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Suppressing dipolar relaxation in thin layers
of dysprosium atoms

Pierre Barral 1,2 , Michael Cantara1,2, Li Du 1,2, William Lunden1,
Julius de Hond 1, Alan O. Jamison1 & Wolfgang Ketterle 1

The dipolar interaction can be attractive or repulsive, depending on the
position and orientation of the dipoles. Constraining atoms to a plane with
their magnetic moment aligned perpendicularly leads to a largely side-by-side
repulsion and generates a dipolar barrier which prevents atoms from
approaching each other. We show experimentally and theoretically how this
can suppress dipolar relaxation, the dominant loss process in spinmixtures of
highly magnetic atoms. Using dysprosium, we observe an order of magnitude
reduction in the relaxation rate constant, and another factor of ten is within
reach based on the models which we have validated with our experimental
study. The loss suppression opens up many new possibilities for quantum
simulations with spin mixtures of highly magnetic atoms.

Experiments with ultracold atoms or molecules are often limited by
unfavorable inelastic collision rates. Several methods have been
developed to control collisions such as isolating atoms in deep
lattices1, reducing collisional channels via confinement2, or by miti-
gating their effects through the enhancement of elastic collisions via
Feshbach resonances3. Polar molecules with electric or magnetic
dipoles have been shielded from chemical reactions at short range by
using repulsive interactions between dipoles, either in two dimensions
or via microwave dressing4–6.

Using dipolar shielding7–9 with highly magnetic atoms is more
challenging thanwith polar molecules as the dipolar interaction of the
former is two orders ofmagnitude smaller than for the latter.Magnetic
atoms have a simpler structure than molecules, allowing them to
achieve lower temperatures while providing a controlled, tunable, and
relatively simple platform for exploring novel forms of matter with
long-range forces10–16. Dysprosium, with a magnetic moment of 10μB,
has a magnetic dipole-dipole interaction that is 100 times larger than
that of alkali atoms. However, dipolar relaxation – an inelastic spin-flip
process that converts Zeeman energy into kinetic energy – occurs at a
rate that scales as the square of the dipolar interaction, severely lim-
iting the lifetime of any cloud with population in an excited Zeeman
level. The dominance of dipolar relaxation has, thus far, precluded the
experimental realization of many proposed new phenomena in spin
mixtures of highly magnetic atoms17–19. Using dipolar shielding to
prevent the atoms from undergoing dipolar relaxation requires a deep

understanding of the dipolar interaction as it drives both the elastic
and inelastic processes.

In this work we show that suppression of dipolar relaxation is
possible since it occurs mainly at specific interatomic separations,
where the dipolar potential reduces the wave function amplitude. It
proves that confinement can not only affect the collisional channels
between atoms2, but alsomodify the interaction potential and provide
shielding, as it was original proposed for molecules7–9. We observe an
order of magnitude suppression of the dipolar relaxation rate, and,
supported by comprehensive simulations of the decay rate2, we show
that another order of magnitude is within reach given reasonable
parameters. In the limit of high magnetic fields, or for very low tem-
peratures, the amount of suppression can be made arbitrary large. We
first describe qualitatively the interplayofmagnetic field, temperature,
and shielding, then present our experimental results, followed by
theoretical simulations.

Results
Basic principles of dipolar shielding
Asmentioned, thedipole-dipole interaction is attractive in the caseof a
tip-to-tail orientation and repulsive for the side-by-side one. Con-
straining atoms to an xy plane, with a magnetic moment aligned per-
pendicularly along z, leads to a largely side-by-side repulsion and
generates a dipolar barrier. The dipolar length add =

μ0
4π

μð10μBÞ2
_2

repre-
sents the strength of the interaction and the two-particle oscillator
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length az =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=μωz

p
the extension of the cloud in the z direction. We

denoted μ and ωz the reduced mass and the trap frequency respec-
tively. A dipolar barrier appears when the dipolar length add > 0.34az9,
which we refer to as the quasi-2D regime. Thus, experiments with
dysprosium require 10,000 times higher axial frequencies than polar
molecules to compensate for the 100 times smaller dipolar length. Our
experiments have reached this regimewithaz = 20nmandadd = 10nm.

Three parameters determine the loss rate in quasi-2D: the ratio
add/az set by the confinement, the temperature T, and the magnetic
field B. The potential barrier increases with confinement, ultimately
reaching the pure-2D limit as az→0 as shown Fig. 1a. As the tempera-
ture decreases, thewave function of an incoming pair is suppressed by

the barrier over a longer range, thereby decreasing the chance of two
atoms reaching close range. This shielding effect on the wave function
is illustrated in Fig. 1b. As themagnetic field increases, the rangewhere
dipolar relaxation occurs is shortened and the shielding increases.
Indeed, a higher magnetic field leads to a higher released energy, and
correspondingly a more rapidly oscillating outgoing wave function
(see red curve Fig. 1b). Since the dipolar potential falls off as 1/r3, the
majority of the decay will come from the first oscillating lobe of the
outgoing wave function, as seen in Fig. 1c. The range of dipolar
relaxation, therefore, decreases as the magnetic field increases. This
can also be explained in a semi-classical picture: the Franck-Condon
principle predicts spinflips tooccur at the classical turningpoint of the
outgoing wave function2,20, i.e. when the released Zeeman energy
equals the energy of the centrifugal barrier. Correspondingly, higher
magnetic fields cause spin-flips to occur at a shorter range, ultimately
behind the barrier felt by the incoming atoms, where they are strongly
suppressed. In addition to increasing shielding, magnetic fields affect
dipolar relaxation rates via the density offinal states.Without shielding
in 3Dand2D2,19,21, this leads to an increasing rate (for bosons). Shielding
qualitatively changes the magnetic field dependence of the dipolar
relaxation rate which now decreases with magnetic field (see Supple-
mentary Information Note 4).

Experiment
Here we study these principles experimentally. We load ~ 8 × 104 spin-
polarized 162Dy atoms in the excited ∣J =8,mJ =8

�
Zeeman level (see

Methods for details) in an optical lattice and get a stack of about 45
thin pancakes (‘crêpes’). The crêpes reach an az/2 = 10 nm root-mean-
square (RMS) width and a 5.7 μm radius. The peak density is
2.9 × 109 cm−2. The experiment is performed at T ≈ 1.6 μK, above the
BEC transition temperature (300 nK), to prevent convolving our
results with changes in the two-particle correlation function22,23. The
quantization axis is set by an external magnetic field along the z
direction. The lattice beam is blue detuned, with its radial repulsion
compensated by a coaxial red-detuned optical dipole trap, as shown in
Fig. 2a. Axial trap frequencies are limited to ωz/2π = 260 kHz by the
maximum laser power of the compensation beam.

By measuring the atom losses we determine the inelastic decay
coefficient, β3D, as defined by the differential equation for the 3D
density n:

dn
dt

= � β3Dn
2: ð1Þ

We obtain densities from the measured atom number, temperature
and trap frequencies, and average over the stack of crêpes (also see the
Methods section). We sometimes refer to the 2D loss rate β2D in cm2/s,
which uses the 2D density instead. It is related to β3D through the axial
harmonic confinement via β2D =β3D=ðaz

ffiffiffiffi
π

p Þ.
Our experimental results are shown in Fig. 2b, c.We also compare

the theoretical shielded decay rate (solid blue) with the one we would
expect in the same crêpe geometry if there was no elastic dipolar
potential to repel the atoms (dashed blue). In contrast to the loss rate
in a 3D geometry (red), which increases with

ffiffiffi
B

p
(see Supplementary

Information Note 5), we observe the signature of shielding in Fig. 2b: a
much weaker dependence on magnetic fields (solid blue). Our results
are also qualitatively different from those presented in2, represented
by the dash-blue curve. Their approach relies solely on shaping the
trap tomodify the available outgoing channels, whereas we go further
by altering the interaction potential experienced by the atoms.

We operate in the quasi-2D regimewhich differs from the pure-2D
one in several aspects. Compared to pure-2D, the finite axial extent of
the quasi-2D geometry softens the radial barrier, reducing the barrier
height to energies comparable to typical temperatures in the experi-
ment. Furthermore, for Zeeman energies that are larger than the axial

Fig. 1 | Principle of dipolar shielding. a Effective radial potential between two
atoms from equation (6) for: no confinement (light blue, 3D), quasi-2D with
ωz/2π = 300 kHz (steel blue) and pure-2D (dark blue). The incoming energy is given
by the temperature T = 1 μK. b Wave function solutions of equation (6) with n =0
and initial orbitalmomentummi =0 for the three confinement strengths described
above, and in red the spin-flippedoutgoingwave function tomf = 2 andB = 500mG.
The effect of shielding of the outgoing wave function is negligible for these para-
meters. c Integrand of Fermi’s golden rule (equation (2) and see equation (SI-10)
in Supplementary Information Note 2). Each curve is the product of the respective
wave function in b, the outgoing wave function, and the double spin-flip operator
from equation (4) integrated with the harmonic oscillator wave functions in the
z-direction. The shielding we implement here corresponds to the difference
between the light blue and steel blue curves. Theminimumattainabledecay rate for
this incoming energy corresponds to the dark blue curve. See Supplementary
Information Note 5 for insights on the behavior of the integrand.
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trapping frequency, new collisional channels open, with a portion of
the released energy converted into axial excitation and the remainder
into radial motion. As a result, the relaxation for these processes is
shifted to larger distances, thereby weakening the shielding. The first
channel opening is visible in Fig. 2b around 100mGaswell as in Fig. 3a,
b. The aforementioned factors lead to a relaxation rate that does not
decrease with magnetic field, as it would in the pure-2D case, but
instead shows a weaker increase compared to the case without a
dipolar barrier (dashed blue). Figure 2c shows the loss rate coefficient
as a function of axial confinement. The loss rate decreases with con-
finement due to enhanced shielding by the dipolar repulsion and
closing axially excited states channels.

We have reduced the loss rate coefficient to approximately
1 × 10−12 cm3/s. Over a large range of magnetic fields in a lattice, we

achieved more than an order of magnitude reduction in the dipolar
relaxation rate coefficient compared to the unshielded case. The
agreement between the numerical calculations and the experiment
enables extrapolationbeyond the current limitationof the experiment:
very favorable loss rate coefficients of 2 × 10−13cm3/s can be achieved at
200mGwith an axial confinement of 500 kHz at 1 μK. Thismatches the
lowest rate obtained with fermions through Pauli suppression in
reference19. Under such conditions, axial excitations are energetically
forbidden and the 2D decay rate is less than a factor of 3 above the
pure-2D limit. By lowering the temperature to 100 nK, the relaxation
rate would be suppressed by an additional factor of three and reach
the 10−14cm3/s regime. To further understand how these numbers are
computed, we describe our theoretical model in the following
paragraphs.

1064
red beam

741
blue lattice

Fig. 2 | Experiment scheme and results. a Trap geometry. A blue-detuned 741 nm
retroreflected beam repels the atoms to create a 1D lattice. Thefinite contrast of the
lattice and the zero-pointmotionof the atoms in the ground state create a repulsive
transverse potential, which is compensated by a 1064 nm red-detuned beam to
create an adjustable transverse harmonic confinement. b, c Experimentally mea-
sured β3D in a large volume trap (red) and in a thin layer (blue). The lines are theory
curves obtained by using Fermi’s golden rule (see Supplementary Information
Note 2 for derivations). The red curve shows the decay rate in 3D19,21, the dashed
blue curve is for non-shielded atoms in a lattice2. The solid blue line takes into
account the shielding induced by the elastic dipole-dipole interaction. All theore-
tical curves are thermally averaged over the incoming momenta. The shaded blue

region corresponds to the inclusion of contact interactions (see an extended dis-
cussion of the short-range physics inMethods).bMeasurement of β3D as a function
of magnetic field. The axial trap frequency isωz/2π = 185 kHzwhich corresponds to
az/2 = 13nm. c Measurement of β3D in a constant magnetic field of 200mG while
varying the trap frequency. The uncertainties are set by the atom number stability,
cloud temperature measurement and trap frequency measurements (see Methods
section). The relaxation rates measured at very low fields deviate from the theo-
retical values, most likely because the imperfect circular polarization of the lattice
and compensating beams changes the orientation of the dipoles (see Methods
section).

Fig. 3 | Theoretical loss rate coefficients. Channel-by-channel decomposition of
the dipolar relaxation rates of the mi =0 incoming state (valid when μBB≫ kBT,
see Supplementary Information Note 3) in a 300 kHz trap, both for free wave
functions (a) and shielded ones (b). The blue and red colors correspond to single
and double spin flips, respectively. The different shades correspond to different
harmonic oscillator states as they open up with increasing magnetic field. The

suppression factor defined as the ratio of β3D obtained from shielded and freewave
functions, both at fixed temperature T1 (c), and at fixed magnetic field B1 (d). For
each of the graphswe present curves forω1/2π = 300kHz (dotted),ω2/2π = 1.8MHz
(dashed dotted), the pure-2D case (solid line) as well as the analytical approxima-
tion (grey dotted) from equations (SI-17) and (SI-22) detailed in Supplementary
Information Note 4.

Article https://doi.org/10.1038/s41467-024-47260-1

Nature Communications |         (2024) 15:3566 3



Theoretical model
Dipolar relaxation rates can be calculated from Fermi’s golden rule.
The decay rate Γ of 2 particles is given by

_Γ= 2π∣ Ψout

�
∣V̂dd∣Ψin

�
∣
2
ρðEÞ, ð2Þ

where ρ(E) is the final density of states at energy E. The incoming wave
function is an excited Zeeman state with transverse momentum ki in
the lowest harmonic oscillator state, ni = 0. The outgoing wave func-
tion is a lower Zeeman state with momentum kf in the harmonic
oscillator state nf. The loss rate coefficient β2D is related to Γ through
β2D =πL2Γ, with L being the radius of the transverse box used to nor-
malize the wave functions. The atoms are coupled by the magnetic
dipole-dipole interaction:

V̂dd =
μ0

4π
ðgJμBÞ2

Ĵ1 � Ĵ2 � 3ð̂J1 � ur ÞðĴ2 � ur Þ
r3

, ð3Þ

where r is the interatomic separation (with corresponding unit vector
ur). The magnetic field points along z. Atoms in the initial spin state
∣j0i= ∣mJ1

= 8,mJ2
= 8i can collide and remain in the same spin state, or

relax to either ∣j1
�
= ∣7,8i+ ∣8,7ið Þ=

ffiffiffi
2

p
or ∣j2

�
= ∣7,7i. The dipole-dipole

operator acting on ∣j0
�
is:

V̂dd∣j0
�
=
μ0ðJgJμBÞ2

4πr3

�
1� 3�z2
� �

∣j0
�� 3�z�r +

J1=2
∣j1
�� 3�r2+

2J
∣j2
�� ð4Þ

=Vdd,0∣j0
�
+Vdd,1∣j1

�
+Vdd,2∣j2

� ð5Þ

with �z = z=r and �r + = ðx + iyÞ=r. Equation (4) shows the three effects of
the dipolar interaction: an elastic scattering process, a single spin-flip
proportional to �z, and a double spin-flip which implicitly depends on z
through r.

In the two-dimensional limit where z =0, the single spin-flip term
vanishes and the elastic term is a purely repulsive 1/ρ3 potential (where
ρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
). This potential has an analytic solution at zero tempera-

ture (ki =0)24, while other cases have to be solved numerically.
We assume a quasi-2D geometry where we ignore the effect of

Vdd,0 on the z motion, which is then factorized and described by har-
monic oscillator wave functions (see Methods for a discussion on this
approximation). The elastic portion of the operator in equation (4) is
averaged over the z direction. This leads to an effective repulsive
potential (see Fig. 1a) in the one-dimensional radial Schrödinger
equation:

_2

2μ
� d2

dρ2 +
m2 � 1=4

ρ2

 !
+ nh ∣Vdd,0∣ni

( )
ϕ=

_2k2
i

2μ
ϕ: ð6Þ

Here, the state ∣ni is the nth harmonic oscillator’s state along z. We
focus on incoming states with zero projection of orbital angular
momentum, mi =0, as this channel dominates for any reasonable
magnetic field (see Supplementary Information Note 3).

We solve the Schrödinger equation for the radial wave function
using numerical techniques, and use it to perturbatively calculate the
dipolar relaxation rate with Fermi’s golden rule (2). In Fig. 1 we show
how dipolar repulsion (Fig. 1a) modifies the incoming wave function
(Fig. 1b) and reduces the integral of the transition matrix ele-
ment (Fig. 1c).

Without axial excitation, only double spin flips to the final spin
state ∣j2

�
= ∣7,7i and orbital statemf = 2 are allowed. At sufficiently high

magnetic field the energy released during the collision can exceed ℏωz,
thereby opening up new collisional channels resulting in axial

excitations. Energy conservation requires

_2k2
f

2μ
=
_2k2

i

2μ
+ΔjμBgJB� Δn_ωz : ð7Þ

The single spin-flip channel (Δj = 1) requires odd Δn due to the odd
symmetry of the �z term in equation (4), whereas double spin flips
(Δj = 2) require even Δn. Newly opened channels increase the decay
rate, as shown in Fig. 3a, b. Furthermore, as previously explained, they
also decrease the shielding factor, as visible in the small notch
in Fig. 3c.

Remaining in the ground state of the harmonic oscillator is
therefore necessary for obtaining extremely low relaxation rates, but
that requires working at low enough fields. Unfortunately, the relaxa-
tion rates we measure at very low fields deviate from the theoretical
values in Fig. 2b, most likely because of imperfect circular polarization
of the lattice and compensating beams. The mixture of σ+ and σ− light
induces Raman couplings between ∣mJ = +8

�
and other even ∣mJ

�
states, thereby opening additional relaxation channels via spin
exchange21. With a > 95% circular polarization purity, we find agree-
ment between experimental decay rates and calculated dipolar
relaxation rates for fields > 100mG, where the Raman coupling is
suppressed by Zeeman detuning.

Discussion
We have shown that confinement in thin layers not only reduces the
number of available collisional channels, but additionally provides
dipolar shielding, thereby strongly suppressing dipolar relaxation
between atoms. In principle, arbitrarily low loss rates and infinite
shielding factors are possible at very low temperatures. Strong mag-
netic fields are also predicted to reduce the shielded collision rate to
arbitrary low values if strong axial confinement suppresses the open-
ing of collision channels. As we have discussed above, rather
straightforward improvements in axial confinement, purity of polar-
ization and temperature should result in rate coefficients in the
10−14cm3/s regime.

Our simulations and experiments show that there is already sub-
stantial shielding at thermal energies comparable to the barrier height.
Lowering the temperature well below the barrier eventually results in
exponential suppression8. For our experimental parameters, going
from 1 μK to 100 nK would increase the suppression by a factor
of three.

In this work, we have discussed the interplay between the elastic
and inelastic aspects of dipolar interactions. Both scale with the
dipolar length, which could be 10,000 times larger for polar mole-
cules. Yet the large total angular momentum J = 8 works in favors of
dysprosium over molecules, as the elastic part of the dipole-dipole
potential scales as J4 in a stretched state,while the relaxation rate scales
as J3 for single spin-flips and J2 for double spin-flips.

An important point of comparison is the elastic scattering rate. At
1 Gauss in a trap with a 2 MHz axial frequency, the inelastic 2D cross-
section would be 20 nm without shielding. Shielding drops this num-
ber to 0.3 nm, while the semi-classical dipolar elastic collisional cross
section is σSC = 180 nm24. Shielding is necessary to obtain a ratio of
good to bad collisions in excess of 100. Shielding is also necessary to
study dipolar exchange. Given our density n2D = 2.9 × 109 cm−2, an
estimated spin exchange rate is 200/s, which is comparable to the
observed shielded dipolar decay rates.

Dipolar shieldinghaspreviously beenobserved inpolarmolecules
with fermionic statistics5, for which the shielding is qualitatively dif-
ferent. Since identical fermions already have an isotropic p-wave bar-
rier, adding moderate dipolar interactions in a confined geometry will
first strengthen this barrier in the radial direction but also weaken it in
the axial one. As a result, the inelastic collision rate will first decrease
with the dipole moment and then increase25. This cannot be seen with
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bosons. For both particle types, the inelastic collision rate will even-
tually decrease when entering more deeply into the 2D regime, as we
have explored in this work. Our technique would be crucial to study
spin mixtures of bulk gases of bosonic dipolar species.

In conclusion, we have demonstrated a way to realize long-lived
spin mixtures in dense bosonic lanthanide clouds, opening up new
possibilities for quantum simulation experiments in two dimensions.
With such technique, dysprosium can be used to study quantum
materials with dipolar interactions in regimes different from those
currently possible for polar molecules7 and Rydberg atoms26. Stable
spin mixtures are important for implementing spin-orbit coupling and
artificial gauge potentials via Raman coupling of spin states27,28. By
suppressing dipolar relaxation, one can take advantage of the ground
state orbital angular momentum of lanthanides to avoid the sub-
stantial photon scattering rates of the Raman beams for alkali atoms29.

Methods
Sample preparation
The samples are obtained after evaporative cooling in a crossed
optical-dipole trap (ODT) which is loaded from the narrow-line mag-
neto-optical trap described in reference30. The ODT consists of three
1064 nm laser beams: twobeamswith 40 μmbeamwaists crossed at 8∘

in the horizontal plane, and a beam with a 64 μm waist propagating
along the (vertical) z direction. We prepare spin-polarized samples
of ~ 8 × 104 162Dy atoms in the ∣J =8,mJ = � 8

�
state in an optical dipole

trap just above the transition temperature.Working with a thermal gas
makes it easier to determine dipolar relaxation rate coefficients with-
out accounting for a varying condensate fraction.

The highest spin state ∣mJ = +8
�
is populated via adiabatic rapid

passage using an RF sweep in a magnetic field of 3.5 G along the
z direction. A stack of quasi-2D layers, which we refer to as crêpes
due to their extreme aspect ratio, is created using a 1D optical lattice
formed by retroreflecting a 741 nm laser beam along the z axis.We use
a Ti:Sapph laser focused down to a waist of 50 μm to the atoms. It can
deliver about 300 mW of light after fiber coupling and intensity sta-
bilization. It is typically detuned by 14.25 to 2.25 GHz to the blue side of
the narrow 1.8 kHz transition31, thus providing frequency-controllable
tight axial confinement. During the dipolar relaxation experiment, the
horizontal beams are switched off, and the vertical 8 W ODT beam
serves to compensate for the deconfinement of the blue-detuned lat-
tice. We verified with in-situ images (obtained with detuned imaging
light due to the high optical densities) that the blue-detuned lattice is
correctly compensated without displacement of the cloud. The lattice
and the vertical dipole trap are turned on using exponential ramps
with a 50ms time constant to adiabatically load the atoms into the
lowest vibrational level of the 2D layers. During the first 40 ms of the
lattice ramp, the magnetic field is rapidly reduced to 40mG to mini-
mize the dipolar relaxation losses. The magnetic field is then ramped

up to its final value during the last 10ms of the lattice loading ramp,
after which the decay of the sample due to inelastic collisions is
measured.

The RMS extension of the cloud along the lattice direction before
loading is σODT≃ 4.7μm. Given the layer separation of λ/2≃ 371 nm,
around 4

ffiffiffiffi
π

p
σODT=λ=45 crêpes are loaded with initially 3 × 104 atoms

and a central density of n0 = 2.9 × 109 cm−2. The density distribution in
the ith pancake is described by (see Fig. 5)

niðt,ρ,zÞ=n0ðtÞ exp �z2i =ð2σ2
ODTÞ

� �
exp �ρ2=ð2σ2

?Þ
� � ð8Þ

with zi = i
λ
2 and σ? =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT lattice

2μω2
?

r
, σODT =

ffiffiffiffiffiffiffiffiffiffiffiffi
kBTODT

2μω2
ODT

r
. The parameters

ωODT = 2π⋅94 Hz and TODT = 150 nK describe the cloud before the lat-
tice is ramped up whereas ω⊥ = 2π⋅200 Hz and Tlattice≃ 1 μK char-
acterize the conditions after lattice ramp up. The central crêpe
contains about 900 atoms. The RMS width of the crêpes is typically
σz≃ 10 nm while the radial one is σ⊥ = 5.7 μm.

Zeroing the magnetic field
Achieving control of low magnetic fields is critical for minimizing
dipolar suppression by preventing higher outgoing vibrational chan-
nels from opening. We have devised a method to zero the magnetic
field that relies on the large disparity of Clebsch-Gordan coefficients
for dysprosium. When an atom’s magnetic moment is aligned along
the propagation of a circularly polarized imaging beam, the amount of
scattered light strongly differs whether themagnetic dipolemoment is
oriented parallel or anti-parallel to the propagation of the imaging
beam. By using absorption imaging for various external magnetic
fields, as shown in Fig. 4, one can observewhen the dipolemoment has
flipped, which determines the zero of the external magnetic field.

More specifically, in a spin-polarized (mJ = −8) sample of bosonic
dysprosium, the Clebsch-Gordan coefficients for σ−, π and σ+ transi-
tions are 1, 1/9 and 1/153 respectively. We perform absorption imaging
of a spin-polarized sample with left-circularly polarized (σL) light along
the magnetic field quantization axis z. We work with low enough light
intensity and imaging time to prevent optical pumping. At large
positive magnetic field bias, the atoms see σ− light with a corre-
sponding Clebsch-Gordan coefficient of 1, resulting in a large atom
count. At large negativemagnetic field bias, the atoms see σ+ light with
a corresponding Clebsch-Gordan coefficient of 1/153 leading to a low
atomcount. The lower the transversemagnetic field, the sharper is the
transition when the longitudinal field is varied. In this way, the zero
settings for all components of the magnetic field are determined.

Lattice light choice
Theneed for deepoptical lattices requires a tightly focused lattice beam,
which causes undesirably strong radial confinement if one uses a red-
detuned beam. By choosing a blue-detuned lattice we avoid adiabatic
compression of the cloud in the transverse direction and the substantial
corresponding increase in temperature when ramping up the optical
lattice. The choice of a blue-detuned lattice also exposes the atoms to
lower light intensities and reduces the unwanted Raman transitions due
to imperfect circular polarization. However, the radial deconfinement
created by the lattice needs to be compensated, whichwe achievewith a
red-detuned optical dipole trap that enables independent control of the
axial and transverse trap frequencies (see Fig. 5 left).

Lifetime analysis
The decay of the cloud can be described via equation (1) for the 3D
densities

dn3D

dt
= � β3Dn

2
3D: ð9Þ

Fig. 4 | Determining the zero of the magnetic field. For spin-polarized mJ = −8
dysprosium atoms and left-circularly polarized imaging light, the drastic difference
in Clebsch-Gordan coefficients forσ+ and σ− transitions produces a step-like change
in imaging signal as the magnetic field traverses through zero.
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or by using a 2D equation

dn2D

dt
= � β2Dn

2
2D: ð10Þ

The densities in each pancake are related by

n3D =n2D
1ffiffiffiffiffiffi
2π

p
σz

exp �z2=ð2σ2
z Þ

� �
ð11Þ

with σz =
ffiffiffiffiffiffiffiffi
_

4μωz

q
=az=2 ’ 10nm. Our 2D density of n2D = 2.9 × 109 cm−2

corresponds to a 3D density of n3D = 1.1 × 1015 cm−3. When integrating
equation (9) and equating it to (10), we obtain

β3D = 2
ffiffiffiffi
π

p
σzβ2D: ð12Þ

In the main paper, we are using β3D to characterize the decay.
We will omit the 2D subscript for the densities in the rest of the

manuscript. Equation (10)– in a local-density approximation –needs to
be integrated over the cloud volume to relate to the observed quantity

N, the number of atoms:

dN
dt

= � β2D

Z
S
n2dτ = � β2Dhni � �β2D

N2

V eff
: ð13Þ

The effective volume Veff is determined as follows. After integra-
tion of equation (8), one gets
N =

P
iNi =

P
i

R
ni dτ =n02πσ

2
?
ffiffiffiffiffiffi
2π

p
σODT=ðλ=2Þ and

dN
dt

=
X
i

dNi

dt
= � β2D

X
i

Z
S
n2
i 2πρdρ = � β2Dn

2
0πσ

2
?
X
i

e
�

z2
i

2σ2
ODT

= � β2Dn
2
0πσ

2
?

ffiffiffiffi
π

p
σODT

λ=2
:

ð14Þ

Identifying Veff in equation (13) gives

V eff = 4πσ
2
?
2
ffiffiffiffi
π

p
σODT

λ=2
: ð15Þ

We note that hni= N
23=2V eff

, where each
ffiffiffi
2

p
factor comes from the

Gaussian averaging along one axis. To take into account the moderate
heating during the experiment, we perform a linear fit of the tem-
perature T(t) = T0 + vTt for each measurement of the decay rate, which
is used to scale the effective volume Veff(t). The solution of the dif-

ferential equation (13) that we fit is NðtÞ= N0

1 +
β2D
Veff

N0
ln 1 + vT tð Þ

vT

from which we

determine β2D. A comparaison of this fit with one ignoring the tem-
perature increase is shown in Fig. 6. The atomnumberN(t) ismeasured
as a function of hold time (typically tens of ms) using time of flight
imaging.

Herewe have assumed that everydipolar relaxation event leads to
the loss of both atoms. This is justified since the effective trap depth of
a fewmicro-kelvins is negligible compared to the kinetic energy gained
by the spin-flip for magnetic fields larger than a few tens of milligauss.
Note that the trapdepth ismuch lower than the axial excitation energy
ℏωz. This is due to the compensated blue lattice which provides a very
weak trap in the transverse direction compared to the tight axial
confinement. The experiment is sufficiently fast (tens of ms) such that
photon scattering in the lattice, background collisions and residual
evaporation are not important.

Fig. 6 | Typical dipolar relaxation decay curve. The atomnumber decay is shown
in panel a and the temperature increase is shown in b. Two different decay fit are
shown. Either the pure two-body decay (blue) or the one incorporating a linear
increase in the temperature, which modifies the density (in red). The difference in
the extracted β coefficient is here about 50% as incorporating the temperature

increase prevents under-fitting the initial fast decay. The loss rate coefficient β is
systematically 20 to 50% larger with this method. Only the initial part of the tem-
perature increase is used in the fit, as temperature measurements at later times
were not reliable. The uncertainty is the statistical standard deviation of the mean
of three measurements.

1064
red beam

741
blue lattice

Fig. 5 | Trapgeometry and relevant length scales. Left: Reproduction of Fig. 2a of
themain text. Right: The spatial density of the cloud in the longitudinal direction is
characterized by the axial RMSwidth σz = az/2, the lattice spacing λ/2 and the initial
width of the loaded thermal cloud σODT.
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Error bars
The uncertainties represented by the errorbars in the plots are one
standard deviation coming from the statistical error due to the curve
fitting, as well as our best estimate in the uncertainties of ωODT, TODT,
ω⊥,ωz and Tlattice added in quadrature.ωODT ismeasured in theODTby
observing the oscillation of the cloud after suddenly applying a mag-
netic force. ω⊥ is measured by modulating the intensity of the vertical
trapping beam and observing the parametric heating resonance. Axial
trap frequencies ωz (which go up to several hundreds of kHz) are also
measured via parametric heating. Due to the bandwidth of the drive
electronics, this was done only in shallow lattices and extrapolated to
deeper lattices. Temperatures are observed in time of flight.

Theoretical decay rate
We summarize here the main equations to produce the theoretical
predictions in Figs. 1–3. Detailed derivations are given in Supplemen-
tary Information Note 2 and ref. 32.

We recall equation (4)

V̂dd∣j0
�
=
μ0ðJgJμBÞ2

4πr3
1� 3�z2
� �

∣j0
�� 3�z�r +

J1=2
∣j1
�� 3�r2+

2J
∣j2
�" #

ð16Þ

which is used to compute the potential used in equation (6):

_2

2μ
� d2

dρ2 +
m2 � 1=4

ρ2

 !
+ nh ∣Vdd,0∣ni

( )
ϕ=

_2k2
i

2μ
ϕ: ð17Þ

This is the equation that we solve numerically for both the incoming
(m =0, n =0) and outgoing (m = 2, n even or m = 1, n odd) wave func-
tions. The code we developed combines grids of multiple step-sizes to
account for the need to appropriately average the potential along z,
describe the short-range shielding at small ρ and normalize correctly
thewave functions at large distances.Given the temperature,magnetic
fields, z trapping frequencies and desired precision, the code
determines an appropriate grid, and computes the incoming wave
function and the harmonic oscillator states on this specific grid. It then
distributes those results on multiple cores, computing the outgoing
wave function for each of the different decay channels and the
respective integral of Fermi’s golden rule. This method enables the
code to produce the plots presented in this paper on a simple laptop in
a reasonable time.

The normalization condition reads:
R L
0 dρϕn,mðρÞ2 = 1 for a cylin-

der of radius L. Our model accounts for the modification of both
incoming and outgoing wave functions by the dipolar interaction. The
free radial wave function solution with momentum k is
ϕðfreeÞ

n,m ðρÞ=
ffiffiffiffiffiffiffi
πkρ
L

q
JmðkρÞ, which does not depend on n.

The 2D loss rate coefficient for the channel ∣ j0
�! ∣jf

�
,∣0
�! ∣nf

�
reads

β
jf ,nf

2D =
8μ

kikf _
3 L

Z +1

�1
dz
Z L

0
dρϕnf ,jf

ðρÞχnf
ðzÞVdd,jf

ðρ,zÞχ0ðzÞϕ0ðρÞ
				

				
2

ð18Þ

with χn being the nth harmonic oscillator’s state wave function:

χnðzÞ=
1ffiffiffiffiffiffiffiffiffiffi
2nn!

p 1
πa2

z


 �1=4

Hnðz=azÞe
� z2

2a2z : ð19Þ

The total rate is then the sum over all channels:

β2D =
X
jf ,nf

β
jf ,nf

2D : ð20Þ

and relates to the 3D rate as β3D =
ffiffiffiffi
π

p
azβ2D.

The rate is eventually averaged over the thermal distribution of
incoming momenta (see Supplementary Information Note 2) for the
Fig. 2b, c, and computed at the mean momentum for all of the other
figures.

Pure-2D limit
In pure-2D the double spin-flip potential is Vdd,2ðρÞ / 1=ρ3. If we ignore
the shielding, in the low-temperature limit, we find that the 2D decay
rate is

βpure�2D
free = 4π2 1

J2
Edd

_
a4
ddk

2
f : ð21Þ

So βpure�2D
free / B. If we incorporate shielding we find that

βpure�2D
shielded / 1= logðkiÞ

� �2 ð22Þ

which goes to zero at zero temperature. Under certains assumptions
detailed in Supplementary Information Note 4 and noting x2 the first
zero of the Bessel function J2(x), one can find that the decay rate in a
certain field range behaves as

βpure�2D
shielded / k1=4

f exp �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8addkf

x2

s0
@

1
A, ð23Þ

which vanishes at high magnetic fields.

Discussion of various approximations
Unitarity limit. The perturbative results will get modified when the
decay rate approaches the unitary limit. However, in our range of
parameters, the decay rates are much smaller than the unitary limit. A
β3D of high 10−12 cm3/s corresponds to a β2D = σℏk/μ in the low
10−6cm2/s. This gives a σk≃0.1≪ 4 which puts us safely in the non-
unitary regime. Note that the total cross section in 2D is σ = 4

k

P
msin

2δ,
and is dominated by the s-wave contribution given ourmagneticfields.

Wave function substitution approximation. The system is perturbed
by two parts of the dipolar potential: one which is diagonal in the spin
states basis and therefore elastic, the other part is non-diagonal and
causes transitions. Usually, the weakest part of the Hamiltonian should

be treated perturbatively. It is the case here since ∣V̂
inelastic
dd =V̂

elastic
dd ∣

2
’

1=J = 1=8 as shown in equation (16). This is why we evaluate the decay
rate on the shieldedwave function. Followingprevious treatments2,19,21,
we have not checked the importance of higher-order terms in the
perturbation theory.

Effective potential approximation. To compute the wave functions
we assumed an effective potential obtained by averaging Vdd in the nth

state of the harmonic oscillator. This is the diabatic limit of a coupled
channels calculation. There exists a fully adiabatic method to compute
the molecular potential of two interacting dipoles in a quasi-2D
geometry9. It wouldmix the harmonic oscillator states but we found it
would only affect the wave function at short distances, which is
important only at high magnetic fields. In our experiment, kf add

remains on the order of 1, and restricting the z-motion to the pre-
existing harmonic oscillator states is acceptable.

Fermi’s golden rule approximation. The use of Fermi’s golden rule
with the original density distribution is valid only if the decay rate is
smaller than the other time constants of the system. The relaxation
rate Γ = β3Dn≃ 102 s−1 is indeed smaller than the collision rate which is
around 103 s−1, or the trap frequencies of 200 Hz. This assumption is
therefore fulfilled. The systemwill stay in (quasi-) equilibriumwhen the
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loss rates are smaller than the trapping frequencies and smaller than
the rate of elastic collisions which provides thermalization.

Neglecting short-range interactions. The background s-wave scat-
tering length of dysprosium a = 5.9 nm33 can modify the wave func-
tions. Aprevious paper2 studied extensively its influenceon chromium.
However, the decay rate we observed in a large volume 3D trap (red
curve in Fig. 2) agrees better with the theory which does not take the
scattering length into account. Another dysprosium experiment19

found a similar result in an even wider range of fields. However, it is
possible that the short-rangemolecular potential plays a role in the 2D
results, and could possibly explain why we obtain rates a few times
smaller than the theory predicts (see shaded areas in Fig. 2). Indeed, a
sizeable contribution to the loss comes from interatomic distances
smaller than the van derWaals length avdW = 4.3 nm and the scattering
length a = 5.9 nm. Since the real wave function rapidly oscillates at
short-range, the contribution to the overlap matrix element should
vanish. To get a sense of the sensitivity of our model to contact
interactions we also used simulated wave functions with a hard-core
potential at as = 5.9 nm, while keeping the dipolar potential elsewhere.
Weput a node in the incoming and outgoing radialwave functionsϕ at
this position, and integrated from this distance outward. This pro-
duced the lower bound of the shaded areas in Fig. 2. It would be
interesting to use a more realistic interaction potential to study
the impact of short-range interactions, however this goes beyond the
scope of this paper.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code that supports the findings of this study is available from the
corresponding author upon request.
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