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Integrating taxonomic signals from MAGs
and contigs improves read annotation and
taxonomic profiling of metagenomes

Ernestina Hauptfeld 1, Nikolaos Pappas 1, Sandra van Iwaarden1,
Basten L. Snoek 1, Andrea Aldas-Vargas 2, Bas E. Dutilh 1,3,5 &
F. A. Bastiaan von Meijenfeldt 1,4,5

Metagenomic analysis typically includes read-based taxonomic profiling,
assembly, and binning of metagenome-assembled genomes (MAGs). Here we
integrate these steps in Read Annotation Tool (RAT), which uses robust
taxonomic signals from MAGs and contigs to enhance read annotation. RAT
reconstructs taxonomic profiles with high precision and sensitivity, out-
performing other state-of-the-art tools. In high-diversity groundwater sam-
ples, RAT annotates a large fraction of the metagenomic reads, calling novel
taxa at the appropriate, sometimes high taxonomic ranks. Thus, RAT inte-
grative profiling provides an accurate and comprehensive view of the micro-
biome from shotgun metagenomics data. The package of Contig Annotation
Tool (CAT), Bin Annotation Tool (BAT), and RAT is available at https://github.
com/MGXlab/CAT_pack (from CAT pack v6.0). The CAT pack now also sup-
ports Genome Taxonomy Database (GTDB) annotations.

Metagenomic shotgun sequencing provides a single platform for
exploring both the composition and the functional potential of diverse
microbial communities1–5. While functional profiling maximizes the
usage of the shotgun data, taxonomic profiling of metagenomes may
involve mapping reads to a reference database containing specific
marker genes6–10, in which case only a portion of the data is used, and
function can only be coupled to taxonomy for those reads that contain
the marker gene. Alternatively, taxonomy can be assigned to as much
of the data as possible by querying reads to a full reference
database11–14. Metagenomic profilers carry out direct homology sear-
ches in DNA12, protein13, or k-mer space11,15,16, and the resulting taxo-
nomic profiles have been used in large-scale studies to characterize
microbial communities of the oceans1, the global topsoil2, and to
estimate the niche range of known microbial taxa17.

Taxonomic profiles that are based on direct queries of individual
reads to full reference databases give a comprehensive view of a

microbiome but often contain annotations (i.e., assignment of
sequences to a certain taxon) that are spurious. Assigning taxonomy
based on homology searches is challenging, particularly for relatively
short reads: (i) some genomic regions are highly conserved across
taxa, making it difficult to discriminate between them; (ii) microbes
have high rates of horizontal gene transfer18,19, so the best hit in the
referencedatabasemight be fromadifferent taxon; (iii) environmental
microbiomes may contain many novel taxa without close representa-
tives in the reference database, resulting in possible annotation to e.g.
a genus or species when the organism only shares the same order20,21;
(iv) known taxa may contain novel genomic regions, resulting in no
annotation of reads covering that region or annotation to a more
distant relative, and (v) reference databases contain mis-annotated
sequences22. These challenges are especially pronounced when
directly comparing individual reads. Except for data from recent long-
read sequencing platforms23, reads are short sequences that contain
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limited taxonomic information, leading to reads derived from a single
strain potentially being assigned to several different taxa. Thus, while
comprehensive, taxonomic profiles based on read annotations are
inherently noisy with spurious annotations and often inaccurate20.

Over the past decade, best practices in shotgun metagenomics
have been established, including reference database-independent (de
novo) assembly24,25 and binning of metagenome-assembled genomes
(MAGs)26,27. The resulting contiguous sequences (contigs) and espe-
cially MAGs allow for accurate detection of novel taxa. Contigs and
MAGs are significantly longer than the original short sequencing reads,
the additional data allowing for more reliable taxonomic annotation,
either bymultiple homology searches21,28 or phylogenetic placement29.
Long sequence length mitigates the errors in annotation discussed
earlier because multiple taxonomic signals can be integrated, as the
confidence in the taxonomic annotation is highest in MAGs, followed
by contigs and then reads. Thus, assembly-based annotation of MAGs
and contigs comprise a current best practice for analyzing shotgun
metagenomic datasets. The reliable taxonomic annotations, together
with read-based coverage of the MAGs and contigs, can be used to
estimate taxonomic profiles that have little noise and high explanatory
power4,30,31. However, even though taxonomic annotation is more
accurate for longer sequences, they often represent only part of the
metagenomic data and therefore provide an incomplete picture of the
microbiome sincemost of the data are explained by reads, followed by
contigs and then MAGs. As de novo assembly and binning depend on
sufficient coverage of the genome sequence, it may be expected that
especially rare microorganisms will be missed when MAGs or contigs
are assessed. For a robust taxonomic profile that also includes rare
microorganisms, an annotation protocol that integrates both taxo-
nomic information from long sequences where available and short
reads where not may thus be desirable.

Here, we present a Read Annotation Tool (RAT), an annotation
pipeline for metagenomic sequencing reads that integrates accurate
annotation of contigs and MAGs derived from de novo assembly and
binning and direct homology searches of the remaining unassembled
reads. RAT assigns taxonomy to reads, making use of assembly-based
profiling by associating reads to longer sequences when possible and
assigning taxonomy according to themost reliable taxonomic signal it
can find (first MAGs, next contigs, and last individual reads). Contigs
and MAGs are taxonomically annotated with the previously published
tools Contig Annotation Tool (CAT) and Bin Annotation Tool (BAT)21,
which provide robust annotation based on open reading frame (ORF)
prediction and comparisons to a protein database32–34. Direct read
annotation by DIAMOND is then used for those reads that cannot be
associated with a contig or MAG to improve the sensitivity of the
resulting taxonomic profile. We show that, by integrating taxonomic
signals from MAGs, contigs, and reads, RAT provides more accurate
read annotations and taxonomic profiles than other state-of-the-art
tools and accurately characterizes groundwater microbiomes with
many novel taxa.

Results and discussion
Natural microbial communities consist of many different micro-
organisms that can be identified and characterized via their DNA with
shotgun metagenomic sequencing. For an overview of all micro-
organisms and their relative abundances in a sample, a comprehensive
approach is to obtain taxonomic annotations for as many of the
sequencing reads as possible. The resulting taxonomic profile reflects
the amount of DNA that was contributed by the community members
to the sequencing machine, as opposed to their cell count or number
of genome copies35. The accuracy of the taxonomic profile depends on
the reliability of the taxonomic annotations. While contigs and MAGs
can be more reliably annotated than individual reads, in most meta-
genomic datasets, not all reads are assembled into contigs, and not all
contigs are binned into MAGs (Fig. 1). To address this trade-off

between annotation reliability and the fraction of data that can be
explained in a metagenome, we developed Read Annotation Tool
(RAT) (Fig. 1b, c).

RAT annotates contigs and MAGs with the previously published
tools Contig Annotation Tool (CAT) and Bin Annotation Tool (BAT),
respectively. CAT and BAT predict ORFs on these longer sequences
with Prodigal and query them against a protein reference database
with DIAMOND blastp33. The taxonomy of the sequence is assigned
based on the combined taxonomic signal of the individual ORFs,
selecting higher-ranking taxa in cases where many conflicting signals
are present21. Default options for the reference database include the
NCBI non-redundant protein database (nr)36 and, in the latest RAT
update, the non-redundant set of proteins of the representative gen-
omes in the Genome Taxonomy Database (GTDB)37. Alternatively, any
protein database with taxonomic annotations can be supplied by the
user. Next, individual reads aremapped to the contigs with BWA-MEM,
and each read inherits the taxonomic annotation with the highest
reliability: the MAG annotation if the contig is binned and the contig
annotation if it is unbinned. Finally, the remaining sequences (reads
that do not map to a contig and contigs that cannot be annotated by
CAT) are annotated individually by querying them directly against the
protein database with DIAMOND blastx in default sensitivity mode33.
Thus, by assigning reads to the taxonomic annotation with the highest
reliability, RAT reconstructs a comprehensive taxonomic profile with
high accuracy (Fig. 1c, Supplementary Fig. 1). The final step in which
sequences are individually queried to the protein database is optional,
and depending on whether this step is included, we distinguish two
RAT modes: in -mc mode, RAT only uses the most reliable read
annotations, which are based onMAGs and contigs with ORFs. In -mcr
mode, RAT also uses the read and contig annotations with DIAMOND
blastx, which will include more tentative annotations while repre-
senting more of the data.

We evaluated RAT’s performance of read annotation and howwell
the final taxonomic profile represents the microbial community. First,
we addressed the trade-off between annotation accuracy and the
fraction of reads that can be annotated by the different steps in RAT,
using 28 samples of simulated data from three different datasets in the
second round of the Critical Assessment of Metagenome Interpreta-
tion (CAMI2) challenge38. Second, with the same datasets, we com-
pared taxonomic profiles predicted by RAT to those predicted by
other commonly used state-of-the-art profilers. Third, we assessed the
performance of RAT and the best-performing other profiler on real
metagenomes. To this end, we analyzed 18 samples from three
groundwater monitoring wells, a relatively unexplored high-diversity
environment that contains many novel taxa39.

Including taxonomic signals from MAGs and contigs improves
read annotation
To evaluate how the integration of different taxonomic signals influ-
ences the annotation of individual reads, we annotated simulated
metagenomic datasets from the second CAMI challenge38 (CAMI2)
with RAT. CAMI2 simulated well-characterized microbiomes of the
mouse gut and microbiomes with more taxonomic novelty from
marine and rhizosphere environments. The 28 samples contained
between 78–381 species and included raw reads, gold standard
assemblies (the best possible assembly of the sequencing reads in a
sample), and genome sequences of these species. In our benchmarks,
we used the gold standard assemblies as contig input. Each dataset of
the CAMI2 challenge has different strengths for benchmarking. The
mousegut dataset only includes taxa fromknown species.However, as
shown in Supplementary Fig. 2a, reads from the mouse gut dataset
show high sequence divergence from taxa in known databases (as
representedby theNCBI nucleotide (nt) database) due to simulationof
sequencing errors, thereby posing a challenge for metagenomic pro-
filers and effectively simulating unexplored environments. The
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rhizosphere dataset is the only dataset that contains eukaryotes, and
its samples contain thehighest fractionof reads belonging tounknown
taxa, with up to 36.4% of reads not having a known species repre-
sentative in nt (Supplementary Table 1). However, the rhizosphere
samples have the highest fraction of reads mapping to MAGs, which is
not representative of many biological samples, where reads are often
unmapped or mapped to unbinned contigs (Supplementary Fig. 2b).
Finally, the marine dataset contains 10.8–18.2% reads that belong to
taxa without a known species representative in nt (Supplementary
Fig. 2c). Conversely, reads from known taxa are highly similar to
sequences in nt, making the samples representative of microbiomes
that have been well-characterized (Supplementary Table 1, Supple-
mentary Fig. 2a).

We compared five different methods for read annotation: (i) we
annotated all reads directly with DIAMOND blastx, without mapping
them to contigs or MAGs, (ii) RAT -cr for taxonomic annotations via
contigs but ignoringMAG annotations, and direct read annotations for
reads that did not map to contigs, (iii) RAT -mcr for annotations via

MAGs, contigs, and reads, using the MAGs included in CAMI2 (‘CAMI
genomes’), (iv) RAT -mcr for annotations viaMAGs, contigs, and reads,
using MAGs binned by MetaBAT2 (ref. 26) (<10% contamination), and
(v) RAT-mc for annotations via MAGs and contigs, using MetaBAT2
MAGs, but no direct read annotations (Fig. 2). Results were assessed at
six taxonomic ranks (phylum, class, order, family, genus, and species)
and we scored whether a read was correctly or incorrectly annotated,
or unannotated (Fig. 2, Supplementary Fig. 3).

Direct annotation with DIAMOND blastx resulted in low accuracy
at low taxonomic ranks like genus and species with a high fraction of
mis-annotated reads (Fig. 2, Supplementary Fig. 3), revealing spurious
annotations when mapping short sequences to a reference database.
Accuracy in the mouse gut dataset is particularly low on species rank,
with a true positive rate (TPR) of 14.1 ± 4.5% (mean ± standard devia-
tion) (marine: 40.3 ± 2.3%, rhizosphere: 25.0 ± 20.6%) for DIAMOND.
Despite using DIAMOND with the same reference database, RAT runs
reduced mis-annotations and improved the fraction of correctly
annotated reads at deep taxonomic ranks, highlighting the value of

a ContigsMAGs Reads

AssemblyBinning

Taxonomic annotation of
reads with DIAMOND

Taxonomic annotation 
of MAGs with BAT

b

Taxonomic annotation
of contigs with CAT RAT

Integrated
taxonomic
profiling

Reliability of taxonomic annotation

RAT -mcr 
profile

Reads that inherit
MAG annotation

Reads that inherit
contig annotation

Unmapped reads
with DIAMOND

annotation

Unannotated reads

c

High Low

Fraction of data represented

RAT -mc 
profile

Fr
ac

tio
n 

of
da

ta
re

pr
es

en
te

d

Reliability of taxonomic annotation

Fig. 1 | The RATworkflow. aOverview of a standard state-of-the-artmetagenomics
pipeline. bOverview of the RAT workflow: reads are mapped to contigs with BWA-
MEM, which are binned into MAGs or unbinned. MAGs and contigs are tax-
onomically annotated using BAT and CAT, respectively. Unmapped reads and, thus
far, unclassified contigs are annotated using DIAMOND. c Left: composition of an

integrated taxonomic profile as reconstructed by RAT -mcr (for ‘MAGs and contigs
and reads’, includes direct mapping of thus far unclassified contigs) and RAT -mc
(for ‘MAGs and contigs’). Right: schematic bar plot showing the fraction of the
metagenome that can be annotated as reads, contigs, and MAGs.
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integrating information from taxonomically annotated MAGs and
contigs (Fig. 2, supplementary Fig. 3).

When only taxonomic signals from contigs and direct read
annotations are integrated (RAT -cr), the TPR increases compared to
direct annotation with DIAMOND blastx, while the fraction of incor-
rectly annotated reads drops to 0.1–1% for all datasets. In addition, the
fractionof readswith anannotation increases. This indicates thatmany
previously mis- or unannotated reads are correctly annotated if they
map to contigs (Fig. 2).

When taxonomic signals from both contigs and MAGs are inte-
grated, the fraction of unclassified reads decreases compared to
annotating without MAGs. In the CAMI2 mouse gut dataset, using the
CAMI2 genomes asMAG input and binning the contigs withMetaBAT2
gave very similar results, indicating that current binning tools accu-
rately group contigs from the same species together. Without using
DIAMOND blastx to annotate the remaining unmapped reads and
unclassified contigs (RAT -mc), the fraction of annotated reads
decreases, while the true positive rate stays the same in themouse gut
dataset. In real biological datasets, RAT -mc is likely to annotate fewer
reads on low ranks like species and genus. This is because higher
diversity makes it more difficult to assemble reads into contigs than in
the simulated CAMI2 samples, and in turn, fewer or shorter contigs
lead to a smaller fraction of the reads being associated with longer
sequences, which leads to less reliable annotations (see below, Sup-
plementary Figs. 7 and 8).

In the marine and rhizosphere datasets, the same patterns are
visible. RAT, on average, annotated the highest fraction of reads in the
marine samples, followed by the mouse gut and rhizosphere dataset.
All different tool settings showed a higher TPR on the marine dataset
compared to the mouse gut or rhizosphere (Supplementary Fig. 3),
likely due to the much higher similarity between the reads and the
reference databases in the marine samples (Supplementary Table 1,
Supplementary Fig. 2).

In conclusion, using the taxonomic signals from contigs and
MAGs for read annotation leads to more reliable annotations than
using direct querying of individual reads with DIAMOND.

Including information from contigs and MAGs improves accu-
racy of taxonomic profiling
Metagenomics is used to analyze high-complexity microbial commu-
nities, including many different taxa with orders of magnitude of dif-
ference in their abundances. Taxonomic profilers aim to chart the
community composition by estimating the relative abundance of all

taxa in a sample. A good taxonomic profile contains asmanymembers
of the microbial community as possible while avoiding taxa that are
not present in the sample. Inpractice, this often leads to a compromise
between sensitivity (finding all taxa that are present and maybe some
false positives) and precision (avoiding taxa that are not present and
maybe some false negatives). To assess how the inclusion of contigs
and MAGs affects the accuracy of taxonomic profiles, we used four
metrics (sensitivity, precision, L1 distance, and weighted UniFrac dis-
tance) to compare the taxonomic profiles reconstructed by RAT and
four state-of-the-art taxonomic profilers that carry out annotations via
direct read mapping to the CAMI2 reference taxonomic profiles
(Fig. 3). Centrifuge12 compares read to the nucleotide database using a
Burrows–Wheeler-transformation, Kaiju13 annotates sequences in
protein space, Kraken2 (ref. 11) uses exact k-mer matches, and
Bracken40 uses the Kraken2 annotations for a Bayesian re-estimation of
the abundances of taxa in the sample. The RAT output includes all taxa
that are represented by at least a single read. However, as direct read
annotations are known to be inaccurate, we limited the amount of
noise by only considering taxa with a minimum abundance of 0.001%
(which represents 4 reads in the CAMI2 samples) and applied this cut-
off for all tools in the benchmark. This cut-off was applied separately
on every taxonomic rank. Thus, even if a species with an abundance
below 0.001% was removed, its reads could still be included at the
genus rank if the genus was >0.001%.

In line with our first benchmark, the incorporation of taxonomic
signals from MAGs led to more accurate profiles than using only
taxonomic signals from contigs, as seen in the L1 distance and in the
weighted UniFrac distance of RAT -rc and RAT -mcr. RAT -mcr slightly
outperformed RAT -mc (Fig. 3, Supplementary Figs. 4, 5) in L1 distance
and sensitivity, indicating that including direct read annotation leads
to reconstructed profiles that are more similar to the reference profile
than when relying solely on assembly-based profiling. Taxonomic
profiles reconstructed by RAT consistently had lower L1 distances to
the reference profiles than profiles reconstructed by Bracken, Cen-
trifuge, and Kraken2 across all three CAMI2 challenge datasets (Fig. 3a,
Supplementary Figs. 4 and 5). In comparison to taxonomic profiles
reconstructed by Kaiju, RAT runs had slightly higher L1 distances on
family, genus and species rank. Taxonomic profiles reconstructed by
RAT had lower weighted UniFrac distances to the reference profiles
than Bracken, Centrifuge, and Kraken2, except in the marine dataset
(Fig. 3b, Supplementary Figs. 4, 5), while Kaiju performed similarly. The
high performance of Bracken, Centrifuge, and Kraken2 on the marine
dataset can likely be explained by the high similarity of the reads to the

0.0

0.2

0.4

0.6

0.8

1.0

phylum genus species
Taxonomic rank

M
ea

n
TP

R

Tool
DIAMOND
RAT -mcr (CAMI)
RAT -mcr (MetaBAT2)
RAT -cr
RAT -mc

Fig. 2 | Outcome of incorporating different taxonomic signals into read
annotations on 10 samples of the CAMI2 mouse gut dataset. ‘DIAMOND’ refers
to using only direct read annotation in default sensitivity mode. ‘RAT -mcr
(CAMI2)’refers to a RAT -mcr run (integrating MAGs, contigs, and reads) using the
genomes that were provided by the CAMI2 challenge as MAG input. ‘RAT -mcr
(MetaBAT2)’ refers to a RAT -mcr run with contigs binned by MetaBAT2. ‘RAT -cr’
refers to aRAT runwithoutMAG input. ‘RAT -mc’ refers to aRAT -mc run, using only

read annotation via mapping to MetaBAT2 MAGs and contigs, but no direct read
annotation. The mean TPR refers to the fraction of correctly annotated reads per
fraction of annotated reads averaged across the ten samples. The white section of
the pie charts shows the fraction of unannotated reads. The same figure including
results for all taxonomic ranks and for all benchmarked tools, as well as for the
marine and rhizosphere datasets can be found in Supplementary Fig. 3. TPR true
positive rate. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47155-1

Nature Communications |         (2024) 15:3373 4



sequences in the database reflecting well-characterized microbiomes.
In well-characterized communities, annotations in nucleotide and k-
mer space are put at an advantage compared to unexplored environ-
ments due to thehigh likelihoodof long exactmatches in the database.
For communities containing mostly well-known organisms, tools such
as Kraken2/Bracken or Centrifuge are therefore suitable. Conversely,
more sensitivemethods that annotate in protein space, especially ones
that include a last-common-ancestor approach, such as both RAT and
Kaiju, are at a relative disadvantage inwell-characterized communities.
As proteins aremore conserved than nucleic acids, the annotations by
these tools are more likely to be based on multiple taxa with the same

or similar amino acid sequences. This leads to a higher likelihood of
missing annotations on low ranks compared to tools that search in
nucleotide or k-mer space. Methods such as Kaiju or RAT are, there-
fore, particularly suitable for characterizing environments with
organisms that exhibit high sequence divergence compared to their
closest relatives in the databases.

RAT had a higher precision on all taxonomic ranks than the other
evaluated tools (Fig. 3c). This means that RAT had fewer falsely
detected taxa, in linewith earlier observations of high precisionofCAT
and BAT annotations21. In the mouse gut dataset, RAT -mc maintained
>0.94 precision on all taxonomic ranks, even when detected taxa were
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not limited by a minimum relative abundance cut-off (Supplementary
Fig. 5). The same pattern can be seen in the marine (>0.93) and rhi-
zosphere (>0.83) datasets, where RAT consistently showed higher
precision than the other evaluated tools. Thus, like CAT and BAT on
which its annotations are based, RAT -mc tends to avoid spurious
annotations at low taxonomic ranks like genus and species in cases
where conflicting taxonomic signals arise. For RAT -mcr, precision
remained higher than that of the other evaluated tools across taxo-
nomic ranks, but precision was lower than that of RAT -mc. The
minimum relative abundance cut-off greatly improved the precision of
RAT -mcr (cf. Fig. 3c and Supplementary Fig. 6). Spurious annotations
are introduced when short sequencing reads are directly annotated in
the direct annotation step of RAT and by the other evaluated tools.
However, because of the prioritization of taxonomic signals in RAT, a
smaller fraction of reads is annotated directly, leading to fewer spur-
ious annotations in the first place. By setting an abundance cut-off
(e.g., 0.001% of reads as in this benchmark), RAT can profit from the
high sensitivity of the DIAMOND blastx step (finding taxa that might
not be detected using just contig and MAG annotations) while further
minimizing the number of falsely detected taxa (by excluding spurious
annotations that have a very low abundance).

RAT’s overall high precision can be explained by its integrated
taxonomic profiling approach, which improves annotations in most of
the challenges discussed above. Reads that map to conserved or hor-
izontally transferred regions, or map to novel genomic regions of a
known taxon, are likely to get the correct annotationwith RATbecause
the surrounding regions of the genome are considered in the anno-
tation via the contig and/orMAG. Reads belonging to novel taxawithin
known clades are also more likely to get correctly annotated, as when
the reads are assembled into contigs orMAGs,RATmay annotate them
on a higher taxonomic rank. For example, if the closest related
sequences in the reference database are found among different spe-
cies in a genus, the sequence will be annotated at the genus rank (see
Methods). The difference in precision between the different approa-
ches shows that reads that are annotated via direct read mapping
instead of by being associated with a contig orMAG are far more likely
to get falsely annotated. RAT’s approach reduces the number of falsely
detected taxa from200–4000by the other evaluated tools to between
0 (RAT -mc) and 38 (RAT -mcr).

All evaluated tools showed high sensitivity from phylum down to
family rank, detecting most of the taxa that were present in the
reference profiles (Fig. 3c, Supplementary Figs. 4, 5). This is consistent
with increasedbarriers to horizontal gene transfer at higher taxonomic
ranks41. Including direct read annotation consistently increased RAT’s
sensitivity compared to RAT -mc on all ranks and across all three
datasets. Onemay expect that these classifications are less robust than
those annotated via MAGs or contigs. All tools displayed the highest

sensitivity in the marine dataset and the lowest in the rhizosphere
samples. RAT’s high performance on the CAMI2 datasets is in part due
to the fact that a large fraction of the reads map back to annotated
contigs (mouse gut: 81.6 ± 6.6% (mean± standard deviation), marine:
97.4 ± 0.2%, rhizosphere: 95 ± 4.7%) andMAGs (mouse gut: 75.8 ± 6.4%,
marine: 90.5 ± 0.5%, rhizosphere: 91.7 ± 8.0%, Supplementary Fig. 7,
supplementary Table 1). These numbers are often lower in real meta-
genomic datasets (see below). The result is that most reads are anno-
tated in the most reliable MAG and contig annotation steps, and few
reads are annotated directly with DIAMOND, reducing the probability
of spurious annotations (Supplementary Figs. 7 and 8). To show the
effect of using simulated vs. biological data,we also testedRATona set
of 18 groundwater samples (see below).

Usage, runtime, and memory requirements
Next, we compared the runtime and memory requirement of RAT to
the other tools on the mouse gut samples 6 and 13 (Table 1). RAT does
not assemble and bin metagenomes but rather takes assembled con-
tigs and associated MAGs as input from the user. Other user input
includes the CAT database and taxonomy folders, as well as the
sequencing reads. If a previous RAT run was interrupted, the inter-
mediate files can be used as input to shorten runtime. If CAT and/or
BAT have already been run on a dataset, the output files can also be
used as input for RAT. Although assembly and contig binning can take
hours or days to run (for example, the two mouse gut samples took
around 2 h to assemble and bin, Supplementary Table 2), they are a
common procedure in many metagenomics studies, as they provide
valuable genomic context information to short sequencing reads with
relatively little risk of generating chimeras42.

Kraken2 was the fastest tool (01m49s), RAT --mcr was the slowest
(02h05m10s), and all other tools, including RAT -mc performed the
jobs in 16min or less. In termsofmemory usage, all tools canbe run on
a 256Gb server. RAT -mcr had a higher memory footprint than Kra-
ken2, but lower thanKaiju andCentrifuge. RAT -mcr varied in RAMand
runtime between the two samples because it loads different amounts
of unclassified reads and contigs into memory depending on the
sample.

The expandedCATpack facilitates the detection and annotation
of unknown microorganisms
The simulated data provided by the CAMI2 challenge differs from real
biological datasets. In the CAMI2 datasets, Illumina sequencing
experiments were simulated of relatively low-diverse microbiomes
containing mostly reads of known species (Supplementary Fig. 2).
Annotations are facilitated by the fact that on average >80% of the
readsmappedback to aMAGor contig fromagold-standard assembly,
while in biological datasets, this percentage can be much lower

Table 1 | Runtime and memory usage of RAT and four other tools

mousegut6 mousegut13 Disk space output

Runtime RAT -mc (robust) 16min 16min 67GB

RAT -mcr (sensitive) 106min 139min 79GB

Centrifuge 11min 11min 900MB

Kaiju 16min 15min 4.2 GB

Kraken2/Bracken 2min 2min 6GB

Maximum memory usage RAT -mc (robust) 43GB 48GB

RAT -mcr (sensitive) 84.1 GB 115.4GB

Centrifuge 240.4GB 240.6GB

Kaiju 127.4GB 127.4GB

Kraken2/Bracken 55.6GB 55.4 GB

Toolswere runon two simulateddatasets fromtheCAMI2 challenge (mousegut sample6:33,098,456 reads, andsample 13: 33,184,772 reads). RAT -mc: annotationbasedonly oncontigs andMAGs,
andRAT -mcr: annotation also based onDIAMONDannotation of unmapped reads. Kraken2 andBracken are run together. All runswere performed using 16CPU cores when theprogram allowed for
multithreading (Intel Xeon Gold 6240R).
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(Supplementary Figs. 4 and 5). In addition, particularly inmicrobiomes
from under-studied environments, unknown lineages are often
detected that are only distantly related to known taxa in reference
databases. Awaiting taxonomic classification of thesemicroorganisms,
a higher-rank taxonomic annotation of the sequence at e.g., family or
phylum rank may be appropriate in these cases.

RATprovides a framework for assessing these unknowns. Because
reads are classified via CAT and BAT, annotations are made at the
appropriate taxonomic rank. CAT and BAT assign individual ORFs to
the last common ancestor of all hits that have a similar bit-score to the
best hit and annotate the contig orMAGusing a bit-score-based voting
scheme that selects the taxon at which a certain fraction (in the RAT
workflow, the majority) of the ORF assignments agree21. Novel
sequences have many distinct hits and are thus only annotated at a
high taxonomic rank, reflecting their unknownness. MAGs that only
receive a high taxonomic rank annotation by BAT may be further
investigated with phylogenomic software for strain-level resolution.
Since the quality of RAT results is highly dependent on the quality of
the input data, we recommend using high-quality assemblies and only
including MAGs with low contamination (e.g. <10% contamination
according to CheckM43). ContaminatedMAGs can bemis-annotated or
annotated at a high trivial taxonomic rank, in which case a contig
annotation is more reliable. MAG completeness is less relevant for
RAT, as MAGs with low completeness typically still include more than
one contig from the same microorganism, creating a stronger taxo-
nomic signal than present on the individual contigs.

To challenge RAT with real datasets, we selected relatively unex-
plored groundwater samples taken 12–64m below the surface level
from three different monitoring wells in a Dutch agricultural area,
which we previously found had highmicrobial diversity and contained
many novel taxa39. We performed a metagenomic analysis including
quality control, assembly24, and binning26,27,44, which produced 514
MAGs. We supplied the reads, 2,770,251 contigs, and 423 medium- to
high-quality MAGs (completeness ≥ 50%, contamination < 10%; see
ref. 45) to RAT to reconstruct taxonomic profiles of the groundwater
samples, using nr as a reference database. In addition, the medium- to
high-quality MAGs were dereplicated46, and the resulting 195 repre-
sentative MAGs were placed in a phylogenetic tree showing their
relationships and abundance across samples (Supplementary Fig. 6).

RAT annotated 22.0 ± 8.7% (mean± standard deviation) of reads
by mapping them to MAGs, much less than in the simulated CAMI2
datasets (see Supplementary Table 1, supplementary Figs. 4 and 5),
reflecting the high complexity of the groundwater samples. RAT clas-
sified 20.9 ± 3.2% of reads via unbinned contigs annotated by CAT and
0.35 ± 0.23% via contigs annotated by DIAMOND. Finally, DIAMOND
blastx annotated an additional 23.0 ± 3.3% of the reads. These
unmapped reads represent sequences with low coverage that could
not be assembled into contigs, and based on the results with simulated
data above, we expect to represent more spurious results.

The taxonomic profile reconstructed by RAT -mcr showed that
most reads belonged to unclassified bacteria, including the phyla
Chloroflexi andDeltaproteobacteria (Fig. 4a).Chloroflexibacteria utilize
a variety of electron acceptors, including oxidized nitrogen or sulfur
compounds. A comparison of the 18 reconstructed taxonomic profiles
showed that Sample 23-2 contained relatively many Chloroflexi reads,
while the Deltaproteobacteria were rare. Although many of the
microorganisms in this sample could only be classified on high taxo-
nomic ranks, 22MAGs from these phyla represented 31.1% of the reads
in the sample (see Supplementary Fig. 6).

Next, we compared the taxonomic profiles of the groundwater
metagenomes as predicted by RAT and Kaiju, as Kaiju was the best-
performing other tool in the previous benchmark. Both tools classified
two-thirds of the data (RAT: 68.9 ± 5.8% of reads, Kaiju: 63.8 ± 5.6% of
reads, Supplementary Table 2). However, RAT classified these reads as
belonging to roughly 20% of the taxa that Kaiju predicted (Fig. 4b).

Bearing inmind the high precision of RAT (Fig. 3), we propose that the
taxa predicted by RAT are a more parsimonious interpretation of the
metagenomic data than those predicted by Kaiju. To visualize the
potential overestimationof taxa due to spurious annotations, wemade
rarefaction curves for the results of RAT -mcr, RAT -mc, and Kaiju.
Without a minimum relative abundance cut-off, rarefaction curves of
RAT -mcr and Kaiju results did not level off. This pattern was also
observed in simulated data containing a known number of 110 species
(Supplementary Fig. 10) and thus points to an overestimation of taxa
richness. This reflects the spurious annotations of individual reads and
indicates that, without a cut-off, deeper sequencing of the same sam-
ple would lead to higher predicted richness. The rarefaction curve of
RAT -mc leveled off in the groundwater data, indicating robustness
towards falsely detected taxa in the RAT -mc workflow. With a mini-
mum relative abundance cut-off of 0.001%, all rarefaction curves
leveled off, although the different tools predicted different taxa rich-
ness. Kaiju estimated amuchhigher richness than RAT in both -mc and
-mcrmode (Fig. 4c). Combined with the RAT results on simulated data
where RAT -mc underestimated richness while RAT -mcr included
some false positives (Supplementary Fig. 10), this shows that: (i) RAT
-mc is the best-suited RAT workflow in experiments where reliability is
crucial, but it will likely not detect all of the rarer taxa, while (ii) RAT
-mcr ismore sensitive andwill detectmore taxa at the risk of including
a few of them spuriously.

Since RAT annotates all reads in a metagenome, the resulting
taxonomic profiles reflect sequence abundance as opposed to taxo-
nomic abundance35. This means that RAT reports the abundance of a
taxon as a fraction of total DNA in the sample rather than as the
number of genome copies, which can, for example, be estimated by
querying marker genes6–8. It may be expected that the resulting rela-
tive abundance profile is skewed towards microorganisms with larger
genomes since they providemoreDNA to the sequencingmachine and
thus contribute more reads than organisms with small genomes. To
convert sequence abundance to genome copies, relative abundances
have to be normalized by genome length, which is often unknown and
can vary widely even between strains of the same species47. For novel
microorganisms, genome sizes of closely related species might not be
available. For these reasons, RAT, by default, does not convert
sequence abundance to taxonomic abundance. However, the CAT
pack provides a table with weighted mean genome sizes for most
known bacterial and archaeal taxa at all ranks based on genomes
deposited in the BV-BRC database48. This allows users to estimate the
relative genome abundances from relative sequence abundances if
they wish.

GTDB compatibility provides lower-rank annotations on
biological data
The performance of a taxonomic profiler can only be as good as the
underlying database that is used to annotate the data. Further, the
database used can only be as good as the taxonomy that it is based on.
The taxonomy of living organisms is still regularly being updated37,49.
Curated databases, such as GTDB37 may provide better precision for
profilers, but they might reduce sensitivity as they do not contain all
known taxa. Conversely, comprehensive databases such as nr and nt36

contain more sequences, increasing the sensitivity of the profiler but
the taxonomic annotation of those sequences might be of lower
quality, so precision might be sacrificed.

To provide the user with as much freedom as possible, the CAT
pack is now compatible with the GTDB database as well as the nr
database, which includes NCBI Taxonomy. Although the nr database is
larger than GTDB (591,417,602 versus 250,802,978 protein sequences
as of November 2023), GTDB’s automated classification based on
genome phylogeny makes the database more robust and less noisy
than nr. CAT now includes automatic download, database preparation,
and sequence annotation with CAT, BAT, and RAT based on GTDB. To
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show the difference in annotation between the two databases, we ran
RAT on the groundwater samples described above with the nr data-
base and with GTDB release 202 (Supplementary Figs. 9, 11, supple-
mentary Table 5). In the MAG step, RAT annotated more MAGs with
GTDB than with nr (GTDB/nr: 94 ± 4%/63.6 ± 16.5% (mean± standard
deviation) on phylum rank, 28.9 ± 11.2%/3 ± 3.2% on genus rank, sup-
plementary Table 5). Considering all data, RAT annotated a larger
fraction of reads down to genus rank using GTDB (GTDB/nr: 28 ± 4.1%/

3.7 ± 1.9%). On species rank, RAT annotated a slightly larger fraction of
the reads using nr compared to GTDB (GTDB/nr: 14.7 ± 2.2%/
16.2 ± 2.4%). This is the result of incomplete taxonomic annotations in
nr, wherefloating species are annotated that have not been assigned to
a genus.

In this study, we presented the ReadAnnotation Tool (RAT), a tool
to strengthen the CAT pack metagenome analysis suite. We showed
how annotating each read by using the best available taxonomic
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information (based onMAGs, contigs, or direct readmapping) leads to
fewer falsely detected taxa and improves the accuracy of taxonomic
profiles. RAT is flexible to future improvements in sequencing tech-
nologies, as well as in assembly and binning software, as they are run
by the user before the mapping and classification steps. RAT will be
useful in the exploration and understanding of metagenomic datasets
by robust classification of most sequencing reads, even in unexplored
environments that are rich in novel microorganisms.

Methods
The biological samples for this research have been collected in
accordance with Dutch laws and in cooperation with the company
Vitens, which owns the monitoring wells.

RAT workflow
Read Annotation Tool (RAT) provides individual metagenomic
sequencing reads with the most reliable taxonomic annotations and
uses these results to reconstruct an accurate taxonomic profile of the
microbiome. RAT requires an input of sequencing reads, de novo
assembled contigs or scaffolds, and optionally affiliated MAGs. We
advise to filter the MAGs based on quality and only supply MAGs that
have low contamination (<10%). Completeness of MAGs is less critical,
as multiple contigs of the same organism carry a stronger taxonomic
signal than individual contigs even if a part of the genome is not bin-
ned. These different DNA sequences are queried against a protein
database for taxonomic annotations. Next, taxonomic annotations of
individual reads are based on the associated data type with the highest
confidence of annotation (MAGs> unbinned contigs > unassembled
reads). RAT can be run in two different modes: -mcr (MAGs-contigs-
reads; complete workflow, see below) and -mc (MAGs-contigs; skips
step 3, only evidence from MAGs or contigs is used). The complete
workflow of RAT consists of five steps:
1. RAT maps the reads back to the assembled contigs using BWA-

MEM50. Reads mapping to each contig are extracted with
SAMtools51, including only primary mappings and excluding
low-quality primary mappings (default: Phred quality score of 2,
which can be changed by the user). In the case of multiple
mappings with equal Phred scores, one of the mappings is
assigned at random.

2. RAT performs taxonomic annotation of the contigs and MAGs
with the previously published tools CAT and BAT21, respectively.
CAT and BAT annotate contigs and MAGs by predicting open
reading frames (ORFs) with Prodigal32 and comparing these with
DIAMOND blastp to the non-redundant protein database of NCBI
(nr)36 or the non-redundant set of proteins in GTDB37, both of
which can be downloaded and prepared by running ‘CAT
download’ and ‘CAT prepare’. MAGs consist of binned contigs,
and therefore, a contig in a MAG gets assigned both a BAT and a
CAT annotation that may not be identical. As a MAG contains
more taxonomic signals than a contig, RATwill prioritize theMAG
annotation. In most metagenomic datasets, not all contigs are
binned, and not all contigs can be annotated with CAT21. By
default, RAT runs CAT with standard settings and BAT with an f
parameter value of0.5. CAT computes a score for each taxonomic
assignment it provides, which, when summed, cannot exceed 1
(e.g. if one taxon has a score of 0.7, another taxon can maximally
have a score of 0.3 for the same sequence). Using f <0.5 enables it
to reportmultiple annotations per contig/MAG while using f >0.5
prevents multiple annotations per contig/MAG (see ref. 21 for
details). Currently, f values < 0.5 are not supported by RAT.

3. Contigs that arenot classified and reads that could notbemapped
to any contig in step 1 are now classified simultaneously by
comparing them to the protein database using DIAMOND blastx33

and assigning the taxon of the last common ancestor of the
organisms foundwithin a certain range of the top hit (default: hits

within 10% of the top-hit bit-score, which can be changed by the
user), similar to the r parameter in CAT21. Thus, these direct
mappings do not involve ORF predictions as in step 2.

4. Each individual read is classified according to the taxonomic sig-
nal with the highest confidence, in the following order: (i) If the
read is mapped to a contig that is binned, the MAG annotation is
assigned to it. (ii) If the read ismapped to an unbinned contig, the
contig annotation is assigned to it. (iii) If a read is mapped to an
unbinned contig that could not be annotated with CAT or not
mapped at all, the direct annotation is assigned to it (see step 3).
(iv) Reads that do not have any taxonomic annotation are binned
in an ‘unclassified’ category.

5. RAT calculates the abundance of a taxon by summing the total
number of reads assigned to it and normalizes abundances by
dividing by the total number of sequenced reads in the sample.
This final table constitutes the taxonomic profile. The relative
abundances are sequence abundance (fraction of sequenced
DNA), as opposed to taxonomic abundance (genome copies)35. A
user may convert a fraction of sequenced DNA to an estimate of
genome copies by normalizing by genome size. The CAT pack
provides a table with weighted mean genome sizes for most
known bacteria and archaea at all taxonomic ranks based on
genomes deposited in the BV-BRC (previously PATRIC)
database48, which allows a user to do this conversion.

RAT is written in Python 3.8.3 and available on GitHub at: https://
github.com/MGXlab/CAT_pack. We have tested RAT in the following
configuration: BWA v0.7.17, SAMtools v1.10, prodigal v2.6.3, DIA-
MOND v2.0.5.

Benchmarking on simulated datasets
To evaluate RAT’s performance as read classifier and taxonomic pro-
filer, we used datasets generated for the second Critical Assessment of
Metagenome Interpretation (CAMI2) challenge38. We used 28 ran-
domly selected samples from three different datasets (mouse gut,
marine, rhizosphere), which contain between 78–381 species each. We
taxonomically annotated the readswith RAT and four other commonly
used profilers: Bracken, Centrifuge, Kraken2, and Kaiju. All tools
included in this benchmark also report relative abundanceas sequence
abundance, and a comparison to RAT is thus fair35.

For each read, we assessed at six taxonomic ranks (phylum, class,
order, family, genus, and species) whether it was correctly or incor-
rectly annotated or unclassified. To evaluate the taxonomic profiles,
we used the same measures used in the CAMI challenge20: the L1 and
weighted UniFrac distances between the true and inferred profiles on
the taxonomic tree, as well as the precision and sensitivity of detected
taxa. We only counted taxa as detected if they had been assigned at
least0.001%of the reads in the taxonomicprofile and applied the same
cut-off for all tools. L1 and weighted UniFrac are pairwise similarity
measures between taxonomic profiles. L1 ranges from 0 (profiles are
identical) to 2 (profiles do not share any taxa) according to the equa-
tion:

L1 =
Xn

i= 1

jp1i � p2ij ð1Þ

where i is the ith out of n total taxa in the union of the two profiles, and
p1i and p2i are its relative abundances in the profiles that are being
compared20. L1 is calculated at each taxonomic rank, contrary to the
weighted UniFrac distance. The weighted UniFrac distance incorpo-
rates both the relative taxonomic relatedness between taxa and their
abundance. We calculated weighted UniFrac distances using
EMDUniFrac52 using the taxonomy as a measure for relatedness with a
distance of 1 between taxonomic ranks. Precision and sensitivity are
defined as in ref. 20 and only depend on the binary detection of each
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organism and not on their abundance. They were calculated using Eqs.
(2) and (3):

precision=
TP

TP+FP
ð2Þ

sensitivity =
TP

TP+FN
ð3Þ

where TP (true positives) is the number of taxa that are correctly
detected, FP (false positives) is the number of taxa that are incorrectly
detected, and FN (false negatives) is the number of taxa that are not
detected but are present in the dataset and thus should have been
detected.

We ran Bracken v2.6.1 (ref. 40), Kraken2 v2.1.2 (ref. 11), Centrifuge
v1.0.4 (ref. 12), and Kaiju v1.8.2 in greedy mode (ref. 13) using default
settings. A Snakemake implementation of the tool versions and conda
environments is available onGitHub at https://github.com/thauptfeld/
RAT_paper for reproducibility. We ran all tools using the nr/nt data-
bases from 08th January 2019 that were provided with the CAMI2
challenge.

Rarefaction curves
Rarefaction curves were calculated for RAT -mcr, RAT -mc, and Kaiju
results. We randomly sampled 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, and 100% of all reads ten times and counted the
number of taxa detected in these subsets.

Biological datasets
To demonstrate the performance of the RAT workflow on real-world
data, we sequenced metagenomes from groundwater, a relatively
unexplored biome53. 18 samples were collected from three ground-
water monitoring wells in an agricultural area in the Netherlands (an
overview of the samples can be found in Supplementary Table 3). The
samples were collected in accordance with Dutch laws and in colla-
boration with Vitens, who owns the groundwater monitoring wells.
The same samples were used in an earlier study where they were
analyzedwith 16S rRNA amplicon sequencing39. Eachwell was sampled
at six discrete depths between 12 and 64m below the surface. We
filtered 5–7 L of groundwater through 0.2 µm filters (Merck Group,
Darmstadt, Germany, catalog number: GSWP14250) and extracted
DNA from the filters using the DNeasy PowerSoil Kit (Qiagen, Hilden,
Germany, catalog number 47014) according to the manufacturer’s
instructions.DNAquality (averagemolecular size)was checkedwith 1%
(w/v) agarose gels stained with 1× SYBR® Safe (Invitrogen, Grand
Island, NY, catalog number S33102) and quantifiedusing the dsDNAHS
Assay kit for Qubit fluorometer (Invitrogen, catalog number Q32854).
Samples were neither diluted nor concentrated before sequencing.
Whole metagenome shotgun sequencing was performed on the DNA
byNovogene inHongKongon the IlluminaMiSeqPlatform, generating
35,289,790–58,902,006 paired-end sequencing reads of 2 × 251 bp per
sample (Supplementary Table 1).

For quality control, assembly, and binning, we used the
ATLAS pipeline v2.4 (ref. 54). ATLAS uses BBTools (https://
sourceforge.net/projects/bbmap/) to remove PCR duplicates and
adapters and to trimthe reads, assemble the readsusing SPAdes v3.13.1
in metagenomic mode24, and bins the contigs using MetaBAT 2 v2.14
(ref. 26) and MaxBin 2 v2.2.7 (ref. 27), after which DASTool v.1.1.2
(ref. 44) is used to optimize MAGs resulting from the two binning
approaches. We used MAGs of medium to high quality (>50% com-
pleteness, <10% contamination45) based on CheckM estimates in
‘--lineage_wf’mode43. We ran RAT on multiple samples at a time using
GNU parallel v20210622 (ref. 55) with the nr database downloaded on
the 4th of March 2020., and GTDB release 202. We ran Kaiju on the
reads using default settings with a database containing NCBI nr for

bacteria, archaea, viruses, fungi, and microbial eukaryotes from 24
February 2021.

The N50 of the assembled contigs was between 1435 and 3012 nt
per sample, the L50 was between 15,196 and 39,823 nt. Out of the
2,770,251 total contigs that were generated from the 18 samples, CAT
annotated 2,411,810. All 423 medium- to high-quality MAGs were
annotated at superkingdom rank or lower by BAT.

To further assess the diversity of groundwater organisms repre-
sentedby theMAGs, we dereplicated allmedium- to high-qualityMAGs
with dRep using default settings46. We performed a phylogenetic ana-
lysis of the dereplicated MAGs based on the CheckM alignment of 43
universal marker genes that are used for phylogenetic placement43. A
maximum-likelihood phylogenetic tree was inferred with IQ-TREE
v2.1.2 (ref. 56), ModelFinder57, and UFBoot58, using the model LG +R10
chosen according to BIC and 1000 UltraFast bootstraps. The resulting
tree was visualized with iTOL59. The tree was rooted between the
archaeal andbacterialMAGsbasedon their BAT classification (byRAT).

Plotting
All figures were made using R v4.1.3 and RStudio v1.1.456. The packa-
ges used for plotting were ggplot2 (ref. 60), tidyverse61, reshape2
(ref. 62), ggalluvial63, dplyr (https://dplyr.tidyverse.org), tidyr (https://
tidyr.tidyverse.org), RColorBrewer (see http://colorbrewer2.org),
Hmisc (https://hbiostat.org/R/Hmisc/), vegan64, ape65, and gridExtra
(http://CRAN.R-project.org/package=gridExtra).

Statistics and reproducibility
To pick random samples from the CAMI2 datasets, we used the Python
function random.sample(). No statistical method was used to pre-
determine the sample size. Two rhizosphere samples (samples 8 and
15) were excluded from the study because >1000 taxa of the CAMI2
reference were not present in the database. The experiments were not
randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. The
biological sample data generated in this study have been deposited in
the SRA database under BioProject ID PRJNA947390. Data from the
CAMI2 challenge is available at https://data.cami-challenge.org/
participate. Source data are provided in this paper.

Code availability
RAT is available on GitHub at https://github.com/MGXlab/CAT_pack
(ref. 66). The scripts used in the downstream analyses are available on
GitHub at https://github.com/thauptfeld/RAT_paper and on Zenodo at
https://doi.org/10.5281/zenodo.10731871 (ref. 67). The Snakemake
pipeline used to run Centrifuge, Kaiju, and Kraken2/Bracken is avail-
able on Zenodo at https://doi.org/10.5281/zenodo.10732074 (ref. 68).

References
1. Sunagawa, S. et al. Structure and function of the global ocean

microbiome. Science 348, 1261359 (2015).
2. Bahram, M. et al. Structure and function of the global topsoil

microbiome. Nature 560, 233–237 (2018).
3. Qin, J. et al. A human gut microbial gene catalogue established by

metagenomic sequencing. Nature 464, 59–65 (2010).
4. Hauptfeld, E. et al. A metagenomic portrait of the microbial com-

munity responsible for two decades of bioremediation of poly-
contaminated groundwater. Water Res. 221, 118767 (2022).

Article https://doi.org/10.1038/s41467-024-47155-1

Nature Communications |         (2024) 15:3373 10

https://github.com/thauptfeld/RAT_paper
https://github.com/thauptfeld/RAT_paper
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://dplyr.tidyverse.org
https://tidyr.tidyverse.org
https://tidyr.tidyverse.org
http://colorbrewer2.org
https://hbiostat.org/R/Hmisc/
http://CRAN.R-project.org/package=gridExtra
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA947390
https://data.cami-challenge.org/participate
https://data.cami-challenge.org/participate
https://github.com/MGXlab/CAT_pack
https://github.com/thauptfeld/RAT_paper
https://doi.org/10.5281/zenodo.10731871
https://doi.org/10.5281/zenodo.10732074


5. Proctor, L. M. et al. The Integrative Human Microbiome Project.
Nature 569, 641–648 (2019).

6. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxo-
nomic profiling. Nat. Methods 12, 902–903 (2015).

7. Milanese, A. et al. Microbial abundance, activity and population
genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).

8. Liu, B., Gibbons, T., Ghodsi, M., Treangen, T. & Pop,M. Accurate and
fast estimation of taxonomic profiles from metagenomic shotgun
sequences. BMC Genom. 12, S4 (2011).

9. Nguyen, N., Mirarab, S., Liu, B., Pop, M. & Warnow, T. TIPP: taxo-
nomic identification and phylogenetic profiling. Bioinformatics 30,
3548–3555 (2014).

10. Mitchell, A. L. et al. MGnify: the microbiome analysis resource in
2020. Nucleic Acids Res. 48, D570–D578 (2020).

11. Wood, D. E., Lu, J. & Langmead, B. Improvedmetagenomic analysis
with Kraken 2. Genome Biol. 20, 257 (2019).

12. Kim,D., Song, L., Breitwieser, F. P. &Salzberg, S. L. Centrifuge: rapid
and sensitive classification of metagenomic sequences. Genome
Res. 26, 1721–1729 (2016).

13. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic
classification for metagenomics with Kaiju. Nat. Commun. 7,
11257 (2016).

14. Silva, G. G. Z., Green, K. T., Dutilh, B. E. & Edwards, R. A. SUPER-
FOCUS: a tool for agile functional analysis of shotgunmetagenomic
data. Bioinformatics 32, 354–361 (2016).

15. Silva, G.G. Z., Cuevas, D. A., Dutilh, B. E. & Edwards, R. A. FOCUS: an
alignment-free model to identify organisms in metagenomes using
non-negative least squares. Peerj 2, e425 (2014).

16. Koslicki, D. & Falush, D. MetaPalette: a k-mer painting approach for
metagenomic taxonomic profiling andquantification of novel strain
variation. Msystems 1, e00020–16 (2016).

17. von Meijenfeldt, F. A. B., Hogeweg, P. & Dutilh, B. E. A social niche
breadth score reveals niche range strategies of generalists and
specialists. Nat. Ecol. Evol. 7, 768–781 (2023).

18. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer
in prokaryotes: quantification and classification. Annu. Rev. Micro-
biol. 55, 709–742 (2001).

19. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer
and the nature of bacterial innovation. Nature 405,
299–304 (2000).

20. Sczyrba, A. et al. Critical Assessment ofMetagenome Interpretation
—a benchmark of metagenomics software. Nat. Methods 14,
1063–1071 (2017).

21. von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F.
H. & Dutilh, B. E. Robust taxonomic classification of uncharted
microbial sequences and bins with CAT and BAT. Genome Biol. 20,
217 (2019).

22. Bagheri, H., Severin, A. & Rajan, H. Detecting and correcting mis-
classified sequences in the large-scale public databases. Bioinfor-
matics 36, 4699–4705 (2020).

23. Amarasinghe, S. L. et al. Opportunities and challenges in long-read
sequencing data analysis. Genome Biol. 21, 30 (2020).

24. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaS-
PAdes: a new versatile metagenomic assembler. Genome Res. 27,
824–834 (2017).

25. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an
ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de Bruijn graph. Bioinformatics 31,
1674–1676 (2014).

26. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for
robust and efficient genome reconstruction from metagenome
assemblies. Peerj 7, e7359 (2019).

27. Wu, Y.-W., Simmons, B. A. & Singer, S.W.MaxBin 2.0: an automated
binning algorithm to recover genomes frommultiplemetagenomic
datasets. Bioinformatics 32, 605–607 (2016).

28. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of
metagenomic data. Genome Res. 17, 377–386 (2007).

29. Chaumeil, P.-A.,Mussig, A. J., Hugenholtz, P. & Parks, D. H.GTDB-Tk:
a toolkit to classify genomeswith theGenome TaxonomyDatabase.
Bioinformatics 36, 1925–1927 (2019).

30. Tamames, J., Cobo-Simón, M. & Puente-Sánchez, F. Assessing the
performance of different approaches for functional and taxonomic
annotation of metagenomes. BMC Genom. 20, 960 (2019).

31. Tran, Q. & Phan, V. Assembling reads improves taxonomic classi-
fication of species. Genes 11, 946 (2020).

32. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and transla-
tion initiation site identification. BMC Bioinform. 11, 119 (2010).

33. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein
alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

34. Meyer, F. et al. Tutorial: assessing metagenomics software with the
CAMI benchmarking toolkit. Nat. Protoc. 16, 1785–1801 (2021).

35. Sun, Z. et al. Challenges in benchmarking metagenomic profilers.
Nat. Methods 18, 618–626 (2021).

36. Sayers, E. W. et al. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 47, D23–D28 (2018).

37. Parks, D.H. et al. GTDB: anongoing census of bacterial and archaeal
diversity through a phylogenetically consistent, rank normalized
and complete genome-based taxonomy. Nucleic Acids Res. 50,
D785–D794 (2021).

38. Meyer, F. et al. Critical Assessment of Metagenome Interpretation:
the second round of challenges. Nat. Methods 19, 429–440 (2022).

39. Aldas-Vargas, A. et al. Selective pressure onmicrobial communities
in a drinking water aquifer—geochemical parameters vs. micro-
pollutants. Environ. Pollut. 299, 118807 (2022).

40. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: esti-
mating species abundance in metagenomics data. PeerJ Comput.
Sci. 3, e104 (2017).

41. Popa, O. & Dagan, T. Trends and barriers to lateral gene transfer in
prokaryotes. Curr. Opin. Microbiol. 14, 615–623 (2011).

42. Mineeva,O., Rojas-Carulla,M., Ley, R. E., Schölkopf, B. & Youngblut,
N. D. DeepMAsED: evaluating the quality of metagenomic assem-
blies. Bioinformatics 36, 3011–3017 (2020).

43. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson,
G. W. CheckM: assessing the quality of microbial genomes recov-
ered from isolates, single cells, and metagenomes. Genome Res.
25, 1043–1055 (2015).

44. Sieber, C.M. K. et al. Recovery of genomes frommetagenomesvia a
dereplication, aggregation and scoring strategy. Nat. Microbiol. 3,
836–843 (2018).

45. Bowers, R. M. et al. Minimum information about a single amplified
genome (MISAG) and ametagenome-assembled genome (MIMAG)
of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

46. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for
fast and accurate genomic comparisons that enables improved
genome recovery frommetagenomes through de-replication. ISME
J. 11, 2864–2868 (2017).

47. McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes
have pangenomes. Nat. Microbiol 2, 17040 (2017).

48. Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinfor-
matics resource with a focus on human pathogenic species. Infect.
Immun. 79, 4286–4298 (2011).

49. Parte, A. C., Carbasse, J. S., Meier-Kolthoff, J. P., Reimer, L. C. &
Göker, M. List of Prokaryotic names with Standing in Nomenclature
(LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70,
5607–5612 (2020).

50. Li, H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv.org q-bio.GN. Preprint at https://doi.
org/10.48550/arXiv.1303.3997 (2013).

51. Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

Article https://doi.org/10.1038/s41467-024-47155-1

Nature Communications |         (2024) 15:3373 11

https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997


52. McClelland, J. & Koslicki, D. EMDUniFrac: exact linear time com-
putation of the UniFrac metric and identification of differentially
abundant organisms. J. Math. Biol. 77, 935–949 (2018).

53. Anantharaman, K. et al. Thousands ofmicrobial genomes shed light
on interconnected biogeochemical processes in an aquifer system.
Nat. Commun. 7, 13219 (2016).

54. Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A.
ATLAS: a Snakemake workflow for assembly, annotation, and
genomic binning of metagenome sequence data. BMC Bioinform.
21, 257 (2020).

55. Tange, O. GNU Parallel—the command-line power tool. login:
USENIX Mag. 36, 42–47 (2011).

56. Nguyen, L.-T., Schmidt, H. A., Haeseler, Avon &Minh, B. Q. IQ-TREE:
a fast and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

57. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. &
Jermiin, L. S. ModelFinder: fast model selection for accurate phy-
logenetic estimates. Nat. Methods 14, 587–589 (2017).

58. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L.
S. UFBoot2: improving the ultrafast bootstrap approximation. Mol.
Biol. Evol. 35, 518–522 (2018).

59. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent
updates and new developments. Nucleic Acids Res. 47,
W256–W259 (2019).

60. Wickham, H. ggplot2, Elegant Graphics for Data Analysis (Springer,
New York, NY, 2016).

61. Wickham, H. et al.Welcome to the Tidyverse. J. Open Source Softw.
4, 1686 (2019).

62. Wickham, H. Reshaping data with the reshape package. J. Stat.
Softw. 21, 1–20 (2007).

63. Brunson, J. C. ggalluvial: layered grammar for alluvial plots. J. Open
Source Softw. 5, 2017 (2020).

64. Dixon, P. VEGAN, a package of R functions for community ecology.
J. Veg. Sci. 14, 927–930 (2003).

65. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phy-
logenetics and evolutionary analyses in R. Bioinformatics 35,
526–528 (2018).

66. von Meijenfeldt, F. A. B., Pappas, N. & Hauptfeld, E. MGXlab/CAT_-
pack https://doi.org/10.5281/zenodo.10809238 (2024).

67. Hauptfeld, T. thauptfeld/RAT_paper: RAT_paper v.1.0 (v.1.0) https://
doi.org/10.5281/zenodo.10731871 (2024).

68. Pappas, N. Centrifuge_Kaiju_Kraken https://doi.org/10.5281/
zenodo.10732074 (2024).

Acknowledgements
This work was supported by the European Research Council (Con-
solidator Grant 865694: DiversiPHI to B.E.D.), the Deutsche For-
schungsgemeinschaft under Germany’s Excellence Strategy (EXC 2051;
Project-ID 390713860 to B.E.D.) and the Alexander von Humboldt
Foundation in the context of an Alexander von Humboldt Professorship
founded by the German Federal Ministry of Education and Research (to
B.E.D.). We thank Nora B. Sutton and her group for providing us with

groundwater metagenomes to use for this manuscript. We thank Jan
Kees van Amerongen for critical technical support. We thank the mem-
bers of TBB at theUniversity of Utrecht for their valuable input on the text.

Author contributions
E.H. developed RAT, integrated it into the CAT pack, performed the
CAMI2benchmarks, andwrote themanuscript. N.P. integrated theGTDB
option intoCATpreparation andwrote someof the downstreamanalysis
code. S.v.I. and B.L.S. performed the analysis on biological data. A.A.-V.
sampled the groundwater, extracted DNA, and sent the groundwater
samples for sequencing. B.E.D. and F.A.B.v.M. supervised the research
and co-wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47155-1.

Correspondence and requests for materials should be addressed to
Bas E. Dutilh or F. A. Bastiaan von Meijenfeldt.

Peer review information Nature Communications thanks Dylan Chivian,
Jan Meier-Kolthoff, and the other anonymous reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47155-1

Nature Communications |         (2024) 15:3373 12

https://doi.org/10.5281/zenodo.10809238
https://doi.org/10.5281/zenodo.10731871
https://doi.org/10.5281/zenodo.10731871
https://doi.org/10.5281/zenodo.10732074
https://doi.org/10.5281/zenodo.10732074
https://doi.org/10.1038/s41467-024-47155-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes
	Results and discussion
	Including taxonomic signals from MAGs and contigs improves read annotation
	Including information from contigs and MAGs improves accuracy of taxonomic profiling
	Usage, runtime, and memory requirements
	The expanded CAT pack facilitates the detection and annotation of unknown microorganisms
	GTDB compatibility provides lower-rank annotations on biological�data

	Methods
	RAT workflow
	Benchmarking on simulated datasets
	Rarefaction�curves
	Biological datasets
	Plotting
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




