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Reconstructing the evolution history of
networked complex systems

Junya Wang1,11, Yi-Jiao Zhang 2,11, Cong Xu2,11, Jiaze Li3, Jiachen Sun4,
Jiarong Xie 5,6, Ling Feng 7,8, Tianshou Zhou 9 & Yanqing Hu 2,10

The evolution processes of complex systems carry key information in the
systems’ functional properties. Applying machine learning algorithms, we
demonstrate that the historical formation process of various networked
complex systems can be extracted, including protein-protein interaction,
ecology, and social network systems. The recovered evolution process has
demonstrations of immense scientific values, such as interpreting the evolu-
tion of protein-protein interaction network, facilitating structure prediction,
and particularly revealing the key co-evolution features of network structures
such as preferential attachment, community structure, local clustering,
degree-degree correlation that could not be explained collectively by previous
theories. Intriguingly, we discover that for large networks, if the performance
of the machine learning model is slightly better than a random guess on the
pairwise order of links, reliable restoration of the overall network formation
process can be achieved. This suggests that evolution history restoration is
generally highly feasible on empirical networks.

As generic representations of vastly different complex systems, com-
plex networks1–3 are widely used in different areas across biology4–7,
ecology8,9, social science10,11, etc. Networks represent the internal
interactions between the various components within the systems. For
these networked complex systems, evolution is their most striking
feature. However,what distinct underlyingmechanisms do they follow
when evolving from simple structures to the current complex forms?
How do patterns and functionalities emerge during the evolutionary
process of the networks? What are the future directions of evolution?
These are key scientific questions about complex systems that have
challenged the academic community for a long time.

The structures of most complex networks from biology, ecology,
and human society are very complicated. Characteristics such as

hierarchical community structure2, (dis)assortativity12, local
clustering13, motifs14, etc., are ubiquitous in complex networks. These
make it challenging to comprehensively capture the evolution
mechanisms that generated such complex structures with concise
rules, as existing researches on the evolution of complex networks
typically only focus on certain specific features of real-world networks.
For instance, the well-known preferential attachment (PA)
mechanism15 can only explain the scale-free property of a network’s
degree distribution but not other features, and sometimes even lead to
contradictions with other features (e.g., networks generated by PA
have zero local clustering coefficient16 and no communities17).

In this work, by employing graph neural network (GNN) models,
we demonstrate that the evolution process of a network can be
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reconstructed with high precision. Validated computationally, our
developed theory indicates that such reconstruction can be done
reliably even with slightly better than a random guess on the pairwise
temporal order of links. The recovered evolution trajectories enable us
to discover concise rules in the complex evolution process of net-
works, and capture the emerging process of key characteristics of a
network that previous theories were unable to capture collectively
with concise rules (e.g., community structure, local clustering, (dis)
assortativity, etc.). In addition, we show that such high-resolution
evolution trajectories have important practical applications in facil-
itating network structure prediction, interpreting the evolution of
protein-protein interaction networks, as well as revealing the co-
evolution mechanisms of preferential attachment and community
structure.

Results
Methodological framework
The main purpose of this study is to restore the growing edge
sequence for an evolving network based on its final structure (see
Fig. 1a). We achieve this goal in two steps using machine learning
techniques (illustrated in Fig. 1b, c). First, for networks where a small
fraction of the edge generation sequence is available, we build a
supervised machine learning model leveraging the network topology
and known history to infer the formation process of the entire net-
work. Second, for networks where only the final structure is available,
we adopt a transfer learning approach18 in which a machine learning
model trained on a similar network as described in the first step is
applied to the target network.

In the first step, the edges in the final structure of a network with
partial evolution history (Network A) are embedded into a low-
dimensional space19–23. Then the edges are paired and used to train the

machine learningmodel for predicting the relative generation order of
any two edges in the network. Note that the training set includes only
edgepairswith knowngeneration orderwhich canbedirectly obtained
from the evolution history. The concrete model proposed here is an
ensemble model consisting of six comparative paradigm neural net-
work (CPNN)models24 and a classical edge feature (see Supplementary
Fig. S1). Once the predicted generation order of any two edges is
obtained, a ranking algorithm, the Borda’s method25, is applied to find
an ordered sequence of all edges so that the formation process of the
full network can be recovered accordingly. More details of our
approach with regard to embedding the edges, building the ensemble
model, and implementing the ranking algorithm are provided in the
Methods section and the Supplementary Sections 1 and 2. In cases
where the purpose is to restore high temporal resolution of a network’s
historical evolution process from very low temporal resolution data
like the case in some of the biological/ecological networks, this first
step is enough for the purpose. In certain applications where even the
low resolution of a network’s evolution history is unknown, we then
proceed to the next step. In the second step, the edges in a network of
the same domain without any historical information (Network B) are
embedded into a low-dimensional space and aligned with that of Net-
work A through a linear transformation, which is the key to successful
transfer learning (details in Methods section). Lastly, the ensemble
model trained on Network A as well as the same ranking algorithm in
the first step can be used to infer the formation history of Network B.

Restoration of network evolution trajectory
To demonstrate the effectiveness of the proposed method, we apply it
to 17 real-world networks with multiple snapshots of their evolving
processes. The 17networks includefiveprotein-protein interaction (PPI)
networks26–28, a world trade web29,30, six collaboration networks31,32, two
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Fig. 1 | The network formation process and its restoration. a Illustration of a
network formation process. At each snapshot T0, T1, T2, ..., Tn, some new edges are
added (darker edges appeared earlier). The goal of this study is to restore the
generation order of the edges based on the final network structure at Tn.

b, c Diagram of the proposed approach to restoring the temporal sequence of
edges for a network with partial evolution history or without any historical
information.
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animal interaction networks33,34, and three transportation networks35

(full listing is given in Supplementary Section 3). The generation time of
an edge is assigned as the timestampof the snapshot inwhich it appears
for thefirst time. In thisway, the relative generationorder of edges from
different snapshots can be obtained. Depending on the granularity of
the snapshots, different networks have varying amounts of edge pairs
with distinguishable generation orders.

Theperformanceof theproposedapproach in restoring thenetwork
formation process with partial history is quite satisfactory (the compar-
ison between restored, random, and real evolution trajectories for some
networks canbe seen inSupplementarySection4and theSupplementary
Movie 1–3). First of all, it is surprising that we only need a small percen-
tage of edge pairs to train the ensemble model to obtain high accuracy.
We define x to be the number of edge pairs with correctly predicted
generationorder dividedby the total number of edgepairs in the test set.
As Fig. 2a shows, the pairwise accuracy x of the ensemble model in pre-
dicting the relative generationorderof any twoedges increases rapidly to
over 75% as more edge pairs are used to train the model and saturates
when the percentage reaches just 5% (more results can be found in
Supplementary Section 5 and Supplementary Fig. S8). While x represents
the accuracy of the intermediate results of our approach, we are also
interested in quantifying the error of the final output, i.e., the restored
temporal sequence of edges. Let E denote the overall error of the
restored edge sequence,wewould like to further explore how is E related
to x. Denote αi as the position of edge i in the true edge sequence (e.g.,
αi= i, larger αi means that edge i joined the network later) and bαi as its
corresponding position in the output sequence of our approach. Then
α= (α1,α2,…,αE) and bα = ðbα1,bα2, . . . ,bαE Þ are the ground-truth sequence
and the restored sequence, respectively. Thus, Di =αi � bαi measures the
error of edge i so that the overall error E of the entire sequence can be
defined as the root-mean-squared error (RMSE) normalized by E, i.e.,

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
E

XE
i = 1

Di

E

� �2
vuut : ð1Þ

This definitionof the overall error is theoretically equivalentwith other
measures for assessing the correlation between two ordered sequen-
ces, including the Kendall’s τ36 and Spearman’s ρ37 (please refer to the
Supplementary Section 6 for more details). We choose the E in Eq. (1)
as the measure of performance because its physical meaning is more
intuitive compared to the other measures. After mathematical deri-
vation (see details in the Methods section and Supplementary Sec-
tion 6), the theoretical relationship between E and x is

Etheory =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
2x � 1

1ffiffiffi
E

p , ð2Þ

where x≫0:5 + 1
4

ffiffi
E

p .
Equation (2) shows that the overall error of the restored edge

sequence is inversely proportional to the square root of the number of
edges, suggesting that our approach has a huge advantage for net-
workswith a rich number of edges. In otherwords, when the number of
edges is large enough, we only need a machine learning model with
accuracy slightly better than a randomguess for predicting the relative
generation order of any two edges tomake the overall error small. This
is a really niceproperty and consistentwith the results shown in Fig. 2b.

Investigating further on this point, the distributions of Di/E (see
Fig. 2c) are bell-shaped and symmetric about zero with the spread of
the distribution determined by E and x, i.e., the spread decreaseswith E
and x. While these results are based on simulations with fine-grained
ground-truth sequence, the one we have in practice is typically coarse-
grained. Therefore, we also draw the distributions of Di/E with coarse-
grained ground-truth sequence for real-world networks (see Fig. 2d, e).
The results demonstrate that the distributions of Di/E based on real

data are in accordancewith thoseobtainedby simulationswhich reflect
the theoretical results. For details on drawing Fig. 2c–e, please refer to
the diagram shown in Fig. 2f and the pseudo code in the Methods
section. However, it is worth noting that for real-world networks that
lack fine-grained ground truth, it is a challenging problem to verify the
credibility of the restored network evolution trajectory. This is a gen-
eric problem for many machine learning techniques. A preliminary
discussion on this topic is provided in the Supplementary Section 7.

Transfer learning
Finally, the performance of our transfer learning approach in restoring
the network formation process for networks without any historical
information is explored. We compare the performance of transfer
learning (i.e., aligning the vector representations of Network B with
that of Network A, see details in the Methods section and the Sup-
plementary Section 8) with that of direct validation (the vector
representations of Network B are fed directly into the ensemblemodel
trained on Network A). The results on different synthetic network
models15,38,39 are summarized inTable 1.Wecan see that the accuracyof
transfer learning is much higher than that of direct validation, indi-
cating that our approach is able to restore network formation pro-
cesses well with only the final structure.

Interpretation of the evolution of PPI network
Having been able to reliably reconstruct the evolution history of
networked systems, we can carry out rich scientific investigations
based on the reconstructed edge sequence, ranging from under-
standing the evolution or emergence of functional properties,
extracting fundamental evolution mechanisms, to even facilitating
practical problems like structural predictions for future evolution of
complex networks. Here we show that our restored edge sequence
can help understand the evolutionary process of living systems. The
evolution trajectory of PPI networks is critical for understanding the
fundamental mechanisms of cellular processes and the emergence of
complexity of life forms. This enables researchers to gain insights
into the function of protein organization40, the development of new
biological functions41, and the selectionmechanisms driving network
evolution42. However, to the best of our knowledge, there is no
complete data on the evolution trajectory of PPI so far due to the lack
of paleontological data. This is where our network restoration
method comes into play.

By applying our method to PPI networks, we find that proteins
with specific functions appear in an order reflecting the evolutionary
patterns of life. Take the PPI network for fungi as an example, Fig. 3a
shows the restored network snapshot corresponding to the imme-
morial times which exhibits some distinct cluster structures. Interest-
ingly, we find that nearly every cluster is composed of proteins with
consistent functionality. According to the order of the edges,we count
the absolute number of proteins by function over time and calculate
the proportion of proteins with different functions added (see Fig. 3b,
c). These results suggest that the evolution of the PPI network focused
early on basic functions at the molecular level like protein synthesis
and gene expression regulation (e.g., [J] translation, ribosomal struc-
ture, and biogenesis), then shifted to the maintenance of genetic
information, and eventually towards advanced functions at the cellular
level like cell division and inheritance of genetic material (e.g., [D] cell
cycle control, cell division, chromosome partitioning). Note that we
arrive at it based solely on the limited historical information of the PPI
network without referring to much biological knowledge. We believe
that our work provides biologists with a novel way to explore more
principles underlying the evolution of complex life.

Revealing the evolution mechanisms
We then show that our restored edge generation sequence not only
enables us to reproduce the growth mechanisms with the same
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preferential strength as the original network, but also to observe richer
mechanisms related to community structures in the network
other than preferential attachment (PA). PA is a commonly-known
mechanism in the growth of real-world networks, producing
networks with power-law degree distributions15,43,44. To date, resear-
ches on the growth mechanisms of networks with power-law degree

distributions have been largely confined to PA or its variants while
deeper, especially those about sub-network functions, remain an
under-explored area.

From Fig. 4a–c, it is observed that the restored growth process of
many real-world networks shows the PA phenomenon with the same
strength as the original network, demonstrating that our method can

Real case Simulation

α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 3)

α* = (1, 2, 4, 3 | 5, 7, 6 | 10, 8, 9)

α̂ = (1, 3, 2, 5, 4, 6, 7, 9, 8, 10)

α = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

α* = (2, 1, 4, 3 | 6, 5, 7 | 9, 10, 8)

α̂ = (2, 1, 3, 5, 4, 6, 7, 9, 10, 8)

Ground-truth: Fine-grained ground-truth:

Randomly assign ne-grained order 
within each snapshot

Ranked by our method Ranked by accuracy 
and Borda count

x

Shu e order of edges based on the 
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Fig. 2 | Performance of the ensemble model and the restored edge sequence.
aTest accuracyof the ensemblemodel as a functionof thepercentageof edgepairs
used for training. Each data point with error bars marks the corresponding simu-
lation results (average ± standard deviation of 100 simulations), the same for b.
bOverall error E as a function of the accuracy x of the ensemblemodel for different
numbers of edges E. The solid curves represent the theoretical results from Eq. (2)
and the colored crosses stand for the simulation results using the E and x of five
real-world networks. c Simulated distributions ofDi/E using the E and x of five real-
world networks. Specifically, assuming the ground-truth sequence α = (1, 2,…, E),
100(1− x)% of all edge pairs are randomly selected and artificially assigned the
wrong generation order while the remaining edge pairs are assigned the correct
one. Then, the restored edge sequence bα is obtained by applying the ranking
algorithm on the artificially predicted order of all edge pairs andDi’s are calculated

accordingly. d, e Comparisons between the real and simulated distributions ofDi/E
based on the collaboration network (CN) and the PPI network (Fungi). f Diagram
illustrating how the distributions in c–e are obtained. The left and right panels show
the calculation of Di under a real case when we only know the coarse-grained
ground-truth sequence and a simulation when we know the fine-grained ground-
truth sequence, respectively. For the real case, Di cannot be calculated directly as
αi � bαi so the idea is to consider an intermediate sequence α* by randomly
assigning fine-grained order to edges added within the same snapshot and Di is
calculated as α*

i � bαi instead. Then the distribution ofDi/E is obtained by averaging
over 5000 α*’s to take the randomness into account. For the simulation, the cal-
culation of Di follows a similar procedure to match with the real case. The results
under the real case and simulation are labeled as “Real Data” and “Simulation” in
d and e. See Algorithms 2-3 in the Methods section for more details.
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well capture the growth mechanism of the networks and the results are
highly reliable (the detailed information can be found in Supplementary
Section 9). Then taking the PPI network for fungi as an example, we
investigate the meso-level evolution process of real-world PPI networks
on the basis of our restored results. Concretely, a meso-level protein
network is constructed with each node being a protein functional
community, i.e., a collection of proteins with the same function. Edges
between proteins with the same function in the original PPI network are
reflected as self-connected edges in the new network. The upper row of
Fig. 4d displays the evolution process represented by the adjacency
matrices of the meso-level protein network based on our restored edge
sequence while the lower row provides those obtained when new edges
are added purely according to the PA rule. By comparison, we find that
the growth process of our restored network is significantly different
from that under the pure PA mechanism. Specifically, the restored
results show that newly addededges tend to connect proteinswithin the
same community, allowing the PPI network to maintain a strengthened
community structure during growth. On the contrary, newly added
edges tend toconnectproteinsbetweencommunitiesunder thepurePA
mechanism, weakening the existing community structure in the evolu-
tion process. The adjacency matrix and protein function network based

on the real network is displayed in Fig. 4h, i, showing that our restored
network highly agrees with the real network. Figure 4g further demon-
strates that our restoring method captures the strong community
structure in the real network while the pure PA rule fails to achieve. The
restored co-evolution of community structure and preferential attach-
ment provides commendable data support for understanding the rela-
tionship between the structure and function of networks.

Moreover, we also study how likely that nodes with similar degree
tend to be connected (i.e., degree-degree correlations12) and how
clustered the connections are (i.e., local clustering13). Figure 5 displays
the results for selected real-world networks and the full results can be
found in Supplementary Section 9. The big gap among the results
based on our restored edge sequences, the random edge sequences,
and the edge sequences assuming pure PA rule along with the high
concordance between the restored and the real edge sequences
demonstrate that rich characteristics of a network can be recovered
based on the restored evolution process.

Facilitating structure prediction
Structure or link prediction is a task that aims to predict new
edges based on existing ones in a network, which is widely used in

[O] Posttranslational 
modi cation, protein 
turnover, chaperones

[J] Translation, 
ribosomal structure 

and biogenesis

[K] Transcription

[A] RNA processing 
and modi cation[L] Replication, 

recombination and 
repair

[D] Cell cycle control, 
cell division, 

chromosomepartitioning

Fig. 3 | Application on the PPI network for fungi. a The restored network
structure and protein functional clusters at the time that the first 1000 edges were
added. The size of the nodes indicates the order in which the nodes appear, the
nodes added first (i.e., the nodes corresponding to the edges that are added first)
are larger. The colorsof the nodes represent different functions of the proteins (full
protein functions are listed in Supplementary Table S8). It can be seen that in the

evolution process of the PPI network, interactions between proteins form protein
clusters with specific functions. b The number of proteins by function over time
counted according to the order of the edges. Proteins at both ends of each edge are
considered. c The number of proteins with different functions added in each
interval of 300edges. The functions representedby each capital letter canbe found
in a.

Table 1 | The accuracy of transfer learning and direct validation

Train Net. Fitness (N = 500) Fitness (N = 1000)

Test Net. xT xD xT xD

BA (N = 500) 0.853±0.004 0.694 ±0.03 0.859 ±0.001 0.697 ±0.012

BA (N = 1000) 0.832±0.003 0.685 ±0.020 0.839±0.001 0.679 ±0.013

PSO (N = 500) 0.830±0.007 0.682 ±0.025 0.845 ±0.002 0.653 ±0.002

PSO (N = 1000) 0.836±0.007 0.701 ± 0.019 0.848 ±0.001 0.664 ±0.019

"Train Net.” and “Test Net.” refer to the networks used to train and test the ensemble models, respectively. The pairwise accuracy of the ensemble model evaluated on “Test Net.” under transfer
learning is denoted as xT and that under direct validation is denoted as xD. The networkmodels used are the Barabási–Albert (BA) model15, the popularity-similarity-optimization (PSO)model38,53, and
the fitness model39 (detailed information can be found in Supplementary Section 8). The value in the table represents the average accuracy and its standard deviation from 10 simulations. Better
results are highlighted in boldface. Swapping the training and testing network models yields consistent results.
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drug development45–47, protein interaction prediction4,6 and recom-
mendation systems48,49. Here we show that the edge generation
order produced by our method can be used in link prediction and
improve the prediction accuracy significantly. Specifically, we regard
the network whose edge generation sequence has been restored by
our approach as a tensor, denoted by Z with elements Zði1,i2,bαiÞ
which takes value 1 if edge i is generated at position bαi and 0
otherwise (i1, i2 are the two nodes of edge i), and employ the col-
lapsed weighted tensor method50 to define a weighted adjacency

matrix X with entries Xði1,i2Þ=Zði1,i2,bαiÞ×θmaxðbαÞ�bαi (θ∈ (0, 1)).
Then by applying the truncated singular value decomposition algo-
rithm (TSVD)50 on X, the predicted scores for all candidate edges to
be added in the future can be obtained. The candidates with larger
predicted scores are more likely to be added in the future. Figure 6
clearly demonstrates that the restored edge generation order can
significantly improve the link prediction performance up to several
times for some networks. Significant improvements can also be
found by implementing other classical link prediction algorithms
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besides TSVD51,52 on our restored edge sequence (see more results in
Supplementary Section 10). It is noteworthy that after a decade of
development, the design of link prediction algorithms has hit a
roadblock and it is not easy to achieve such a significant perfor-
mance boost.

Discussion
The problem of restoring the system structure is of great importance
in many fields. In this article, we address the fundamental problem of
restoring the structure evolution trajectory of networked complex
systems, and demonstrate that the problem can be resolved with high

Fig. 4 | Underlying growth mechanism in the restored network evolution
processes. Cumulative PA function κ(k) for a PPI network (Fungi), b World Trade
Web, and cCollaboration network (Interfaces). In each figure, the yellow circles and
blue triangles are the results of the ground-truth and restored evolution processes,
respectively. If the growth of a network follows the PA rule, the rate atwhich a node
with degree k acquires new edges should be positively correlated with k and the
cumulative PA function κ(k) is expected to grow superlinearly (see Supplementary
Section 9 for details). So, the solid gray line with slope = 1 represents the case in
which PA is absent. d Adjacency matrices of the evolution process for the protein
function network generated by the PPI network (Fungi). Proteins with the same
function in the network are treated as a single node to form a simplified protein
function network where the edges represent the interactions between proteins
with weights being the number of protein interactions. The upper row shows the
results based on our restored temporal edge sequence while the lower row shows

those based on a simulation study assuming the pure PA rule. The simulation is
performed by adding edges according to the PA rule and keeping the average node
degree consistent with the real network (details are provided in Supplementary
Section 9). e, f Visualizations of the protein function network indwhen the number
of edges are E = 2000 and E = 5425. Letters marking the nodes denote the protein
functions (with specific meanings listed in Supplementary Table S8), and the self-
connected and non-self-connected edges are respectively displayed in blue and
red. g The modularity54 of the PPI network (Fungi). The yellow triangles represent
results computed at the real snapshots of the networks. The blue solid lines and
pink dashed lines are results based on edge generation order by our reconstruction
method and the pure PA rule, respectively. h, i Adjacency matrix and protein
function network of the PPI network (Fungi) obtained at the first real snapshot
(i.e., E = 5425).

Fig. 5 | Assortativity coefficient, local clustering coefficient, and shortest path
length for the restored evolutionprocesses.The assortativity coefficient foraPPI
network (Bacteria), b World Trade Web (WTW), and c Animal network (Weaver).
The average local clustering coefficient for d PPI network (Bacteria), e WTW, and
f Animal network (Weaver). The average shortest path length for g PPI network
(Bacteria), hWorld Trade Web (WTW), and i Animal network (Weaver). The yellow
triangles represent results computed at the real snapshots of the networks. The

blue solid lines and red dashed lines are results based on edge generation order by
our restoring method and by random assignment, respectively. The pink dashed
lines are results for networks generated assuming the purePA rule.Note thatdue to
the presence of disconnected components during the evolution process of a net-
work, the computation of the average shortest path length only involves pairs of
nodes that can be connected.
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accuracy based on graph neural network techniques, especially for
networks with a large number of edges. With the restored edge for-
mation history, the performance of link prediction algorithms can be
greatly improved and the network evolution mechanisms can be
revealed.

Note that there are some limitations in this work: 1) We assume
that the edges in a network will always exist after they are generated.
However, in many real-world systems, many nodes and edges diverge
or even disappear. 2) Formany real-world networks, theremay be only
a small number of edge pairs with time information (i.e., edge pairs
with distinguishable generation order) and the generation time of
these edge pairs may be biased. For example, for the five PPI networks
used in this work, there are only a few snapshots and edges with time
information are mostly from the last snapshot. In this case, how to
measure the credibility of the restoration results is also a problem
worthy of in-depth study. 3) Our current transfer learning technique
can only be successfully implemented on artificially synthesized net-
works with similar generationmechanisms. The application of transfer
learning to real-world networks requires further exploration. Our work
is just the beginning, not the end, of the researches in this field.
Nevertheless, we believe that our research provides a novel path and
approach for understanding the structure formation of networked
complex systems, the relationship between structure and function-
ality, as well as the practical application of complex networks in a

broad range of research fields including life science, brain science,
ecology, information science, etc.

Methods
The embedding methods
In our approach to restore the temporal sequence of edges for an
evolving network, we first obtain the low-dimensional vector repre-
sentation for each edge. Two types of representation methods are
implemented in this work. One is network embedding, which learns low-
dimensional representations of nodes in a network based on its topol-
ogy. After getting the vectors of all nodes, the vector representation of
an edge is computed as the Hadamard product of the corresponding
two node vectors. Specifically, five popular node embedding methods
are applied, namely Node2Vec19, DeepWalk20, SDNE23, LINE21, and
Struct2Vec22. Theotherone is a vector consistingof eleven classical edge
features (see Supplementary Section 1 for details). With five vectors
obtained by the five network embedding methods and one vector of
edge features, we have six vector representations e1i ,e

2
i , . . . ,e

6
i for edge i.

The ensemble model
An important step of our approach is to predict the relative generation
order of any two edges with amachine learningmodel. In our work, an
ensemble model consisting of six CPNN models is proposed, each
taking the vector representations of two edges eli and elj (l = 1, 2,…, 6)

Fig. 6 | Performance of link prediction. Number of hits (correctly predicted
edges) obtained by using the original (yellowdashed lines) and restored (blue solid
lines) edge generation order on a PPI network (Fungi), b PPI network (Bacteria),
c Collaboration network (Chaos), dWorld Trade Web, e Animal network (Weaver).
For each network, we first remove the edges added in the last few snapshots. The
number of edges removed is selected according to the number of snapshots in real
network data (see f and Supplementary Table S10 for more details). Let Xoriginal and
X be the collapsed weighted tensor constructed based on the original (i.e., the real
network with a few snapshots) and the restored edge generation order, respec-
tively. Then Xoriginal and X are used to calculate the corresponding score matrices
and obtain the predicted future edges. The number of edges removed in the real
network data that appear in the first r predicted future edges is termed the

“Number of hits” and used to evaluate the link prediction performance. The per-
centage of improvement is computed based on the area under the curve. The
weight parameter and the truncation parameter in the link prediction algorithmare
tuned to get the optimal results for both the original and restored sequences,
respectively. Results based on the restored sequences are averaged over 10 repe-
ated simulations, with the light blue areas representing the 95% confidence inter-
vals. f An illustration of the edges removed in different networks. Edges are
arranged by real generation order with those added earlier to each network dis-
played in darker color. Edges after the red line are removed as the test set of link
prediction. Note that the restored sequences used for link prediction are obtained
using the same method as other tasks in this work but on networks without edges
for prediction.
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as input. EachCPNNmodel outputs a probability that edge i is added to
the network later than edge j, generating six probabilities o1i ,o

2
i , . . . ,o

6
i .

Moreover, we select the feature that has the highest prediction accu-
racy in the training set among the eleven edge features as the “best
feature” and obtain an additional output o7i based on it (e.g., o7i = 1 if
edge i has a larger value on the best feature than edge j and o7i =0
otherwise). The final output of the ensemble model is a weighted
average of all seven outputs:

o final
i =

X7
l = 1

oliwl , ð3Þ

where the weightsw1,w2,…,w7 satisfy
P7

l = 1 wl = 1 and are determined
by grid search during training.

The ranking algorithm
In our approach, the Borda’s method, a voting-based ranking algo-
rithm, is used to find an ordered sequence of all edges based on the
predicted generation order of any two edges. Specifically in our set-
ting, the relative generation order of any two edges is considered a
ranking result so that the Borda count for edge i is

ui =
XE

j = 1,j ≠ i

uij , ð4Þ

whereuij= 1 if edge i is newer thanedge j anduij =0otherwise. Then the
temporal sequence of all edges from old to new is determined by
ranking the edges by their Borda count in ascending order.

The theoretical relationship between E and x
A brief mathematical derivation of the theoretical result about the
relationship between the overall error E of the restored sequence and
the accuracy x of the ensemble model is provided here. Without loss
of generality, assume that the ground truth sequence is
α = ðα1,α2, . . . ,αE Þ= ð1E , 2E , . . . ,1Þ (normalized by the number of edges
E). For the uij in Eq. (4), its expectation and variance are (in sub-
sequent derivation, the counts are normalized by E for convenience)

EðuijÞ=
x
E , if αi >αj

1�x
E , if αi <αj

(
,VarðuijÞ=

xð1� xÞ
E2 : ð5Þ

Then for the Borda count ui, its expectation is

EðuiÞ=
XE

j = 1, j ≠ i

EðuijÞ= ði� 1Þ x
E
+ ðE � iÞ 1� x

E

=
2x � 1

E
i+ 1� E + 1

E
x ≈

2x � 1
E

i+ 1� x:

ð6Þ

The approximation is obtained since (E + 1)/E ≈ 1 for large E. Treating E
and x as constants, E(ui) is a linear function of i with two boundaries
E(u1) = 1 − x and E(uE) = x. In other words, the normalized Borda counts
of the E edges are evenly distributed over the interval [1 − x, x].
According to the mean field theory, the position bαi of edge i in the
restored sequence bα should be the length from 1 − x to ui divided by
the total length of the interval 2x − 1, i.e.,

bαi =
ui � ð1� xÞ

2x � 1
: ð7Þ

Then the expectation and variance of bαi are (plugging in Eqs. (5) and
(6))

EðbαiÞ=
EðuiÞ � ð1� xÞ

2x � 1
=

i
E
=αi,VarðbαiÞ=

VarðuiÞ
ð2x � 1Þ2

=
xð1� xÞ

Eð2x � 1Þ2
: ð8Þ

Therefore, bαi is an unbiased estimate of αi so that the mean-squared
error is just the variance and the root-mean-squared error is the
standard deviation, as stated by Eq. (2).

Pseudo code for the simulations in Fig. 2
To better explain the simulations involved in Fig. 2, we provide the
pseudo code to implement the simulations. The essential idea is that in
the simulations, we only need to specify the pairwise accuracy x to
obtain the restored sequence for afine-grained ground-truth sequence
of edges, i.e., no need to actually pass through an ensemble model to
obtain the generation order of each edge pair.

Algorithm 1. Pseudo code to compute Di/E to plot Fig. 2b, c
Inputs: number of edges E, pairwise accuracy x, number of
repetitions R.
Assuming that the ground-truth sequence of edges {e1,…, eE} is
α = (1, 2,…, E), form the set of all edge pairs S= fðei, ejÞ :
i, j = 1, . . . , E, i< jg, then jSj= EðE � 1Þ=2. Let M = bjSj � xc.
for rep = 1 to R do

Step 1: Randomly select M pairs from S and assign the correct
generation order to them; the remaining jSj �M pairs
are assigned the wrong order.

Step 2: Apply the ranking algorithm (i.e., Borda count) on the
pairwise orders from Step 2 to get the restored
sequence bα = ðbα1, bα2, . . . , bαE Þ.

Step 3: Compute Di as Di = i� bαi for i = 1, 2,…, E.
end for

Algorithm 2. Pseudo code to compute Di/E corresponding to “Real
Data” in Fig. 2d, e

Inputs: a coarse-grained ground-truth sequence α, an ensemble
model, number of repetitions R.
Let n be the number of snapshots in α and lk be the number of
edges in the kth snapshot, then α = (1,…, 1, 2,…, 2,…, n,…, n) andPn

k = 1 lk = E, where E is the length of α.
Step 1: Obtain the restored sequence bα = ðbα1, bα2, . . . , bαE Þ by

passing through our ensemble mod- el and ranking
algorithm. Then bα1 ≠ bα2≠ � � �≠ bαE and bαi 2 f1, 2, . . . , Eg.

for rep = 1 to R do
Step 2: Randomly assign fine-grained order to edges within the

same snapshot to generate an intermediate sequence
α* = ðα*

1,α
*
2, . . . ,α

*
E Þ, i.e., α*

1 ≠α
*
2 ≠ � � �≠α*

E , α
*
i 2 f1, . . . , l1g

for i = 1,…, l1, α*
i 2 fl1 + 1, . . . ,l1 + l2g for i = l1 + 1,…, l1 +

l2,⋯ , and α*
i 2 fl1 + � � � + ln�1 + 1, . . . , Eg for i = l1 +⋯ +

ln−1 + 1,…, E.
Step 3: Compute Di as Di =α

*
i � bαi for i = 1, 2,…, E.

end for

Algorithm 3. Pseudo code to compute Di/E corresponding to “Simu-
lation” in Fig. 2d, e

Inputs: a coarse-grained ground-truth sequence α, pairwise
accuracy x, number of repetitions R.
for rep = 1 to R do

Step 1: Randomly assign fine-grained order to edges within the
same snapshot to generate an intermediate sequenceα*

as Step 2 in Algorithm 2.
Step 2: Obtain the restored sequence bα as Step 1–2 in

Algorithm 1.
Step 3: Compute Di as Di =α

*
i � bαi for i = 1, 2,…, E.

end for

The linear transformation in transfer learning
Thekey to a successful transfer is tofindaprojectionbetweenNetwork
A and B such that the low-dimensional vector representations of the
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corresponding nodes in the two networks are as similar as possible.
There are different ways to establish a corresponding relationship
between the nodes of Network A and B, here we consider the quantiles
of the degrees of the nodes as an illustrating example. Thus, we first
sort the nodes in both networks by their degrees in descending order
and obtain thematrices consisting of vectors of the ordered nodes for
both networks, denoted byHA andHB. Then our goal is to find a linear
transformation L such that ∣∣HBL −HA∣∣ is minimized. By the least
squares method, we obtain

L= ðH>
BHBÞ

�1
H>

BHA: ð9Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The network data used in this study are available at https://github.
com/yijiaozhang/evolution_restore55. The sourcedata generated in this
study are provided in the Source Data file. Source data are provided
with this paper.

Code availability
Thecode for this study areavailable athttps://github.com/yijiaozhang/
evolution_restore55.
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