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A universal molecular control for DNA,
mRNA and protein expression

Helen M. Gunter1,2,3, Scott E. Youlten4,5,6, Andre L. M. Reis 7,8,9,
Tim McCubbin 1,3, Bindu Swapna Madala5,8, Ted Wong5, Igor Stevanovski 7,8,
Arcadi Cipponi5,6, Ira W. Deveson7,8,9, Nadia S. Santini10, Sarah Kummerfeld5,6,
Peter I. Croucher 5,6, Esteban Marcellin 1,3 & Tim R. Mercer 1,2,3,5

The expression of genes encompasses their transcription intomRNA followed
by translation into protein. In recent years, next-generation sequencing and
mass spectrometry methods have profiled DNA, RNA and protein abundance
in cells. However, there are currently no reference standards that are compa-
tible across these genomic, transcriptomic and proteomic methods, and
provide an integrated measure of gene expression. Here, we use synthetic
biology principles to engineer amulti-omics control, termed pREF, that can act
as a universal molecular standard for next-generation sequencing and mass
spectrometry methods. The pREF sequence encodes 21 synthetic genes that
can be in vitro transcribed into spike-in mRNA controls, and in vitro translated
to generatematched protein controls. The synthetic genes provide qualitative
controls that can measure sensitivity and quantitative accuracy of DNA, RNA
and peptide detection. We demonstrate the use of pREF in metagenome DNA
sequencing and RNA sequencing experiments and evaluate the quantification
of proteins using mass spectrometry. Unlike previous spike-in controls, pREF
can be independently propagated and the synthetic mRNA and protein con-
trols can be sustainably prepared by recipient laboratories using common
molecular biology techniques. Together, this provides a universal synthetic
standard able to integrate genomic, transcriptomic and proteomic methods.

Next-generation sequencing (NGS) can measure DNA and mRNA
abundance, whilst mass spectrometry (MS) can measure protein
abundance. Over the past decade, these high-throughput technologies
have provided a detailed profile of the genome, transcriptome and
proteomewithina cell. However, despite their importance, sequencing
and proteomic technologies suffer from technical errors and biases

that confound the accurate analysis of DNA, mRNA and protein
abundance1,2. Due to these limitations, our current understanding of
gene expression is often descriptive, and a truly quantitative under-
standing is lacking.

Reference standards comprise well-characterised materials that
can be used to calibrate molecular methods. Molecular standards can
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act as qualitative controls that evaluate the detection of DNA or pro-
tein sequences, as well as quantitative controls that evaluate the
abundance of genomes, mRNAs or proteins3,4. These controls can
measure the impact of technical variation that confounds NGS andMS
experimental accuracy and reliability5,6.

The most commonly used standard in molecular biology is the
bacteriophage PhiX-174genome. First sequenced in 19747, the PhiX-174
genome is widely used as a DNA standard for molecular cloning and

sequencing, where it is used to measure error rates and improve the
diversity of low complexity libraries. However, despite serving
admirably as a standard for almostfifty years, the PhiX-174 genomewas
selected serendipitously and suffers fromseveral limitations, including
a poor representation of the most error-prone sequences that are
challenging for NGS.

More recently, a diverse range of DNA, RNA and protein controls
have been developed to measure genomic, transcriptomic and
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Fig. 1 | Design of pREF. a Overview of pREF shows the organization of synthetic
conu, gece, repe and proco genes that are suitable for DNA andRNA sequencing, and
mass spectrometry.bThedigestionofpREF (with EcoRI) generates a DNA fragment
size ladder (nt = nucleotides). c conu genes are represented at multiple copy-
numbers in pREF so that when sequenced, they form a staggered reference ladder
able to measure quantitative features of DNA and RNA sequencing libraries (n = 1
biologically independent samples). Box plot extends from 25th to 75th percentiles,
centre line is the median, and whiskers cover the 10th and 90th percentiles. d gece

and repe genes can act as sequencing controls that measure accuracy at difficult
GC-rich or repetitive sequences, respectively (n = 1 biologically independent sam-
ples). Box plot extends from 25th to 75th percentiles, centre line is the median, and
whiskers cover the 10th and 90th percentiles. e In vitro transcription of conu, gece,
proco and repe synthetic genes generatematchedmRNAcontrols for use inRNAseq
experiments. f In vitro translation of proco genes generates synthetic protein
controls for use in proteomic experiments. Source data are provided in a Source
Data File.
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from each sequencing method was used to create each plot. Source data are pro-
vided in a Source Data File.
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proteomic technologies8. Well-characterised human genomes, such as
NA12878, have been used to improve the accuracy and reliability of
genome sequencing. Synthetic RNAs that are ‘spiked-in’ to samples
and analysed as internal controls have been developed tomeasure the
sensitivity and accuracy of RNA sequencing9. Finally, protein standards
that yield a suite of peptides with known abundance and performance
and are often needed to calibrate mass spectrometric and electro-
phoretic analysis conditions. Together, this diverse range ofmolecular
standards has become increasingly important for the analysis of
complex datasets generated by high-throughput NGS and MS
methods.

In recent years, multi-omics studies have attempted to integrate
different NGS and MSmethods to provide a comprehensive profile of
gene expression. However, despite the increasing use of multi-omics
approaches, there are currently no universal standards that can be
used to evaluate DNA, RNA and protein measurements. A universal
molecular standard that could work across genomic, transcriptomic
and proteomic methods could provide a unifying standard for gene
expression, and integrate diverse data-sets frommulti-omics projects.

Inspired by the PhiX-174 genome and recent advances in synthetic
biology, DNA assembly and de novo proteins, we rationally designed a
synthetic control, termed pREF, to serve as a universal molecular
standard. We show how pREF can be used to evaluate the qualitative
and quantitative accuracy of DNA sequencing. Furthermore, pREF
encodes synthetic genes that can be in vitro transcribed into matched
mRNA controls, and in vitro translated into protein controls. We show
how these genes can act as spike-in controls for DNA and RNA
sequencing, as well as MS experiments. Unlike other reference stan-
dards, pREF can also be propagated and modified by recipient
laboratories, and used to preparematchedmRNA and protein controls
independently, thereby enabling the decentralized distribution of
pREF. Therefore, we provide pREF as a first-generation synthetic con-
trol to improve the reliability, accuracy and integration of genomic,
transcriptomic and proteomic technologies.

Results
Design of synthetic pREF control
We first designed a synthetic control, that we term pREF, that encodes
21 synthetic genes encompassing a wide range of nucleotide sequen-
ces, GC content and other difficult features (Fig. 1a). It has been
deposited with Addgene, who are responsible for it’s storage and
distribution. pREF includes a full representation of all possible 6-mers
(excluding unintended Restriction Enzyme recognition sequences),
thereby providing a comprehensive evaluation of sequencing accuracy
under different nucleotide contexts (Fig. S1a). pREF also includes eight
genes containing difficult sequences, including six gece genes (gc-
content), that encompass different percentages of GC content from
21% to 65%, as well as two repe genes (repeat) that include repeats
ranging from 6 to 18 nt in length (Fig. 1d). A comparison of these
synthetic genes shows they provide a greater representation of
nucleotide diversity, repeat sequences, and GC content than the PhiX-
174 genome (Fig. S1a-b). Furthermore, the synthetic genes have no
homology (greater than 18nt) to natural gene sequences included in
the NCBI nr/nt database and can be easily distinguished from natural
RNA or DNA samples, allowing the use of pREF as a spike-in control in
the study of any organism included in the NCBI nr/nt database10.

Synthetic control genes are flanked by a range of restriction
enzyme sites enabling linearization of genes into DNA fragments of
known sizes and sequence (Fig. 1b). For example, digestion with EcoRI
generates a ladder of DNA fragments that range from 100 – 3500 nt,
which are suitable for use as a DNA spike-in. Synthetic control genes
are also preceded by T7 and Sp6 promoters that enable in vitro tran-
scription and are followed by a 30nt poly-adenine tract (see Fig. 1e).
These transcriptional units can be liberated by cleavage with HindIII,
and transcribed using T7 RNA polymerase to yield transcripts of ~1500

nt in length. Alternatively, transcripts can be digested with BamHI and
transcribed using Sp6 RNA polymerase to yield transcripts of varying
lengths (see Methods).

We also designed a suite of conu genes (copy-number genes) to
act as quantitative controls (Fig. 1c). The conu genes are repeated at
different copy-numbers (1x, 2x, 3x and 4x) to form “paralogous gene
families”. Due to their repeated copy-numbers, the sequenced read
count for each conu gene will be proportional to its copy-number, and
in fixed and constant ratio to the other conu genes. Therefore, a
comparison of observed conu gene count to expected copy-number
generates a staggered, graduated reference scale that is able to mea-
sure quantitative performance of NGS and MS methods11.

Additionally, wedesigned three proco genes (protein control) that
can provide quantitative reference standards for proteomic analysis.
The proco genes each encode an open-reading frame with known
amino-acid sequences, as well as a Shine-Dalgarno and 5’ and 3’
untranslated sequences to enable efficient in vitro translation (Fig. 1f).
The proco genes can be translated to form protein spike-in controls,
and trypsin digestion of proco proteins liberates peptide sequences of
known size, charge and retention time for the calibration of mass
spectrometric experiments.

The pREF sequence also encodes a pMK-RQ backbone sequence
containing an antibiotic resistance gene (Kanamycin) and an origin of
replication (Ori). These regulatory elements enable ongoing and sus-
tainable production of pREF by independent laboratories through
transformation and propagation in a stable E. coli line and purification
using standard plasmid preparation techniques (see Methods). This
ability to reproduce and propagate pREF, and independently prepare
matchedmRNAandprotein controls using standardmolecularbiology
techniques distinguishes pREF from other molecular standards12–15.

Measuring next-generation sequencing accuracy with pREF
pREF is designed to be used as a molecular standard in NGS, where it
provides a detailed and comprehensive evaluation of NGS accuracy
and performance. To demonstrate this approach, we first sequenced
four technical replicates of pREF using Illumina short-read and Oxford
Nanopore (ONT) long-read sequencing (Fig. S14).

We first measured sequencing accuracy across the conu, repe and
gece genes, which include all 6-mers, providing a detailed signature
error profile for the Illumina DNA libraries (Fig. 2a,b, Fig. S2a-c,
Fig. S3a). We observed a mean 0.009 error-rate with a wide 200-fold
range in error rate between the least accurate (0.1200 for TCTTGT)
and most accurate k-mers (0.0006 for ACTAGT; Fig. S3a) in one
replicate. This sequencing error profile is systematic, with little varia-
tion in performance between three further technical replicate libraries
(SD 0.0014; Fig. S3b). For comparison, we also sequenced the PhiX-174
genome, which exhibited similar sequencing accuracy within the nar-
rower window of represented k-mers (Fig. S3c, S1a-b). pREF encodes
genes with extensive repeats (repe genes), and strong GC biases (gece
genes) that enable evaluation of NGS accuracy and performance at
these difficult sequences. We found that the presence of repeats had a
complex impact on Illumina sequencing accuracy, with higher rates of
deletion and mismatch errors than insertion errors, and an unex-
pectedly higher error rate for shorter repeats (Fig. S2b-c, Fig. S4a). By
contrast, GC-rich regions in gece genes were dominated by mismatch
transversion errors (Fig. S2b, Fig. S4b).

ONT sequencing provides real-time, long read and single-
molecule sequencing, but suffers from errors that can confound
analysis3.We evaluated the error profile ofONT sequencing using pREF
(Fig. 2c, Fig. S5a-c), which showed a higher mean error frequency than
Illumina sequencing (0.0613; SD 0.03455) (Fig. S6a), with a 33-fold
differencebetween themost and least accurate k-mers (from0.0167 to
0.55794) (Fig. 2d). Comparing ONT and Illumina sequencing showed
different per nucleotide error rates within different k-mers (Fig. 2e).
We also evaluated the ONT sequencing error profile at repeats within
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the repe genes (Fig. S6b,c), finding that error rate has a positive linear
relationshipwith repeat length (Pearson’s correlation (R2) = 0.93) up to
0.3949 for an 18-nt homopolymer. The majority (93%) of errors at
repeats were deletions, resulting in reads being ~16% shorter than
expected (Fig. S6c).

Sequencing of gece genes also showed that ONT sequencing
errors scaled linearly with GC content (R2 = 0.9442), from 0.0454 at
21% GC, up to 0.0728 at 65% GC content (Fig. S6d). Unlike Illumina
sequencing, we observed similar proportions of all error types in our

gece genes (compare Fig. S2c to Fig. S6d). This demonstrates how
direct analysis of the pREF sequence provides a comprehensive eva-
luation of different reagents, instruments and libraries used in NGS.

Measuring quantitative accuracy using pREF conu genes
pREF includes repeated conu geneswhich,when sequenced, generate a
staggered ladder that can evaluate the quantitative accuracy and var-
iation in NGS libraries (Fig. 3a). To demonstrate this approach, we
analysed the read counts across 31-mer sliding windows for all conu

4000 6000 8000

D
en

si
ty1x 2x 3x 4x

conu1a

conu2a,b
conu3a-c

conu4a-d

y = −0.00051 + 0.72x
r2 0.999

y = −0.0039 + 0.85x
r2 0.988

Simulated Illumina Illumina 

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2−2 −1 0 1 2 −2 −1 0 1 2

y = −0.025 + 0.76x
r2 0.787

y = 0.51 + 0.91x
r2 0.661

ONT

y = 0.22 + 1.1x
r2 0.79

ONT

Simulated Illumina Illumina ONT ONT

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

Residuals

Copy-number

D
en

si
ty

D
en

si
ty

1 2 3 4 1 2 3 4 1 2 3 41 2 3 4 1 2 3 4

1.0

0.5

0.0

d.

b.
conu genes

a.

Restriction digestion (EcoR1)

DNA sequencing RNA sequencing

Measuring technical variation with pREF in DNA and RNA sequencing.

c. Measuring quantitative accuracy with pREF in DNA and RNA sequencing.

1x 2x 3x 4x

R
ea

d 
C

ou
nt

 

Gene Copy Number

Quantitative distribution of conu genes.Schematic illustration of quantitative conu genes.

Count

technical variation

conu1a

conu2a,b

conu3a-c

conu4a-d

conu1a

conu2a,b

conu3a-c

conu4a-d

DNA sequencing RNA sequencing

Fig. 3 | Measuring the quantitative accuracy of synthetic conu genes.
a Schematic diagram illustrates the design and use of conu genes as quantitative
controls. b Density histogram from k-mer counts for conu gene families illustrates
the distribution of technical variation in 31-mer normalised read count, calculated
using a sliding window approach. Bounds of technical variation are a visual
representationof read count variation and are not basedona statistical calculation.

cQuantitative accuracy of simulated, DNA and RNA sequencing using Illumina and
ONT sequencing technologies as measured from conu genes (ONT = Oxford
Nanopore Technologies). d Density plots show the spread of technical variation in
conu read counts in DNA and RNA libraries, prepared for ONT and Illumina
sequencing. Source data are provided in a Source Data File.

Article https://doi.org/10.1038/s41467-024-46456-9

Nature Communications |         (2024) 15:2480 5



genes in Illumina and ONT sequenced DNA libraries (Fig. S14, Fig. 3b,c,
Fig. S7a). For the Illumina DNA libraries, we observed a strong quan-
titative correlation between conu gene copy number and read count
(Pearsons R2 = 0.9875, Fig. 3c). Consistent ratios were observed
between the successive conu genes (mean= 1.991, SD =0.1490). How-
ever, this relationshipwasweaker for ONTDNA sequencing, due to the
lower quantitative accuracy of these libraries (R2 = 0.79, SD =0.1490,
Fig. 3c, Fig. S7a).

We next used pREF to investigate the impact of technical variation
introduced during the experimental steps of library preparation and
sequencing. This technical variation can be measured by the sym-
metric, unimodal distribution of k-mer counts for conu genes (Fig. 3d).
In a simulated library, which excludes experimental variation, we
measured only minor technical variation due to random sampling
error (coefficient of variation (CoV) = 1.26%, SD =0.0807). By contrast,
Illumina libraries showed additional variation due to experimental
steps (CoV = 5.63%, SD =0.1922), whilst the ONT libraries showed the
highest degree of variation during their preparation (CoV = 12.56%,
SD =0.6537). This provides a useful estimateof variationwithin anNGS
library, even in the absence of experimental replicate libraries.

Given this ability to estimate technical variation, pREF can be
used to normalize technical differences between different librar-
ies, whilst retaining biological differences16. To demonstrate this,
we spiked pREF into two mock microbial communities13. The two
mock communities, which contain synthetic microbial sequences
at known concentrations, were then sequenced in triplicate using
ONT DNA sequencing (Fig. S14). The observed differences in
abundance were plotted against their expected abundances,
demonstrating the technical variation introduced by sequencing
(Fig. S7b) Sequencing data were normalized using removal of
unwanted variation (RUVg), with the pREF genes providing
negative scaling factors16. We found that RUVg normalization
using pREF as a spike-in control improved normalization com-
pared to either unnormalized or Upper Quartile (UQ) normal-
isation methods17 (see Fig. S7c). Accordingly, the use of pREF for
normalization resulted in improved detection of known fold-
change differences in microbial abundance between commu-
nities, and demonstrates how pREF can be routinely used as an
internal control to normalise technical variation and improves
detection of fold-change differences.

c. Error rate at hairpin k-mers.a. In vitro transcription of synthetic RNA control genes.

Synthetic mRNA controls

conu4conu2conu1 conu3

E
rr

o
r 

ra
te

A

C

T

G

A

T C

T

G

A

C

G

T

C

A

G

T

A A

T

G

A

C

T

Example
hairpin k-mers

mRNA spike-in controls in
RNAseq experiment.d.

In vitro
transcription

Spike-in to
RNA sample.

0.0

0.2

0.4

0.6

DNA RNA

Endogenous genes
differentially expressed in 
response to torkinib.

pREF
Control Genome

gece genes repe genes

E
rr

o
r 

ra
te

Illumina Sequencing

0.0

Kmer

R2 = 0.146

R2 = 0.509 R2 = 0.277
0.15

R2 = 0.36

0.3

0.3

0.3

Kmer

ONT Long-read sequencing

T7 Polymerase Error Rate T7 Polymerase Error Rate

SP6 Polymerase Error Rate SP6 Polymerase Error Rate0.15

b. Transcription accuracy using synthetic RNA control genes.

0.50.5

0.5

0.5 0.5

Synthetic control gene

Synthetic control mRNA

SP6

A30

T7

A30

Promoters

T7 in vitro transcription

SP6 in vitro transcription

DNA sequencing DNA sequencing

300

200

100

0

-5 0 5 10

ITGB4FOSB
LOXL2

TRIB3

conu4
conu4

conu3 conu3conu2 conu2
conu1

Fold change (log2)

Fig. 4 | In vitro transcription of pREFmRNA controls. a Synthetic control genes
are preceded by a T7 promoter that enables in vitro transcription into matched
mRNA controls. b Scatter plots indicate the fold-differences in k-mer sequencing
error rates between RNA and DNA libraries for Illumina and ONT sequencing.
c Violin plot illustrates the enrichment of sequencing errors at k-mers that form

hairpins. d Use of synthetic conu gene during differential gene analysis of lung
adenocarcinoma cells with torkinib. The synthetic RNA controls (coloured points)
indicate the accuracy for detecting fold change differences in gene expression
(grey) between treated and untreated cells. Source data are provided in a Source
Data File.

Article https://doi.org/10.1038/s41467-024-46456-9

Nature Communications |         (2024) 15:2480 6



Use of synthetic mRNA controls during RNA sequencing
The synthetic genes encoded within the pREF sequence can be in vitro
transcribed to generate a suite of matching mRNA controls for use in
RNA sequencing experiments (Fig. 4a). To demonstrate this, we per-
formed in vitro transcription using T7 RNA polymerase to generate a
matched suite of mRNA controls. We then preparedmRNA controls as
cDNA libraries for both Illumina and ONT sequencing (see Methods).

We first evaluated the accuracy of RNA sequencing for Illumina
and ONT sequencing across repe, conu and gece genes (Fig. S14). We
observedmarkedlyhigher error rates andgreater technical variation in
RNA compared to DNA (Fig. 4b, Fig. S8a-c). For Illumina RNAseq
libraries, we observed a mean k-mer error rate of 0.0154, which is 2.6-
fold higher than the correspondingDNAsequencing (Fig. S9a).We also
measured the quantitative accuracy of conu gene expression, showing
that correlation in conu gene expressionwas lower for RNA (R2 = 0.79),
than for DNA (R2 = 0.9875, Fig. 3c). Similar to our Illumina sequencing
results, we observed higher error rates for ONTRNA compared toDNA
(Fig. S8a-c, S9a-b). Moreover, we observed a higher error rate and
technical variability for ONT RNAseq than for Illumina RNAseq
(Figs. 3d, 4b).

Analysis of mRNA controls also showed the impact of RNA sec-
ondary structure on sequencing accuracy. Examination of RNAseq
error rates showed that short, inverted repeats were particularly error-
prone (such as an error rate of 0.555 for ACTAGT, or 0.4851 for
CTGCAG kmers) for RNA sequencing. This is likely to be due to the
formation of hairpin loops that may impact transcription by RNA
polymerase, as RNA inverted repeats exhibited an 83-fold higher error
rate than corresponding DNA sequencing (Fig. 4c). We also observed
enrichment for errors in repe and gece genes in ONT RNA sequencing
datasets, relative to complementary DNA sequencing results (Com-
pare Fig. S6c-d to S10a-b). This indicates the additional exacerbation of
errors at repetitive and GC-biased sequences during RNAseq library
preparation and sequencing.

We next used the pREF control genes as reference standards to
measure the enzyme performance of either Sp6 or T7 RNA poly-
merases (Fig. S14). We first performed in vitro transcription using
either of Sp6 or T7 RNA, and then ONT sequenced in triplicate. Data
were analysed using per-nucleotide normalisation against thematched
DNA sequencing libraries to normalise for sequencing-specific errors
(see Methods). We found that Sp6 polymerase (median error rate =
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Fig. 5 | In vitro translation of synthetic proco protein controls. a Schematic
illustrates the design of proco genes that are translated to form protein controls.
Trypsin digestion of the proco proteins then liberates control peptides of differing
size, charge and retention time, enabling the calibration of LC-MS/MS.
bQuantification of each fully cleaved proco peptide. Relative peptide abundance is
measured by the proportion of detected peptides relative to all peptides in the
proco protein. Data are presented as mean values +/- SD (n = 3 biologically

independent samples). c Schematic diagram indicates how peptides are also pre-
sent at differing copy-number, thereby forming a staggered quantitative reference
ladder for evaluating quantitative performance of proteomic experiments. Data
plots are for illustrative purposes only, and are not based on Mass Spectrometric
measurements. d Measurement of relative peptide abundance for proco proteins
and housekeeping E. coli proteins (where each peptide is expected to be in equal
abundance) in replicate (n = 3). Source data are provided in a Source Data File.
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0.004579, SD 0.03401) performed markedly better than T7 poly-
merase, which was less accurate and exhibited a higher variance (see
Fig. 4b). Closer comparison of T7 and Sp6 RNA polymerase accuracy
provided a high-resolution analysis of polymerase processivity and
performance. For example, we found RNA polymerase performance
varies depending on the nucleotide context, with Sp6 performing
more poorly on pyrimidine-rich (C,T) k-mers (1.4-fold enrichment),
while performing comparatively better on purine-rich (A,G) rich
k-mers (see Fig. 4b). Both Sp6 and T7 performance was impacted by
the presence of repeats, with a 4.12 and 5.75 fold-enrichment in
sequencing error compared to the background, respectively.

To demonstrate the use of pREF conu genes in anRNA sequencing
experiment, we performed a drug-treatment experiment that eval-
uated the impact of torkinib treatment, a selective and ATP-
competitive mTOR inhibitor, on gene expression in lung adenocarci-
noma A549 cells (Fig. 4d, Fig. S14; see Methods). We spiked the conu
mRNA controls into duplicate RNA samples harvested from treated
and untreated cells prior to library preparation and sequencing. We
first assessed the quantitative accuracy of our RNA sequencing
experiment by comparing the expression conu spike-inmRNA controls
between libraries (R2 = 0.8233). As previously indicated, the conu
mRNA controls enabled us to estimate the technical variation between
libraries (CoV=18.23%) and could be used as negative scaling factors
for accurate RUVg normalisation between the samples (see Methods).

RUVg can remove technical variation through factor analysis
using reference standards16. We tested whether RUVg normalisation
with pREF could also be used for normalisation of an RNA-seq
experiment. Following normalisation with RUVg, we used the conu
genes to benchmark the detection of fold-differences in gene
expression between control and treated libraries. The endogenous
genes FOSB, LOXL2, TRIB and ITGB4, were differentially expressed in
response to torkinib, in a pattern that is expected from mTOR inhibi-
tion (Fig. 4d). This spike-in use of conu mRNA controls allows nor-
malisation between RNA sequencing libraries, without relying on
housekeeping genes, which can be highly variable18. This method will
be particularly useful for experiments that induce global gene
expression changes or with low biological replication, where negative
controls and analyses of variation are not an option.

Use of synthetic proco genes to improve accuracy of protein
quantification
We designed synthetic proco genes that can be in vitro translated for
use as a matched peptide controls during proteomic analysis (see
Fig. 5a). The trypsin digestion of proco proteins liberates smaller
peptides of differing size, charge and retention time, enabling the
calibration of MS experiments. Furthermore, a subset of peptides is
repeated at variable copy-numbers (2x, 4x and 8x) so that when they
are digested with trypsin, they form a staggered, quantitative peptide
ladder (Fig. 5a).

We first expressed the proco proteins for use in the proteomic
analysis of the E.coli proteome (Fig. S14, see Methods). Samples were
trypsin digested and analysed using LC-MS/MS, and we identified the
majority of peptides encoded within the three proco genes, alongside
2,306 endogenously expressed E. coli proteins (Fig. S13). We observed
high levels of digestion (97.5%, 94.5% and 99.8%) of the procoproteins,
with few undigested peptides, which compared similarly to a subset of
highly abundant E. coli housekeeping genes (a mean ~91.8% trypsin
digestion) that were analysed (Fig. S13 and S11a).

We next measured peptide counts using LC-MS/MS in untargeted
Data Independent Acquisition (DIA) mode, which is thought to yield
accurate quantification, even in the absence of standards19. We first
used the proco genes to evaluate the quantitative accuracy of LC-MS/
MS DIA datasets by comparing the measured abundance of individual
proco peptides relative to their expected copy numbers (Fig. 5c). We
found that observed proco peptide abundance correlated poorly with

expected copy numbers (R2 = 3.057 e-06; Fig. 5d). These observed dis-
crepancies in detected MS signals may be attributed to the sequence-
dependent variation in ionization efficiencies between different pep-
tides. However, despite these limitations, we observed high reprodu-
cibility in peptide quantification across three technical replicates
indicating that while LC-MS/MS may not provide accurate quantifica-
tion between peptides with different sequences, it does offer a
reproducible and quantitative means of assessing the relative abun-
dance of a given peptide between different samples (Fig. 5b).

To investigate the source of this variation, we evaluated whether
the physicochemical properties of proco peptides confounded their
quantification. We performed a multiple linear regression to compare
peptide quantification against a range of predicted peptide physico-
chemical properties. Our analysis indicated that Molecular Weight,
Hydrophobicity, Aliphatic and Instability Indexes did not confound
peptide quantification. However, the Isoelectric Point and Extinction
Coefficient of peptides both had a significant, albeit weak, negative
correlation with peptide quantification (p =0.047, p =0.0076,
respectively; Fig S12). Further variables such as post-translational
modifications, degradationor cellular exportof proteinsmay also have
impacted peptide detection; however, their measurement is outside
the scope of this experiment.

We also considered whether the observed discrepancies in LC-
MS/MS quantification measured with the proco peptide controls
similarly impacted the measurements of the accompanying E. coli
proteins. To evaluate the variation in quantification, we assumed that
each unique peptide within the selected E. coli housekeeping proteins
was present once and was therefore equally abundant (Fig. S11a).
Therefore, by comparing the variation in peptide quantificationwithin
E.coli proteins, we could estimate the quantitative accuracy of our LC-
MS/MS experiment and compare it to proco controls. Similar to our
proco peptide results, we observed a wide variation in the quantifica-
tion of different E. coli peptides, with strong reproducibility for the
same peptide between biological replicates (Fig. S11b-c). This demon-
strates howprocoproteins can evaluate and validate the quantification
of protein abundance using MS methods.

Discussion
The PhiX-174bacteriophagewas thefirst genome to be sequenced and,
as a result, was serendipitously selected and used as themost common
molecular biology standard for almost 50 years7. However, given
advances in DNA synthesis and synthetic biology, we designed a syn-
thetic standard, pREF, that encoded control genes that could act as a
superior universal standard across genomic, transcriptomic and pro-
teomic experiments. Like the PhiX-174 genome, we showed how pREF
can be used as a positive control during metagenome experiments
where it can evaluate sequencing accuracy andperformance.However,
pREF can also be in vitro transcribed to produce a suite of mRNA
controls that measure RNA polymerase accuracy and be ‘spiked-in’ to
RNA samples tohelp identify fold-changedifferences betweengenes in
response to drug treatment. The pREF control genes can also be
translated into protein controls. Digestion of these control proteins
yields a suite of peptides with known characteristics that can calibrate
MS experiments. Collectively, this shows how pREF can evaluate qua-
litative (sequencing error, peptide identification) and quantitative
(accuracy and sensitivity) performance of genomic, transcriptomic
and proteomic experiments.

Multi-omics approaches are being increasingly used to integrate
NGS and MS approaches to provide a comprehensive profile of gene
expression, and identify biomarkers in human diseases. However,
whilemRNA canbemeasuredwithNGS, and protein abundance can be
measured with LC-MS/MS, these two approaches have distinct foun-
dations and are difficult to compare. The synthetic control genes
described herein represent the first set of reference standards that are
both transcribed and translated, and thereby provide matched
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references for both mRNA and protein measurements. Unlike existing
controls suchas iTRAQ labelled or SIS peptides, procopeptides permit
the rapid normalisation of protein extracted from any organism (as
they are not designed based on organismal homology), without the
use of radiolabelled peptides20,21. Moreover, as the proco peptides
were selectedbasedon theirprevious detectionbyLC-MS/MS, they are
not impacted by insolubility22. Despite these advantages, our analysis
found LC-MS/MS exhibited discrepancies in quantification between
individual proco proteins, and supports the well-established finding
that peptides do not ionize equally in LC-MS/MS. This renders direct
quantitative comparison of peptides with differing sequences infea-
sible and will likely require further advances, such as the imple-
mentation of machine-learning models that predict and normalize
intensity response based on sequence, to improve quantitative com-
parisons between peptides using LC-MS/MS23,24. These sequence-
dependent discrepancies in peptide quantification likely contribute
to the poor correlation often reported between the transcriptome and
proteome1, and demonstrate how pREF can help integrate DNA, RNA
sequencing and mass spectrometric experiments that are becoming
increasingly used in multi-omic studies25,26.

Despite these limitations, we do observe that the quantification of
individual proco peptides is highly reproducible, providing a reliable
means of assessing the relative abundance of a given protein between
different samples.Within this study, we show how pREF can be used to
provide internal scaling factors by which to perform normalization
between samples. The use of universal standards is needed to ensure
accurate and reliable comparisons across the increasing diversity of
genomic, transcriptomic and proteomic technologies. Synthetic genes
can enable normalization and interoperability between different
experiments, and provide insight into quantitative cell biology. For
example, we envisage clinical microbiome analyses could utilise pREF
for quantitative scaling of microbial count data, and host tran-
scriptome analyses, the analysis of errors that accumulate during the
reverse transcription of RNA templates (used in identifying RNA viru-
ses), and in proteomics analyses. Accordingly, we provide pREF as a
universal molecular standard to encourage data-sharing and inter-
operability between high-throughput NGS and MS methods.

While pREF comprises, to the best of our knowledge, the first
example of a synthetic control genome, we anticipate that additional
second-generation synthetic control genomes will be developed for
compatibility with emerging technologies. pREF has been deposited
within open-source repositories and designed so it can be easily
modified for further use with other molecular biology techniques. For
example, further synthetic control genes that incorporate additional
features, such as affinity tags, fluorescent peptides and CRISPR sites,
can be added.

Unlike other reference standards, pREF has been deposited with
Addgene, who will manage its’ storage and distribution. Recipient
laboratories can independently propagate pREF, and sustainably pre-
pare synthetic mRNA or protein controls using common molecular
biology protocols. As cell-free translation rates can vary due to sys-
tematic and stochastic variables27, recipient laboratories should verify
proco protein quantity prior to their use as spike-ins. Nonetheless, this
decentralized use encourages wider distribution and adoption of pREF
that can enable standardization across genomic, transcriptomic and
proteomic experiments.

Methods
pREF design
We designed pREF to be amodular standard for multi-omics studies. It
contains different sets of genes that enable the comprehensive eva-
luation of sequencing accuracy and technical biases in NGS and MS.
First, we designed the nucleotide sequences of the genes in each of
those modules. The sequences of the conu genes, which measure
quantitative accuracy were designed with ShortCAKE, a software

package that generates the shortest sequence to cover k-mers of a
specified size (we selected 6-mers). We split the ShortCAKE sequence
into 4 units, corresponding to each of the conu genes, which was then
included at known copy-numbers (1x, 2x, 3x and 4x)28.

The sequences of the repe genes, which measure sequencing
accuracy, were generated randomly but were designed to contain all
possible homopolymers (A, C, G and T)with 6, 9, 12 and 18 nt of length.
Despite the regions of low complexity, we ensured that the overall GC
content of the repe genes was stable at approximately 44%. In contrast,
the sequence of the six gece genes were also generated randomly,
sampling a wide range of GC contents (21, 35, 45, 47, 56 and 65%).

Synthetic control genes were flanked by restriction enzyme sites,
enabling the linearization and excision of genes from pREF, into DNA
fragments of known size and sequence (Fig. S1e). Synthetic control
geneswere precededbyaT7 and/or Sp6promoter that enables in vitro
transcription and is followed by a 30nt poly-adenine tract and tran-
scriptional terminators. Digesting pREF with EcoRI generates a stag-
geredDNA ladder with fragments of varying sizes (100, 200, 400, 800,
1200, 1600 and 3500 nt). Digesting with HindIII, followed by in vitro
transcription using T7 promoter, will generate 5 transcripts of
approximately 1500 nt in length (1300 – 1747 nt). Digesting with
BamHI, followed by in vitro transcription using the SP6 promoter will
generate 7 transcripts of varying lengths (89, 189, 589, 848, 1233, 1710
and 2836 nt). Finally, PstI can be used to linearise pREF and SpeI can be
used as a cloning site to add new genes.

The proco genes were designed from a list of Trypsin cleaved
peptide sequences with diverse physicochemical properties, that can
be reliably detected using MS. Twelve peptides were selected for each
of the three proco genes. The same peptide was selected for the C
terminal peptide of each gene, as it starts with a Methionine. The
subsequent (unique) peptides were tiled in different copy numbers,
such that the same peptide was never serially repeated. Nine peptides
were included at 1x, and one peptide was included at each of 2x, 4x
and 8x. The protein sequences were flanked by His-Tags, Shine-
Dalgarno sites and transcription terminators, enabling their translation
in E. coli.

Synthesis and preparation of pREF
pREF was synthesized by a commercial vendor (ThermoFisher-Gen-
eArt) and revived in the laboratory. pREF was transformed into NEB
stable E. coli competent cells (C3040H), then grown in a 50ml culture
and later purified. The purified pREF pDNAwas quantified using the BR
dsDNA Qubit Assay on a Qubit 2.0 Fluorometer (Life Technologies)
and verified on the Agilent 2100 Bioanalyzer with the Agilent High
Sensitivity DNA Kit (Agilent Technologies). The pREF stock was then
prepared as single-use aliquots and stored at −80 °C.

pREF has been deposited within the Addgene catalog for access
and distribution. For laboratories propagating pREF, we recommend
DNA sequencing prior to translation and its use as a sequencing
standard. Although spontaneous deletion errors are observed less
frequently in stable E. coli lines, they can occur in repetitive sequences,
such as those included in pREF. Purified pREF plasmid was translated
through in vitro translation with T7 and Sp6 according to manu-
facturer’s instructions. The plasmid backbone used for pREF is only
suitable for propagation in stable E. coli, and notmammalian cell lines.

Illumina DNA sequencing pREF
We first sequenced neat preparations of pREF. Four replicate libraries
were prepared using the KAPA HyperPlus PCR-based kit (Illumina)
according to the manufacturer’s instructions. Prepared libraries were
quantified on a Qubit (Invitrogen) and verified on the Agilent 2100
Bioanalyzer with the Agilent High Sensitivity DNA Kit (Agilent Tech-
nologies). The libraries were then sequenced on a NovaSeq (Illumina).
The sequencing was performed at the Kinghorn Centre for Clinical
Genomics, Darlinghurst, New South Wales.
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ONT DNA sequencing pREF
pREF was linearised using restriction enzymes, and four replicate
libraries were prepared for nanopore sequencing, with the LSK108 kit
(1D ligation) according to the manufacturer’s instructions. The
resulting libraries were sequenced on a PromethION instrument, at the
Kinghorn Centre for Clinical Genomics, Darlinghurst, New South
Wales. Base-calling was achieved using ONT Albacore Sequencing
Pipeline Software (version 1.2.6).

In vitro transcription pREF
pREF was linearised using two different restriction enzymes, HindIII
andBamHI (10μg for each) andwas in vitro transcribedusing both Sp6
and T7 polymerase, respectively (ThermoFisher). The in vitro tran-
scription reaction was performed according to manufacturer’s
instructions. For in vitro transcription of pREF in recipient laboratories,
we recommend an initial DNA sequence confirmation prior to the
in vitro transcription reaction.

Illumina RNA sequencing pREF
For each RNA sample transcribed using Sp6- and T7 polymerase, one
replicate Illumina Tru-Seq RNA-seq library was prepared according to
manufacturer’s instructions. Prepared libraries were quantified on a
Qubit (Invitrogen) and verified on the Agilent 2100 Bioanalyzer with
the Agilent High Sensitivity DNA Kit (Agilent Technologies). The
libraries were then sequenced on a NovaSeq (Illumina). The sequen-
cing was performed at the Kinghorn Centre for Clinical Genomics,
Darlinghurst, New South Wales.

ONT RNA sequencing pREF
Three replicate ONT libraries were prepared according to manu-
facturer’s instructions, from cDNAs Reverse Transcribed from single
Sp6- and T7 RNA samples (LSK108 kit; Oxford Nanopore). The result-
ing libraries were sequenced on a PromethION instrument, at the
Kinghorn Centre for Clinical Genomics, Darlinghurst, New South
Wales. Base-calling was achieved using ONT Albacore Sequencing
Pipeline Software (version 1.2.6).

pREF alignment and kmer analysis
The four replicate Illumina short-read DNA libraries were aligned to
reference sequences containing the pREF plasmid using BWA-MEM229,
while the two Illumina RNA libraries (transcribed with Sp6 and T7
polymerase)were alignedusing bowtie2 (v2.4.0)30. Long-readDNAand
RNA libraries generated by Oxford Nanopore sequencing were aligned
to the pREF reference sequence using MiniMap2 (v2.17-r941)31 with the
parameters ‘minimap2 -ax map-ont’ optimized for Oxford Nanopore
libraries. Alignment files were sorted and indexed using samtools
(v1.9)32 and pysamstats33 were used to retrieve the coverage and spe-
cific error types, such as mismatches or insertions and deletions, for
every reference sequence position. At each position, we calculated the
relative frequency ofmismatches, insertions and deletions, by dividing
the number of reads containing each of these errors by the total read
count at that position. Error rates andGC-content for 6-mer sequences
across the pREF reference sequence were calculated based on a sliding
6-mer windowwith the sequencing error profile averaged across bases
in each window in R (v4.0.2) using the extractList function of the
IRanges R-package (v2.22.2)34.

Conu quantitative analysis
The accuracy of conu genes was calculated using Jellyfish ‘count’
(v2.2.10)35 to quantify unique k-mers sequenced for each control gene.
A k-mer length of 31 was used and counts for equivalent sequences in
forward or reverse orientation were combined using the canonical
option (-C). K-mer counts were normalised for each sample by dividing
counts by the mean library depth across the pREF reference sequence.
Linear models of normalised vs expected k-mer abundance were

generated using the lm function of the stats R-package (v4.0.2)36 and
compared to a simulated pREF library contain 1 million paired-end
short reads (150bp) generated from the pREF reference sequence
using wgsim (v1.9)37.

Metagenome normalisation
Triplicate ONT libraries were prepared for samples of two mock
microbial communities (A and B), which contain synthetic microbial
communities at known concentrations, as described above. pREF was
spiked into our samples prior to library preparation. Reads were
aligned to a reference sequence containing Metasequins (from www.
sequinstandards.com/resources) and pREF using Minimap2 as descri-
bed above. Reads aligned to Metasequin and pREF control genes were
quantified using HTSeq (v2.0.1)38. Counts corresponding to the pREF
reference sequence were scaled to represent 1% of total library size in
each sample to omit potential errors carried forward from inaccurate
quantificationofDNAorpipetting biases. Theobserved folddifference
between metasequins in Mixture A and B was compared to the
expected fold-change difference for these features. Differences in
abundance were compared between samples without normalisation,
with TMM normalisation (without pREF) using the R-package edgeR
(v3.30.3)39, and with RUVg normalisation using pREF control genes as
negative scaling factors (v1.22.0)16.

RNAseq analysis of torkinib treatment
RNA was extracted using standard methods from lung adenocarci-
noma A549 cells (purchased from ATCC; CCL-185) that were treated
with torkinib, a selective and ATP-competitive mTOR inhibitor. We
spiked the conu mRNA controls into harvested RNA from treated and
untreated cells prior to duplicate TruSeq library preparation and short-
read sequencing (Illumina) as described above. For recipient labora-
tories, we recommend sequence confirmation of the in vitro tran-
scribed RNA prior to its use as a spike-in. The abundance of transcripts
mapping to the human transcriptome (GENCODE primary assembly
annotation v36, https://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_36/gencode.v36.primary_assembly.
annotation.gtf.gz) or the pREF control genes was quantified using
Kallisto (v0.46.2)40. Note, to construct the Kallisto index used for
quantification, a modified pREF reference sequence was used in which
each conu gene sequence was only represented once and additional
copies of conu genes weremasked. Counts from pREF transcripts were
scaled to represent 1% of total library size in each sample to omit
potential errors carried forward from inaccurate quantification of DNA
or pipetting biases. The duplicate libraries of the control and torkinib-
treated conditions were normalised with RUVg using pREF control
genes as negative scaling factors. To determine fold-change in conu
coverage between conditions, read counts for each conu gene with
multiple copies (cn>1) were compared to the conu gene with a single
copy number (cn=1) between conditions. For example, the abundance
of conu1 (cn=1) from the control condition was compared to the
abundance of conu2 (cn=2), conu3 (cn=3), conu4 (cn=4) in the torkinib
condition and vice versa. Differential expression of both pREF quan-
titative controls and human transcripts in tumor cells as a response to
torkinib treatment was performed with edgeR (v3.30.3)39.

Mass spectrometry
pREFwas transformed into chemically competent BL21 DE3 E. coli cells
(NEB) according tomanufacturer’s protocols andwas grownovernight
at 37 oC on LB Kanamycin plates. Three separate colonies of each
construct were spiked into 5mL TB with 50mg/mL Kanamycin and
grown overnight at 37 oC, shaking at 200 rpm. Next, we expressed the
constructs using 0.5mM IPTG, and cultured them overnight at 30 oC,
shaking at 200 rpm. After a 16 hour incubation, the E. coli cultureswere
pelleted at 20,000 g and protein was extracted using protein lysis
buffer (5% SDS, 50mM triethylammonium bicarbonate, 100mM DTT,
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pH 7.55), with cells disrupted using 4 cycles of boiling, ice and dis-
ruption using 0.1mM glass beads in a Precellys 24 tissue homogeniser
(Bertin Instruments).

pREF proteins may also be translated using an E. coli cell-free
translation system by recipient laboratories. Cell-free translation effi-
ciency can vary significantly between laboratories27, and His-tag pur-
ified proteins should be checked on an SDS PAGE gel prior to use as a
spike-in for Mass Spectrometry experiments.

Then 300mgof extracted proteinwas digestedwith 1:50Trypsin/
Lys-C (Promega) on S-trap columns (Protifi), for 1 hour at 47oC
according to the manufacturer’s instructions. Peptides were eluted by
successively adding 80 µl of 5% acetonitrile in 0.1% formic acid, 80 µl of
50% acetonitrile in 0.1% aqueous formic acid and 80 µl of 75% acet-
onitrile in 0.1% formic acid with a 30 second centrifugation step at
4000g between the addition of each elution buffer. The eluants were
pooled, dried in a vacuum centrifuge and resuspended in 20 µl of
buffer A (0.1% formic acid).

Samples were analysed using a Thermo Fisher Scientific Ultimate
3000 RSLC UHPLC and a Q-Exactive HF mass spectrometer. Samples
were injected on a reverse-phase PepMap 100 C18 trap column (5 µm,
100Å, 300 µm i.d. x 5mm) at a flowrate of 15 µL/minute. After
3.0minutes, the trap column was switched in-line with a Waters
nanoEase M/Z Peptide CSH C18 resolving column (1.7 µm, 130Å,
300 µm i.d. x 100mm) and the peptides were eluted at a flowrate of
3 µL/minute using buffer A (0.1% formic acid) and buffer B (80 %
acetonitrile in 0.1 % formic acid) as the mobile phases. The gradient
consisted of: 8–2410% B for 0 to 6minutes, 10–24% B from 6 to
43minutes, 24–40% B from 43–51minutes, 40-95% B from
51–57minutes, followed by a wash, a return of 8% buffer B and equi-
libration prior to the next injection. Themass spectrawere obtained in
DIA mode with an MS1 resolution of 120,000, automatic gain control
target at 3 × 106, maximum injection time at 200ms and scan range
from 400–1100m/z. DIA spectra were recorded at resolution 30,000
and an automatic gain control target of 2 × 105. The 70 isolation win-
dows were 10m/z each from mass 405–1095.

Mass Spectrometry analysis
Results were analysed in Spectronaut (15.2.210819.50606) using direct
DIA analysis anddefault settings. Briefly, spectrawere searched against
the proco 1, 2 and 3 protein sequences and BL21 proteome with car-
bamidomethylation set as a fixed modification and methionine oxi-
dation and N-terminal acetylation as variable with 1% false discovery
rate cut-offs at the peptide spectral match, peptide and protein group
levels. Quantitation was performed at the MS2 level with Q-value data
filtering. Quantities of detected precursors were exported and sum-
med to give total peptide quantities.

Wedifferentiated the fully cleaved peptides frompartially cleaved
peptides, based on comparison to peptides predicted by Expasy41

PeptideCutter set to Trypsin digestion. We calculated the proportion
of fully cleaved peptides by summing the quantification of the fully
cleaved peptides and comparing it to the quantification of all peptides
(fully cleaved + partially cleaved) from each proco protein.

Next, we compared the detection of each fully cleaved peptide to
their expected abundances. Themajority of peptides were included as
a single copy in each proco protein, and a subset of peptides were
included at 2x, 4x and 8x. Peptide detection is expressed as a pro-
portion of the total fully cleaved peptides for each protein, to nor-
malise the detection of each protein between each of our three
replicates.

We predicted the physicochemical properties of our peptides
using the Expasy ProtParam tool41, including Molecular Weight, theo-
retical pI, Instability Index, Aliphatic Index and Hydrophobicity. These
were incorporated into a multiple linear regression in GraphPad Prism
(v9.4.1), to determine the properties that best predicted relative
quantification values. Peptide physicochemical properties were

designated as fixed variables and relative quantification was the
dependent variable.

As a comparison, we examined the peptides comprising six
abundant E. coli proteins, comparing the observed and expected
abundances. These were determined by ranking protein detection and
selecting functionally diverse proteins that included >8 peptides that
were long enough to be reliably detected byMS (>7 amino acids long).
We conducted analyses of the relationship between peptide cleavage
and observed vs expected abundance (in this case all peptides were
included as a single copy), as described for our synthetic con-
structs (above).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Next Generation Sequencing (NGS) data generated in this study
have been deposited in the SRA database. The gDNA and translated
RNA sequencing data were submitted with the PRJNA815898 BioPro-
ject Accession Identifier. Metagenomic data were submitted with the
PRJNA781348 BioProject Accession Identifier, and the RNA-seq data
were submitted with the PRJNA1073056 BioProject Accession Identi-
fier. RNA-seq data were annotated based on the GENCODE primary
assembly annotation v36 (https://www.gencodegenes.org/human/
release_36.html). BAM alignments are available through DRYAD
(10.5061/dryad.k0p2ngffn). The Mass Spectrometry DIA data gener-
ated in this study have been submitted to the PRIDE database, and are
available via ProteomeXchange with identifier PXD035035
(doi:). Source data are provided with this paper.

Code availability
All scripts and code used during the analysis are available from
through Zenodo https://zenodo.org/records/10608215.
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