fig. 3, Supplementary Fig. 2a). Moreover, DE genes in
the spleen had the highest h2

SNP enrichment across a number of addi-
tional immune cell and disease phenotypes, and both eosinophil and
basophil counts were found to have moderate genetic correlations
with the asthma phenotype, highlighting the recently proposed roles
these cell types play in structuring EIB21,22. Finally, even where exercise
regulates gene expression inostensibly “disease-like" directions, itmay
be thatmany phenotypes as those abovemanifestwhen inflammatory,
hunger-regulating, or other effects of exercise occur without having
first been induced by exercise. We hypothesize that by subjecting the

body to disease-like stresses, regular exercise elicits adaptation to the
symptoms of those diseases, reducing the risk of their manifestation
from the disease itself. In this light, the presence of their signal here
may also be expected.

At the gene level, several of the highlighted genes in the DEG /
PrediXcan intersection were supported by prior literature. In the
cholesterol phenotype, FADS223, PNKD24, and OGDH25, TMBIM126,
APOB27, and ABCG828 have all been implicated previously, while
NDUFA13 and AAMP have not. For asthma and / or reduced lung
function, links have been drawn to BAG629, CCNF30, andCRAT31, though
other genes are mentioned in similar contexts to that explored in this
work, also relying on integration of eQTL and GWAS association
mapping (e.g., FAM89B32).

A notable limitation of this study may be that, despite their well-
established use as an exercise model, rats are separated from humans
by nearly 140 million years of evolution33. Comparison of exercise-
independent age and sex effects, meanwhile, may be limited by dif-
ferences in age between individuals in GTEx and MoTrPAC, as most
humans in the GTEx v8 dataset were aged 50+34,35 while trained F344
rats were uniformly under eight months of age and therefore well
under the age of onset of the F344 rat equivalent of sex-specific, aging-
related changes such as menopause36. These results may also have
limited portability to non-European populations, as the GTEx sample
comprises mostly European-descendant individuals. Identification of

Fig. 6 | Examining which trait-associated, exercise-responsive genes are dif-
ferentially expressed at levels outside natural variation yields interesting
candidates for further study. We visualize the observed proportion of positive
effects for the two non-anthropometric traits that had the highest posterior mean
enrichment in that proportion according to our proportion of positive effects
enrichment model. Above, two panels correspond to self-reported high choles-
terol, and below, self-reported asthma. Lines terminate at 8W on the right of each
panel, splitting into tissues and genes. Additionally, we trace the proportion for the

8w gene set backwards in time, examining the effect of those genes at 1w, 2w, and
4w. Tissue names are followedby the total numberof genes in the intersecting gene
set inparentheses, and gene names are followedby their sign (a red + if the effect of
DEon the trait is positive and a blue - if negative), and the standardized effect sizeof
DE from Fig. 2b. Additionally, we plot a line corresponding to the set of all gene-
tissue pairs in black, labeled ALL. Source data for this figure are provided as a
Source Data file.
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rat-human gene orthology is another difficult problem, and important
biology almost certainly lies within disease and exercise-responsive
genes across species whose correspondence can not be easily estab-
lished. But while species differences can complicate interpretation of
exercise-induced regulation of orthologous genes, these models
remain crucial andprovide high levels of experimental compliance and
tissue accessibility from individuals who are far more straightforward
to motivate. As such, a unique aspect of the MoTrPAC rat exercise
training data includes the availability of differential expression data
across 15 distinct tissues, many impossible or impractical to collect in
humans as part of an exercise study. Accelerated rat life history also
makes it feasible to conduct experiments on exercise training adap-
tation on timescales relevant to their lifespan. It’s simpler to regulate
rat behavior than human behavior, reducing biases linked to non-
compliance and attrition.

We expect future studies can benefit and expand on this work in
several ways. Qualitative sex-specificity, a notable hallmark of exercise
adaptation in humans37,38, fell outside the scope considered here,
though is afforded closer treatment in companion publications39.
Future causal inferential work may use the genetic correlates of phy-
sical activity40 as instruments to infer tissue-specific drivers of phe-
notypic adaptation41 inhumans. But analysis of experimental data from
animalmodelswill complement these efforts where genetic effects are
weak (Fig. 2a), targeting causality directly to identify how tissue and
organ systems adapt to exercise and influence a large variety of human
traits and diseases. Finally, we expect that future studies may benefit
from our work by evaluating specific loci therein for GxE interactions
within large-scale human population biobanks. Combined, MoTrPAC’s
EET study provides a large-scale, cross-tissue map of changes in
exercise adaptation that enables generating new mechanistic
hypotheses on the disease impacts of exercise training.

Methods
This study did not generate novel data, instead relying on data pub-
lished in previous or concurrent studies. Animal procedures from the
concurrent MoTrPAC PASS1B study4 were approved by the University
of Iowa’s Institutional Animal Care and Use Committee.

MoTrPAC EET study design
The MoTrPAC42 Endurance Exercise Training Study is described in
detail in the landscape manuscript4 (data accessible at https://
motrpac-data.org/data-access). In brief, both female and male F344
rats were subjected to treadmill exercise training, with tissues har-
vested at 1, 2, 4, and 8 weeks of training. All samples were taken 48 h
after the last exercise bout, with the 8-week time point taken to cor-
respond to the adapted state. In this work, we leverage data from a
total of 738 extracted samples across 15 tissues and 47-50 rats per
tissue that were subjected to RNA-sequencing and differential
expression analysis.

Differential expression analysis
Differential expression analysis (DEA) is described in detail by themain
MoTrPAC manuscript4. Briefly, DEA was performed separately in each
sex and tissue using filtered raw counts as input for DESeq243. Like-
lihood ratio tests (DESeq2::nbinomLRT()) were used to identify genes
that changed over the training time course in at least one sex while
accounting for RNA-Seq technical covariates (RNA integrity number,
median 5′-3′ bias, percent of reads mapping to globin, and percent of
PCR duplicates as quantified with Unique Molecular Identifiers). For
eachgene,male- and female-specificp-valueswerecombinedusing the
Fisher’s sum of logs method. These meta-analytic p-values were
adjusted across all RNA-Seq datasets using Independent Hypothesis
Weighting (IHW) with tissue as a covariate44. Training-differential
genes were selected at 5% IHW α. Given the regression model of each
gene described above, contrasts were made between each training

timepoint (i.e., 1, 2, 4, or 8 weeks) and the sex-matched sedentary
controls using DESeq2::DESeq() to calculate time- and sex-specific
summary statistics.

Correlation of differential analysis results
The nominal p-values and log fold-changes from the time- and sex-
specific differential expression analysis results were transformed into
standard normal random variables using qnorm(p-value / 2, low-
er.tail = F) * signðlog2FCÞ in base-R. These “z-scores" were orga-
nized into a gene-by-condition matrix, where conditions were tissue,
sex, and timepoint combinations. The z-score matrix was filtered to
include the set of genes that hadnomissing values across all conditions.
We calculated the Spearman correlation between all pairs of conditions
to quantify the concordance of the training effect across conditions.

Graphical clustering of differential analysis results
Graphical clusteringof differential analysis results is described indetail
in the main MoTrPAC EET study manuscript4. All training-differential
features at 5% IHW αwere clustered into homogeneous patterns using
their time- and sex-specific differential analysis z-scores. The statistical
details are provided elsewhere4,45–47. Briefly, the expectation-
maximization (EM) process of the repfdr algorithm was used to
assign one of three simplified states to each z-score: −1 for down-
regulation, 0 for null (no change), or 1 for up-regulation45. For each
feature and timepoint, the simplified states from each sex were com-
bined into one of nine possible states (−1, 0, or 1 for each sex). For
example, the state “F1_M1" represented a feature thatwas up-regulated
in both females (F1) andmales (M1) at a given timepoint. Here, to focus
on genes with sex-consistent training effects in the trained state, we
selected genes that were assigned to the F1_M1 state (up-regulated in
both sexes) or the F-1_M-1 state (down-regulated in both sexes) at
8 weeks. To enable comparison between genes expressed in rats and
humans, we compiled a MoTrPAC rat-to-human ortholog map from
GENCODE and RGD resources4,48,49. The distribution of those genes
able to be matched to human orthologs across tissues is summarized
in Fig. 1b.

Open targets intersection
The Open Targets50 database (Release 22.04) was downloaded on June
8th, 2022. Entries in this database represent curated sets of human
genes with disease relationships established from multiple sources of
evidence. We used the R-package sparklyr51 to cross-reference differ-
entially expressed rat genes to all orthologous Open Targets gene-trait
direct associations at different evidence-score thresholds. The abun-
dance of these associations were quantified on a tissue-specific and
tissue-shared bases, comprising genes differentially expressed in three
or more tissues. A table listing all genes, top trait associations, and
corresponding tissues is provided in the Supplementary Files folder of
the GitHub repo.

Heritability analyses
We retrieved summary statistics (sumstats) for 114 published GWAS5.
Using the program LDSC9, we estimated SNP-heritability (h2

SNP) for
each GWAS in LDSC10, including the default baseline annotation of 53
functional categories. We further estimated h2

SNP using MESC11, and
with the provided expression scores meta-analyzed over 48 GTEx tis-
sues, estimated expression-mediated heritability (h2

mediated) for our 114
traits, as well as the ratio of h2

mediated=h
2
SNP.

LDSC was used to estimate overall proportion of and enrichment
in h2

SNP across loci within a 100kb window of all sex-consistent 8w DE
gene sets in each tissue following the “Cell type specific analyses"
tutorial. We included here the baseline annotation, as well as an
annotation comprising loci within 100kbof all expressed genes in each
tissue. Finally, to assess the sensitivity of tissue-specific results on
overlaps in gene sets between tissues, we estimated heritability and
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heritability enrichment conditional on annotations corresponding to
all other tissues alongside the baseline annotation.

Human expression data & effect standardization
To assess the degree that exercise effects could overcome genetic and
phenotypic variability of gene expression in a tissue, we used the GTEx
database (version 8)34. To allow for a common scale between exercise
DE and measures of gene expression in GTEx, we modified the GTEx
pipeline to use a pseudolog (log2(x + 1)) transformation in place of its
default inverse-normal transform, otherwise keeping later steps in the
pipeline intact. Next, we took the outputted expression matrices and
residualized out the provided covariates using the lm() function in
base-R (sex, the top 5 genotyping principal components, Sequencing
platform, Sequencing protocol, and the suggested number of PEER
factors in the GTEx documentation). On a per-gene basis, we then
computed sample variances for each gene in each tissue, pooled
across sex to reflect the sex-independent nature of exercise-induced
DE. To regularize outlying variance estimates due to sampling effects,
we fit an inverse-gamma distribution to tissue-specific sample var-
iances using amaximumgoodness-of-fit estimator implemented in the
R-package fitdistrplus52 by the function fitdist(). As the inverse-
gamma is the conjugate prior of the variance term of a normal dis-
tributionwith knownmean,we adopted anEmpirical Bayesian strategy
to produce posterior estimates of each gene’s expression variance.
To allow for heterogeneity in this term across sex, we did this
separately for male- and female-coded individuals in the GTEx
study population. Additional details are provided in the Supplemen-
tary Methods. Across tissues, these empirical priors are plotted in
the denominator of Fig. 2a. For each gene, we then took the square
root of the posterior mean of inferred log2expression variance
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ðlog2ðgene expressionÞÞ
p

) to estimate within-population stan-
dard deviation of the magnitude of gene expression. We then divided
estimated exercise DE by these values to produce standardized esti-
mates in units of within-tissue phenotypic standard deviation
(SDpheno). Further, these estimates were conditioned on both sex and
population (quantile plots in upper panels of Fig. 2a).

To estimate the scale of genetic influence on gene expression, we
used the software Plink53 and GCTA54, specifically GCTA-GRM55, to
estimate h2

SNP of each gene’s expression, using the same covariates as
before. In contrast to prior work estimating h2

SNP in GTEx’ inverse-
normal transformed gene expression matrices56, we focused on
obtaining estimates on a gene-specific basis, and so constrained out-
put to be bounded between 0 and 1.

We then took these estimates, which represent the proportion of
expression variance able to be explained by linear effects at the SNP
level, and multiplied them by the estimates of expression variance,
dividing our estimates of exercise-induced DE by the square root of
that product to obtain exercise-effect sizes in units of genetic (SNP)
standard deviation (SDgeno). Many of these h2

SNP point estimates were
at or near0, resulting in extreme standardized effect sizes. As a further
filter, we thresholded on significance (IHW α = 0.10, with tissue as a
covariate) to focus on confidently heritable genetically regulated
expression. This removed ≈92% of gene x tissue pairs (583,238/
632,738), leaving 49,500 for later analysis and use in figures.

Cross-referencing exercise-training genes with human TWAS
To identify specific genes where exercise-training effects may have the
potential tomediate traits, we cross-referenced exercise-genes against
transcriptome-wide association results (TWAS). Specifically, we
downloaded S-PrediXcan13 output5 for 114 GWAS and MASHR-based
expression models using GTEx v8, filtering by significance (IHW α =
0.05, with tissue x trait pairs as a covariate), and intersectedwith genes
that were differentially expressed due to exercise at 8W in a sex-
consistent manner, i.e., members of the nodes “8w_F1_M1" and “8w_F-
1_M-1". 99 of 114 traits had a nonzero intersect in at least one tissue.

To assess potential enrichments in these intersections, we com-
pared the observed count of S-PrediXcan hits in the DEG sets against
those outside the DEG sets, adopting a tractable Binomial approx-
imation to the Bernoulli distribution to test for enrichment or deple-
tion of genes under amultilevel Bayesianmodel, following ref. 57. This
approach allowed us to partially pool information across tissues and
traits, avoiding the need for post-hoc multiplicity adjustment58, as
multiplicity is explicitly built into the inference model itself through
flexible regularization of model parameters towards 0. Specifically, we
fit a model of the form:

yDEGi,j ∼ Binomial ðnDEG
i,j , f ðπDEG

i,j ÞÞ ð1:1Þ

y:DEGi,j ∼Binomial ðn:DEG
i,j , f ðπ:DEG

i,j ÞÞ ð1:2Þ

πDEG
i,j =πi,j +

α +βi + γj + ϵi,j
2

ð1:3Þ

π:DEG
i,j =πi,j �

α +βi + γj + ϵi,j
2

ð1:4Þ

α∼ Normal ð0, 1Þ ð1:5Þ

βi ∼ Multi-Normal ð0!,σ2
βΣiÞ ð1:6Þ

γj ∼ Multi-Normal ðμ!k, σ
2
γΣjÞ ð1:7Þ

ϵi,j ∼ Multi-Normal ð0!,σϵΣi × jÞ ð1:8Þ

μk ∼ Normal ð0, σμÞ ð1:9Þ

πi,j ∼ Multi-Normal ðηj, σπΣi × jÞ ð1:10Þ

ηj ∼ Multi-Normal ð λ!k, σ
2
ηΣjÞ ð1:11Þ

λk ∼ Normal ðμ, σλÞ ð1:12Þ

μ∼ Normal ð0, 2Þ ð1:13Þ

σβ,γ,ϵ,μ,π,η,λ ∼ Half-Normal ð0, 1Þ ð1:14Þ

Notation for this model is summarized in Supplementary Table 2, but
in brief: the intersect size yDEGi,j in tissue i∈ {1, 2,…, 15} and trait
j∈ {1, 2,…, 99} was binomially distributed, with nDEG

i,j giving the total
number of genes in that tissue that were differentially expressed at 8W
and expressed at any level in the PrediXcan analysis (i.e., disregarding
genes that were not expressed in both samples). The function f() can
be any function mapping R ! ð0,1Þ, but here was the inverse-logit
function. On the logit-scale, πDEG

i,j was expressed as a deviation from a
mean πi,j, with an equal and opposite deviation to the log-odds of
observing a PrediXcan hit in the complementary set, defined as all
expressed genes that were not differentially expressed at 8W in a sex-
consistent manner. This deviation term had four components: a tissue
difference βi, a trait difference γj, a tissue x trait difference ϵi,j, and an
overall difference α. Adding and subtracting half from πi,j to produce
πDEG
i,j and π:DEG

i,j , respectively, was done to prevent specifying greater
prior uncertainty on one of the two composite probability parameters.
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The various scale parameters, σ, served to adaptively regularize
estimates of each difference term towards their mean. Otherwise, we
nested trait difference effects γj in trait category difference effects μk,
where k∈ {1, 2,…, 12} indexes previously designated trait categories5,
i.e., members of the set {Psychiatric, Aging, Cardiometabolic, Allergy,
Digestive, Immune, Endocrine, Skeletal, Anthropometric, Hair, Blood,
Cancer}. If traits in a particular category showed consistent evidence of
deviation, partial pooling shrunk estimates towards their respective
mean hyperparameters, allowing them to share information to the
extent the model could detect information to be shared. We use a
similar model structure to express the overall location parameter, πi,j.

Pseudo-replication across tissues and traits amplifies signals that
informhigher-level parameters, leading the inferencemodel tomistake
interdependent effects as independent evidence for enrichment. When
aggregating many Bernoulli random variables to a single binomial,
signals of gene interdependence that would otherwise prevent this are
lost. To address this, we introduced parameters Σi, Σj, and Σi×j, corre-
sponding to i× i tissue, j × j trait, and (i ⋅ j) × (i ⋅ j) tissue × trait correlation
matrices, respectively. For tractability, we then fixed these to
maximum-likelihood estimates of each respective gene-wise correla-
tion matrix under a bivariate probit, which we fit marginally across all
DEGs, PrediXcan hits (jointly across tissues), and DEG× PrediXcan
intersects using the nlm (non-linear minimization) algorithm59 imple-
mented in and accessed through the R-packages stats and optimx60. As
we fit each pairwise correlation individually, rather than simulta-
neously, there was no guarantee that the resulting correlationmatrix is
positive semi-definite. To ensure this constraint is met and all pairwise
correlations are jointly possible,we transformed thepairwise-estimated
correlation matrices with Higham’s algorithm61 implemented in the
R-package Matrix62 function nearPD() before proceeding further.

We fit this model in Stan63 using CmdStanR64 and in Fig. 4e–g
visualize marginal posterior distributions for tissue, trait, and trait
categorydifferenceeffects as violin plots using theR-package vioplot65.
Additionally, where the composite difference effect for a particular cell
in Fig. 4a finds > 95% of its posterior mass to one side of 0, we colored
its upper or lower corner with a red or blue triangle to signify enrich-
ment or depletion of that tissue x trait combination, respectively. To
accommodate this and subsequent models’ challenging posterior
geometry, we used a non-centered parameterization, running four
separate and randomly initialized chains for 2.5 × 103 warmup and
2.5 × 103 sampling iterations, with a target acceptance rate δ of 0.95. To
diagnose pathologies in the MCMC output and confirm adequate
convergence, mixing, and sampling intensity, we used the posterior
package66 for MCMC diagnostics, requiring that all model parameters,
as well as posterior density and likelihood, receive r̂<1:01 and both
bulk and tail Effective Sample Size (ESS) > 500, in addition to requiring
that < 0.05% of iterations end in a divergence.

To complement this analysis, we also performed frequentist Gene
Set Enrichment Analysis using the function fgsea() implemented in
the R-package fgsea67. Specifically, for each trait × tissue pair, we
assessed enrichment of the set of DEGs in that tissue in the list of
-log10(p-values) of mutually expressed, orthologous genes’ p-values
from PrediXcan, applying a Bonferroni correction to the output. To
aggregate across these interdependent tests and assess tissue- and
trait-level enrichment, we took the harmonic mean of subtest p-values
corresponding to each grouping68, applying a similar FWER adjust-
ment to the output (α =0.05). We leveraged the same meta-analytic
procedure over trait-level enrichments to aggregate to trait categories.
Finally, we explored an alternative approach to aggregating multi-
tissue GSEA within traits. As a more stringent set of multi-tissue
responsive genes, we took the set of all genes differentially expressed
in three ormore tissues. For PrediXcan p-values, we took the harmonic
mean of PrediXcan p-values for each gene across all studied tissues
prior to -log10 transformation. These were input into conventional

GSEA, and output from all of the above comparisons was visualized in
Supplementary Fig. 3.

Proportion of disease-like effects
To assess the proportion of DE acting in disease-like directions relative
to eachphenotype (the product of the direction ofDE and the direct of
association from PrediXcan), we applied another Bayesian multilevel
model, comparing the observed, unweighted frequency of positive
effects against a “null" frequency of 0.5 (equivalently, against log-odds
of 0):

yi,j ∼ Binomial ðni,j, f ðπi,jÞÞ ð2:1Þ

πi,j ∼ Normal ðμ!j, σjÞ ð2:2Þ

μ
!

j ∼ Multi-Normal ð0!, SRSTÞ ð2:3Þ

R=GSNP × θ+ I × ð1� θÞ ð2:4Þ

θ∼ Beta ð1, 1Þ ð2:5Þ

diagðS Þ= δeγk ð2:6Þ

γk ∼ Normal ð0,σγÞ ð2:7Þ

σj =ρe
λj ð2:8Þ

λj ∼ Normal ð0, σλÞ ð2:9Þ

ρ, δ ∼ Half-Normal ð0, 2Þ ð2:10Þ

σγ,λ ∼ Half-Normal ð0, 1Þ ð2:11Þ

Unlike for their overall frequency, signal for the directionality of effect
(more or less disease-like) cannot be shared across traits or within trait
categories, as the traits themselves vary in whether they are harmful,
neutral, or beneficial. Instead, we perform partial pooling across the
scale of these differences, across both trait categories and within traits
themselves. Notation for this model is summarized in Supplementary
Table 3, but in brief: we estimate overall scale parameters (ρ, δ), and
then estimate a log-normally distributedmultiplicative factor (λj, γk) to
scale each on a trait-wise and trait-category-wise basis, respectively. To
accommodate per-trait interdependence in the direction of deviation,
we invert Cheverud’s conjecture69, usingour previously estimatedGSNP

as a proxy for an environmental correlation matrix (Supplementary
Fig. 1a). As these genetic correlations were estimated pairwise,
positive-semidefiniteness (PSD) of the whole correlation matrix is
not guaranteed. To satisfy the PSD constraint of GSNP, we substituted
the nearest PSD correlation matrix output from Higham’s algorithm61,
implemented in the R-package Matrix62 function nearPD(). To allow
flexibility in thismodeling assumption,wecompute a linearlyweighted
average of thismatrix and the identitymatrix (i), estimating theweight
parameter θ from a flat Beta prior. MCMC sampling parameters were
specified and diagnostics performed as previously described.

We examined the two non-anthropometric traits with the highest
posterior means in Fig. 6, tracing the proportion of effects of the 8W
gene set backwards to the first week. Where individual genes are not
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assigned to a graphical node signifying differential expression, their
contribution to the count of positive effects was taken to be 0.5 when
calculating the overall proportion. We include in these tissue-specific
trajectories the set of genes corresponding to each tissue, their
direction of effect on the trait, and their standardized effect size from
Fig. 2b. Similar figures to Fig. 6 for all other traits may be found in the
GitHub repository mentioned below.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This studydid not generate novel data, relying insteadonpreviously or
concurrently published data. MoTrPAC PASS1B data (https://doi.org/
10.1101/2022.09.21.508770) used here have been deposited at https://
motrpac-data.org/data-access. Inquiries regarding access to thesedata
should be sent to motrpac-helpdesk@lists.stanford.edu. Further
resources are available atmotrpac.org andmotrpac-data.org. Where it
would be difficult to re-host large datasets from GTEx34, Open
Targets50, and PrediXcan5, we provide download links in the doc-
umentation of the associated code repository. Source data to generate
all figures seen here are providedwith this paper in the formof *.RData
objects. These contain all necessary processeddata to fully andquickly
reproduce all paper figures using the scripts contained in https://
github.com/NikVetr/MoTrPAC_Complex_Traits/tree/main/scripts/
figures. Source data are provided with this paper.

Code availability
Weprovide end-to-end scripts to performall analyses described above
in a GitHub repository70 located at the following URL: https://github.
com/NikVetr/MoTrPAC_Complex_Traits. Additionally, we provide
scripts to generate all figures, as well as intermediate data files corre-
sponding to compiled results at each level of analysis (MCMC output,
Open Targets associations, cross-referenced DEG-PrediXcan inter-
sects, aggregated GCTA output, and relative effect sizes).
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