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Perceptography unveils the causal
contribution of inferior temporal cortex to
visual perception

Elia Shahbazi 1 , Timothy Ma2, Martin Pernuš 3, Walter Scheirer4 &
Arash Afraz 1

Neurons in the inferotemporal (IT) cortex respond selectively to complex
visual features, implying their role in object perception. However, perception
is subjective and cannot be read out from neural responses; thus, bridging the
causal gap between neural activity and perception demands independent
characterization of perception. Historically, though, the complexity of the
perceptual alterations induced by artificial stimulation of IT cortex has ren-
dered them impossible to quantify. To address this old problem, we tasked
male macaque monkeys to detect and report optical impulses delivered to
their IT cortex. Combining machine learning with high-throughput behavioral
optogenetics, we generated complex andhighly specific images thatwere hard
for the animal to distinguish from the state of being cortically stimulated.
These images, named “perceptograms” for the first time, reveal and depict the
contents of the complex hallucinatory percepts induced by local neural per-
turbation in IT cortex. Furthermore, we found that the nature and magnitude
of these hallucinations highly depend on concurrent visual input, stimulation
location, and intensity. Objective characterization of stimulation-induced
perceptual events opens the door to developing amechanistic theory of visual
perception. Further, it enables us to make better visual prosthetic devices and
gain a greater understanding of visual hallucinations in mental disorders.

Artificial stimulation of neurons in high-level visual cortical areas
induces hallucinatory percepts1–4, the experience of complex visuals in
the absence of corresponding retinal stimulation. Scientific char-
acterization of these visual percepts poses a serious challenge due to
their complex and subjective nature, yet it has inspired a multi-
generational effort in systemsneuroscienceas it bridges the causal gap
between patterns of neuronal activity in the brain and elements of
visual perception5–7. From a translational point of view, understanding
the causal underpinnings of visual hallucinations induced by local
brain stimulation is necessary to develop prosthetic devices that
restore vision by direct brain stimulation8,9. This knowledge also

shapes the building blocks for understanding visual hallucinations in
mental disorders and altered states of consciousness10–12.

In this study, we created a machine learning structure and used it
in combination with high-throughput behavioral optogenetics in
macaque monkeys in order to, for the first time, produce pictorial
descriptions of the perceptual events induced by brain stimulation in
the high-level visual cortex. These pictorial descriptions, called per-
ceptograms, provide unbiased and parametric yet rich accounts of the
visual perceptual events following optogenetic activation of ~1mm3

neural subpopulations in the inferior temporal (IT) cortex. The basic
idea behind our quest was simple: guided by the animals’behavior, is it
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possible to evolve specific image perturbations that resemble the
sense of being stimulated in a given cortical locus in the absence of
physical stimulation?

We performed viral injections in the central IT cortex of two
macaquemonkeys (Macacamulatta) in order to express the excitatory
opsin C1V1 under the CaMKIIa promoter in a ~5 × 5mm area of the
cortex. We then implanted arrays of LEDs (Opto-Array, BlackRock
Neurotech) on the virally transduced cortical area as well as the cor-
responding position in the opposite hemisphere where no viral injec-
tionwasperformed. TheOpto-Arrayallows safe, rapidly reversible, and
high-throughput optical stimulation of ~1mm3 subregions of the tar-
geted cortex, although it doesn’t allow neural recordings. Technical
details about the Opto-Array and relevant surgical protocols can be
found in our earlier reports4,13,14.

The two monkeys were trained to detect and report a brief
optogenetic stimulation impulse delivered to their IT cortex while
fixating on a 1-second sequence of images created by a generative
adversarial neural network (GAN) (Fig. 1a). It has been previously
shown that monkeys can easily learn this simple task15,16, which
remained the sole task expected from the animals throughout the
study. Our earlier results suggest that the animals perform this task (in
the IT cortex) using the visual events induced by cortical stimulation4.
The animals initiated each trial by holding fixation on a central target

for 500ms. Then, a natural-looking GAN-generated image was shown
for 400ms (seed image) on a gray background. The image subtended
8°×8° of visual angle, and the animals were required to hold fixation at
its center throughout the trial. Next and in all trials, the seed image
would turn into a randomly perturbed version of itself for 150ms, then
turn back into the original image and stay changeless for 450ms. In
half of the trials, randomly selected, at the time of image perturbation,
an LED was activated on the animals’ IT cortex for 150ms, typically at
3mW photometric power. After the sequence of images (seed-per-
turbed-seed), the screen was cleared, and two response targets
appeared on the vertical midline (white, 0.4° diameter, 5° above and
below the center). The animals then made a saccade to one of the two
targets in order to indicate if the trial included a brain stimulation
impulse (chance level 50%). The response targets then disappeared,
and the animals received a liquid reward for correct responses and
3.5 s of timeout for incorrect responses. Trials with broken fixation or
latency greater than 3 s for making a response were aborted and dis-
carded. These trials were injected into the future stream of trials in a
pseudorandom order.

As reported in our earlier work, the animals learned to perform
the cortical perturbation detection (CPD) taskquickly whilefixating on
static images (without any image perturbation), and theywere not able
to detect cortical illumination over the intact cortical area where no

Fig. 1 | Perceptography paradigm and pipeline. aCortical perturbation detection
(CPD) task. After fixation, a short movie consisting of a 400ms presentation of a
seed image followed by 150ms of a perturbed image, and then 450ms of the
original seed imagewas played. In 50% of trials at random, an ~1mm3 locus in the IT
cortexwas optogenetically stimulated for 150ms at the same time as the perturbed
image presentation. The animals were rewarded for correctly identifying if trials
contained brain stimulation or not. b The first training days with dynamic stimuli.
The abscissa shows trials, and the ordinate represents the false alarm rate. The first
500 trials represent the animals’ performance before switching to the dynamic
image sequence (initial training for the task). The rest of the plot shows the FA rate
after the 150ms image perturbation was first introduced to the training regime.
Both animals first took the image alterations as “stimulated trials” at very high rates
but learned within a few hundred trials to ignore most of the image perturbations
and veridically detect the cortical stimulation. The small vertical arrows indicate the
end of the first training day for eachmonkey. Blue:Monkey Sp, Orange:Monkey Ph.
(Miss rate: purple: Sp, and green: Ph) (c) Perceptography pipeline. The illustrator
engine, DaVinci, generated a pool of randomly perturbed images. The optimizer

engine, Ahab, analyzed the monkeys’ performance in the CPD task to extract the
image features that increased the likelihood of behavioral false alarms. Ahab sent
the optimized parameters to DaVinci to generate new pseudo-random image per-
turbations. These Ahab-optimized images were heavily diluted with random
DaVinci images and injected back into the image pool for the next cycle of per-
ceptography. d Proportion of behavioral false alarms as a function of the magni-
tude of image perturbation. The abscissa shows the normalized feature distance
(based on the BigGAN interpolation factor) of each randomly perturbed image
from its seed image. The ordinate represents the behavioral FA rate for the first
pool of DaVinci images. Each bin contains 440-470 non-stimulated trials. The fea-
ture distance represents the ratio of BigGAN non-class features included in each
image generated by the engine (see methods). A value of 0 indicates that all fea-
tures belong to the seed class, and one indicates that all features are sourced from
other classes. Images above the chart are examples of the visual change corre-
sponding to the distances of 0, 0.5, and 1 from the seed class (class 283 of BigGAN),
respectively, from left to right.
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viral injection was performed4. We noticed that the animals’ perfor-
mance in detecting cortical stimulation varied by the choice of fixated
images. Moreover, and to our surprise, we learned that presenting
images on the screen generally helps the animals in detecting IT sti-
mulation, with the lowest performance observed when the animals
viewed a blank screen at the time of brain stimulation4,17. This suggests
that the animals rely on the perceptual distortions induced in the fix-
ated images to detect cortical stimulation. Given the lower dynamic
range of performance for the blank screen as well as the technical
complications of mutating blank images, we avoided perceptography
with a blank seed for this initial study. We aim to explore this com-
plicated yet interesting matter systematically in our following studies.

Following training with static images, image sequences (seed-
perturbed-seed) were introduced for further training, and the animal
task remained the same: detection of cortical stimulation. On the first
day, when the dynamic image perturbation in the middle of the trial
was introduced, both animals mistakenly mixed the image perturba-
tions with cortical stimulation, and as a result, their false alarm (FA)
rate dramatically increased from 8 and 5.2 percent to 39.2 and 37.6
percent, respectively for monkeys Sp and Ph. This sudden increase in
FA rate cannot be the result of a general increase in task difficulty
because the Miss rate remained unchanged (see Fig. 1b). This suggests
that optogenetic stimulation of the IT cortex induces a “visual” per-
turbation that can be mixed up with an image perturbation on the
screen. Note that the FAs are the trials in which no cortical stimulation
was delivered, yet the animal reported the trial as “stimulated.” Also,
note that an FA is considered a behavioral mistake and is never
rewarded, nor are the Miss trials, those on which a stimulated trial is
reported as non-stimulated. Nevertheless, at this stage, we cannot
strictly reject the possibility that the animals generalize a non-visual
sense of transience induced by brain stimulation to the fixated images.
Within a single day, both animals learned todiscriminate IT stimulation
from the image perturbations on the screen and performed the task
with high performance at 90.2 and 89 percent correct and only 8.3 and
6.2 FA rates (respectively for Sp and Ph). This remarkable observation
is documented in Fig. 1b.

Results
The state of brain stimulation can be mimicked by images
After the training phase and once stable high-performance levels
(above 80% for both animals) were achieved, the animals entered the
first phase of behavioral data collection.While themonkeys performed
the simpleCPD task for tens of thousandsof trials, under thehood, two
learning systems controlled the experiment with the goal of evolving
specific image perturbations that increase the chance of behavioral
false alarms. We refer to these two systems as DaVinci and Ahab (see
Fig. 1c). DaVinci is our image illustrator engine, a structure powered by
BigGAN trained on the ImageNet dataset18,19. DaVinci was tasked with
creating multiple random image mutations for each seed image (see
Methods). Ahab is our feature-vector optimizer (see Methods) tasked
with tracking the animals’ behavioral responses to DaVinci’s random
image perturbations. Ahab learned from the animals’ behavioral mis-
takes and gave feedback to DaVinci to produce image perturbations
that would increase the FA rate. An increase in the FA rate (trials
without stimulation reported as stimulated) could result from a gen-
eral increase in task difficulty, which would also increase the Miss rate
(trials with stimulation reported as non-stimulated). To avoid this,
Ahab was set to aim at specifically increasing the FA rate without
changing the Miss rate (see Methods).

The image evolution process started with 5-6 image seeds; for
each seed, DaVinci created 400–1000 randomly perturbed images.
Each of these image perturbations was presented to the animal at least
five times in the course of multiple days (a total of 10–30K behavioral
trials). While image perturbations are done randomly over a nearly
infinite feature-vector space (see Methods), the amplitude of these

perturbations varied: small perturbations randomly but subtly change
the image, while large perturbations induce random yet massive pic-
torial alterations. Figure 1d plots the behavioral FA rate as a function of
image perturbation magnitude.

The non-monotonic relationship observed here indicates that
high FA rates cannot be achieved simply by increasing the magnitude
of image perturbations. Instead, since the animals actively search for a
particular image distortion, the one induced by brain stimulation, they
aremore likely to be trickedby the imageperturbations thatmatch the
magnitude of the stimulation-induced perceptual event.We found this
result encouraging as it shows that the behavioral false alarm rate in
the CPD task can be systematically manipulated by altering the image.
The distribution of behavioral false alarms over image alterations of
various sizes reflects the magnitude of the perceptual perturbations
induced by cortical illumination for the stimulation intensity used in
this experiment (3mW).

Artificial intelligence learns from the brain how to trick it
Next, Ahab scored each image perturbation and selected the ones that
induced a higher FA rate without increasing the Miss rate (see Meth-
ods). Ahab guidedDaVinci to create an image family for each surviving
image, including the original image and 2–6 mutated children. These
image familieswere thenpresented to the animals in the context of the
next round of behavioral testing, and the images thatwere scored high
by Ahab received the chance to mutate again and make their own
children. This process was repeated until at least one of the image
families passed the threshold of 60% FA over at least 12 presentations.
This typically took five iterations of the entire process, involving 1–5 K
Ahab-optimized image presentations. The image that scored highest
within a winning family was named a perceptogram, as viewing it was
hard for the animal to distinguish from theperceptual state inducedby
brain stimulation. The entire process was accordingly coined: Percep-
tography. Throughout the course of each round of perceptography, a
single LED of the Opto-Array was selected and used. The intensity of
the LEDwas adjusted at each new cortical position in order to keep the
behavioral output under ceiling performance.

The process of Perceptography, if successful, would increase the
FA rate across generations of images. This could untrain the animals
over the course of time because we only reward objectively correct
choices. To avoid untraining the animals by this procedure, we heavily
diluted Ahab-optimized image families with non-optimized DaVinci
images as the evolution progressed (50–80 percent non-optimized).
While the optimized images were heavily diluted by DaVinci images,
the animal’s FA rate kept increasing specifically for those images as the
evolution progressed. Figure 2a shows the monkeys’ FA rate as a
function of session number for DaVinci and Ahab optimized image
families. As shown in the figure, the FA rate remained at a constant
level of 2.8–4.1% and 4.1–6.1% (respectively for Sp and Ph) for DaVinci
images, but Ahab optimized image families induced more FAs
increasingly as the process unfolded. Figure 2b, c shows the evolution
process for a typical perceptogram, starting from a large variety of
image perturbations and converging to a specific one.

Robustness of the results
Is it possible that some image perturbations survive through the
pipeline by chance without being meaningful to the animals? We
bootstrapped the data, but instead of letting the animals determine
the distribution of FAs for each trial, we distributed them randomly.
Figure 3a shows the results. If the false alarms were randomly dis-
tributed across image presentations, the best image familywould have
a cumulative false alarm rate significantly lower than the image families
selected by the perceptography process. More interestingly, data
shows that the contents of these behaviorally selected images are
related. In fact, as Fig. 3b shows, the images selected independently by
the animals’ behavior across families share increasingly more features
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as the process unfolds. These analyses show that using the image
evolution process presented here, it is unlikely to get an image tagged
as a perceptogram just by chance. They also show that the image
evolution process is not a random stray trajectory; instead, it is sys-
tematically guided by the animals’ choices converging on specific
answers. Despite these statistical encouragements and in order to fully
cross-validate these findings with a fresh set of data, we performed the
entire perceptography procedure on the same image seed, cortical
position, and stimulation intensity once again for each animal. Fig-
ure 3c shows how two independent perceptography procedures con-
verged on similar answers. These procedures, each lasting ~17 work
days, were performed 24 and 10 days apart from each other in mon-
keys Sp and Ph, suggesting that the perceptual effects of repeated
optogenetic stimulation in a given cortical position remain stable at
least over the course of about one month.

A design feature of the experiments reported here is that we use
the same image perturbations in both stimulated and non-stimulated
trials. This balancing feature is crucial in order to take away all the
potential image cues and forces the animals to perform the task only
by detecting the cortical stimulation impulse. This feature, however,
introduces a measurement uncertainty to the process. As a result of

stimulus balancing, all stimulated trials include two perturbation
components: one is on the screen, and the other comes from the brain
stimulation. The screen component is not informative and varies at
every trial, so the monkey is incentivized to ignore it and detect only
the cortical component. Now, when viewing a perceptogram in a non-
stimulated trial, the animal matches the perceptogram to the net
perceptual effect of cortical stimulation (constant across stimulated
trials) plus a baseline random non-informative component (variable
across trials). While this introduces an inherent uncertainty in the
procedure, in that the measurement process affects the measure of
interest, since the image perturbations are mostly small and random,
the average perturbed image is not expected to drift far from the
original seed image. From the point of view of an incentivized obser-
ver, most image perturbations are expected to be perceived as irre-
levant, except the ones that warp the seed image in the same direction
as induced by the brain stimulation. If true, this should increase the
chance of reporting the trial as stimulated in both stimulated and non-
stimulated conditions. Figure 4a shows that the hit rate is higher than
baseline when the cortex is stimulated while looking at percepto-
grams. Although, given the high baseline hit rate, the reward that the
monkey gains at stimulated trials (grand average 7.9% and 6.5% for Sp

Fig. 2 | Evolution of perceptograms. a The false alarm rate for non-optimized
(Davinci, double lines) and optimized (Ahab, solid lines) perturbed images. The
abscissa indicates the progress of perceptography across sessions. The ordinate
shows the FA rate. Blue: Sp, Orange: Ph. Ahab optimized images induced a sig-
nificantly higher false alarm rate (df = 74 and 76, p =0.025 and0.002 for Sp and Ph,
respectively, Welch’s t-test). Error bars indicate ±1 standard error of mean.
b Evolution dendrogram. Each colored line represents a single image family. To
survive the iterations of Ahab optimization, image families had to maintain a

cumulative false alarm rate of over 50%. The ordinate shows the Fréchet Inception
Distance (FID) between each perturbed image and its corresponding seed image.
The abscissa shows iterations of the perceptography procedure. c Example of a
perceptogram image family tree. The abscissa and ordinate are the same as in
subplot (b). The legend on the bottom right shows how the thickness of each
branch corresponds to its false alarm rate. Five examples of image mutations from
the initial DaVinci pool are shown together with the winning image family tree. The
asterisk indicates the seed image.
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and Ph) is far less than the reward loss at non-stimulated trials when
perceptograms are presented (grand average 60.0% and 64.3% for Sp
and Ph). Moreover, it seems that the animals psychophysically rely on
contrasting stimulation with the solid seed images presented before

and after the stimulation more than the perturbed image itself. In an
experiment, we showed image perturbations of one seed image
(150ms) temporally sandwiched between images of another seed. This
was done for two seed images in each monkey. The FA rate dramati-
cally decreased in all cases, indicating that the perceptual effect of
stimulation is perceived and matched by the animals mainly in tem-
poral contrast to the seed image. Specifically, the false alarm rate
dropped to 0% and 2% (out of 50 presentations) in Sp and Ph,
respectively. (Hit rate 98% and 100% in Sp and Ph, respectively).

The appearanceof the perturbed image induces apparentmotion,
is it possible that the perceptography procedure selects images with
highmotion energy because they interact more with the CPD task due
to motion-based masking? We analyzed the motion energy for Per-
ceptoram sequences as well as a hundred randomly chosen sequences
from the initial DaVinci pool. The results showed no significant dif-
ference inmotion energy between the two groups of image sequences
(t(279) = 0.11, p = 0.46). Also, note that motion-based masking would
induce a general increase in task difficulty and cannot explain the
higher hit rate when perceptograms were presented in the stimulated
trials.

When matching an image sequence to a perceptual state induced
by cortical stimulation, how should the response latency of IT be
considered? IT neurons have a response latency of ~70-80ms. It is not
clear what part of the IT response causally contributes to perception,
thus, any time adjustment would be based on arbitrary assumptions.
While the potential effect of stimulation timing needs to be system-
atically studied using short impulses and various time lags, for the
current study, which in our view is a proof of concept, we applied no
time correction but used a relatively long (150ms) stimulation impulse
to overlap with the IT response. We argued that the potential subtle
temporal difference in the timing of the events would be difficult for
the monkeys to notice, especially in the stimulation-absent trials that
are the source of the FAs. Moreover, if the animals noticed a potential
time lag effect, they would have used it in order to get more rewards
and not be tricked by the perceptograms. Nevertheless, optimization
of the image and stimulation temporal profile might improve the FA
rate and remains an interesting area to explore.

Effects of stimulation intensity
Figure 4b shows examples of perceptograms obtained from the two
animals. As an independent sanity check, we hypothesized that if a
perceptogram truly reflects the perceptual changes induced by cor-
tical stimulation, the magnitude of image perturbation in the winning
perceptograms should increase if we increase the cortical stimulation
intensity. To test this, we performed independent perceptography
procedures on similar cortical positions, each at two different cortical
illumination powers (1 and 2mW for Sp, 1 and 3mW for Ph). Fig-
ure 5a, b demonstrate that the amount of feature warping in the win-
ning perceptograms was remarkably higher when higher cortical
illumination was applied. Examples of perceptograms at each level of
cortical illumination are shown in Fig. 5c. Consistently, the baseline
miss rate of both animals was slightly but significantly lower in the high
illumination condition, as shown in Fig. 5d.

Effect of cortical position
While comparing the perceptograms coming from different LED
channels, we noticed that the anterior channels induced more holistic
changes in the image. While perceptograms express significant pixel
deviations from their seed images all along the posterior-anterior axis,
the quality of these changes varies systematically. Inspecting the
examples presented in Fig. 6, it is apparent that stimulation in the
posterior channels of the array distorts the perceived image by adding
unrelated visual features to the contents of perception. However, the
anterior channels induce perceptual changes that are identity-
preserving. These subjective evaluations can be tested by state-of-

Fig. 3 | Evolution trajectory of perceptograms; random or guided? a High FA
rates cannot be achieved by random selection of image families across iterations.
Left: the distributionofmaximum false alarm rates achievable inbootstrappeddata
where FA scores are randomly assigned to images at each iteration of percepto-
graphy. Perceptograms, images that evolved guided by the animals’ behavior, had
significantly higher FA rates compared to the best images produced by the boot-
strapping procedure (df = 13 and 17 for Sp and Ph, respectively, p <0.0001 for both,
Welch’s t-test). Right: the distribution of perceptogram false alarm rates. Blue: Sp,
Orange: Ph. Error bars indicate the minimum and maximum rates. b Convergence
to similar images across Ahab iterations. The abscissa represents Ahab’s iterations
of optimization. The ordinate shows the FID feature distance. The solid lines
represent the FID distance of the final perceptogram from images in each optimi-
zation iteration, excluding the perceptogram family. Independently optimized
images get more similar to each other, and the final perceptogram as the process
unfolds. Double lines represent the same for the bootstrapped data where family
survival is randomlychosen. As the imagepoolwasoptimizedbyAhab, thedistance
(FID) between the optimized pool and the to-be-discovered perceptogram
decreased. Note that the images were not selected for similarity but based on the
behavioral FA rate they evoke (Blue: Sp, Orange: Ph). Error bars indicate ±1 standard
error of mean. c Independent evolution of similar perceptograms. Two indepen-
dent rounds of perceptography were performed for each monkey (Blue: Sp,
Orange: Ph). The axes are similar to the subplot (b). The line plot shows the FID
distance of the optimized images of the second round of perceptography with the
perceptogram obtained from the first round.
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the-art object classification tools. Analysis of images shows that per-
ceptograms of the anterior channels of the array tend to retain general
features of the seed image as shown by the high confidence in image
classification and a low FID distance to the seed (measuring Frechet
Inception Distance score, calculates feature vector distance between
generated and real images, or any two sets of generated images,
Fig. 6b–d). In contrast, perceptograms of the posterior LEDs express
the opposite effect, where additional features are introduced, thus
lowering the confidence in image classification and increasing the FID
to the seed. Consistent with numerous studies of IT cortex that show a
tendency for neural responses to more holistic features along the
posterior-anterior axis of the cortex7,20–24, this finding supports the
causality of the relationship. Alternatively, given that the array spans
only 5mmof the cortex (25-30% of the length of the posterior-anterior
axis), it is possible to attribute the spatial systematicity in the structure
of perceptograms simply to the heterogeneity of cortical function at
the mm scale.

Potential neural underpinnings
Overall, the development of each perceptogram cost ~30–50K beha-
vioral trials, collected in the course of 14–20work days.We performed
a total of 32 complete rounds of perceptography over seven cortical
locations (3 and 4 for monkeys Sp and Ph) and 15 seed images. These
results provide pictorial evidence of the visual perceptual hallucina-
tions induced by stimulation of the high-level visual cortex. Examples
of a few perceptograms are shown in Fig. 4b. These results show that it
is possible to behaviorally exchange the state of local brain stimulation
in IT cortexwith the state of viewing an image. The similarity of the two
states is close enough to make the animals choose to tag ~70% of the

non-stimulated perceptogram trials as stimulated, even at the cost of
losing reward. While an “ideal perceptogram” is expected to induce a
100% FA rate, the ones found in this study (mean FA rate 70.2%,
Median = 71%, StD = 12) are surprisingly close, given the very low
baseline FA rates. The residual from 100% can be due to the imper-
fection of our image generation engine and/or potential effects of
stimulation that are impossible to mimic on a 2D screen (e.g., 3D hal-
lucinations, nonvisual feelings, etc.). Such effects, even if existing,
must be very subtle in amplitude because the animals are incentivized
to use any clue to receive a reward.

What is the relationship between perceptograms and the pre-
ferred stimuli of their driving neurons? IT cortex is known for its strong
object selectivity at the single cell25,26 aswell as ~1mm3 tissue scale21,27,28.
While the current OptoArray technology doesn’t allow neural record-
ing, rendering us blind with respect to the object selectivity profile of
the stimulated neurons, it is reasonable to assume heterogeneity of
selectivity at the spatial scale perturbed by a single LED4,21 in that the
perturbed neural population conserves visual preference for a part of
the shape space. Is perceptography simply anotherway tomeasure the
stimulus preference of the stimulated neurons? Not necessarily. “Pre-
ferred stimuli” of neurons reveal how the visual signal is encoded in IT
cortex, and Perceptograms show how the signal gets decoded from IT
by the rest of the brain. These two do not necessarily match, and the
relationship between the two can vary under different decoding fra-
meworks. In some cases of sensory processing, neurons are tightly
tuned to specific physical stimuli. Activation of such a neuron induces
the appearance of its related sensory stimulus in perception. Such a
direct one-to-one hypothetical relationship between the preferred
stimulus of a sensory neuron and the percept it arises is known as the

Fig. 4 | The effect on hit rate and some examples of perceptograms.
a Perceptograms increase the hits as well as FAs. The false alarm rate evoked by the
perceptograms (light gray) is significantly higher than that of the non-optimized
DaVinci image pool (dark gray) (df = 30, p <0.001). The hit rate is also significantly
higher in perceptograms even though the effect is smaller due to a ceiling effect

(df = 30, p <0.001). Error bars indicate ±1 standard error of mean. b Examples.
Three examples are shown fromeachmonkey (Blue shades: Sp, Orange shades: Ph);
in each block, the top row indicates the seed images, and the bottom row shows
their corresponding perceptograms.
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labeled line hypothesis. Alternatively, more complex decoding fra-
meworks might govern the relationship between neuron’s stimulus
preference and their causal impact on perception. For instance, a
medium wavelength cone on the retina responds mostly to the green
light, but its activation does not necessarily induce perception of the
color green. The perceived color, in this case, depends on the activa-
tion ratio of other cone types as well as the position of the activated
cone in the retinal cone mosaic29,30. Now, is the decoding schema of IT
cortex a labeled line or a coarse code31 like the case of color? Our
results are not consistent with the labeled line framework. Assuming
the labeled line hypothesis, one expects that stimulation of a given site
in IT cortex induces perception of the preferred features of the tar-
geted neurons independent of what is presented to the eyes. If this is
the case, examination of perceptograms is expected to reveal common

visual elements in theperceptogramsobtained from the samechannel.
The results, though, show a completely different picture. Figure 5c
depicts examples of perceptograms obtained from one cortical posi-
tion in each of the two monkeys along with their corresponding seed
images (more examples are provided in the supplementary materials,
Supplementary Fig S1). The first property that is apparent in percep-
tograms is that their structure strongly depends on the seed image.
Perceptograms that come from stimulation of a single point in IT
cortex are typically very different from each other, lacking at least an
obvious explicit common visual element. An analysis of the percep-
tograms using Yolo, a real-time object detection system32 revealed that
82% (StD = 21%) of the class-labels in the perceptograms are shared
with their corresponding seed images. The analysis also showed that
the added class-labels (compared to the seed) of the perceptograms

Fig. 5 | Effects of stimulation intensity. a Examples of heat maps depicting the
image changes between the perceptograms and their corresponding seeds. In each
block of heatmaps (left and middle block Ph, right block Sp), the left column
includes the perceptograms obtained from low illumination perceptography. In
contrast, the right columndepicts the high illumination perceptograms in the same
LED channel and monkey. bMore intense cortical illumination warps the resulting
perceptograms further away from their seed images. In both animals, the percep-
tograms obtained with higher intensity of stimulation had significantly higher
distances from their image seeds compared to the perceptograms resulting from
low-intensity cortical illumination (Root Mean Squared Error (RMSE): df = 8 and 13,
p =0.025 and0.026 for Sp andPh respectively,Welch’s t-test). Blue: Sp, Orange: Ph.
RMSE is the square root of the average of the squared differences between

corresponding pixels in the two images. Error bars indicate ±1 standard error of
mean. c Same effect with a differentmeasure. The abscissa is the same as in 5.b. The
ordinate shows normalized feature-vector distance (df = 8 and 13, p =0.001 and
0.0002 for Sp and Ph, respectively, Welch’s t-test). Blue: Sp, Orange: Ph.).
d Examples of perceptograms obtained with low and high stimulation intensities.
Top: seed images. Middle: perceptograms obtained with low cortical illumination.
Bottom: perceptograms obtained with higher illumination power. The brackets
under the subplot indicate the perceptograms obtained from the same channel.
e The effect on the behavioralmiss rate. Increasing the illumination intensity of the
LEDs significantly decreased the behavioral miss rate in both monkeys (df = 13 and
8, p =0.026 and 0.023 for Sp and Ph, respectively, Welch’s t-test). Blue: Sp, Orange:
Ph. Error bars indicate ±1 standard error of mean.

Article https://doi.org/10.1038/s41467-024-47356-8

Nature Communications |         (2024) 15:3347 7



acquired from a single channel have only a little in common with each
other (0% and 7% in Sp and Ph, respectively), which is not different (t-
test, p > 0.4 for both animals) from the overlap between the added
class-labels obtained fromdifferent channels (0% and 10% in Sp and Ph
respectively). This suggests that the pattern of neural activity in the
cortex, which varies by the seed image, strongly influences the out-
comeof local stimulation in IT cortex. This is consistentwith the recent
findings about the vast activity landscape of IT neurons33 and the idea
that the activity of a neural unit is interpreted by the rest of the brain
only in the context of the state of other similar neural units7. These
findings strongly encourage recording the neural activity together
with perceptography, a point that is further dissected in the
conclusion.

Another point emerging from the examination of the set of per-
ceptograms produced in our experiments (Supplementary Fig. S1) is
that most of the perceptograms show image changes that are off the
manifold of natural objects. However, a few seem suspiciously natural;
for example, a dog seed image (Fig. 4b bottom block) has turned into
exactly the same dog sticking out its tongue, or a monkey (Fig. 4b top
block) has turned into a very similar monkey with long light-colored
hair and the head turned a few degrees. Consistent with this obser-
vation, a scoring algorithm based on Yolo32, scored 15% (3 out of 20) of

the perceptograms as “natural images” (defined as less than 10%
change in the main label confidence compared to the seed without
introducing any new label with confidencemore than 20%). This shows
that perturbing the neural activity in ~1mm3 of IT cortex forces the
neural state off its natural manifold on most occasions; however, in
some cases, the pattern of activity induced by the external stimulus is
so that the same neural perturbation creates a naturally meaningful
change. Determining when a perturbation lands on the natural mani-
fold of neural activity is a critical step for breaking the code that maps
the neuronal activity to perception7.

Discussion
Constructing a mechanistic theory of visual perception requires
establishment of causal homeomorphism between the neural state, a
system measured in units of spikes per second, and the perceptual
state, a systemmeasured in psychophysical units6,7. Making the bridge
between the two requires parametric characterization of both. How-
ever, simultaneousmeasurement of both in large primate brains poses
a serious technical challenge. In an ideal setup and in order to close the
gap between perception and neural activity, recording of the brain
state is needed to measure the neural effects of brain stimulation and
the selectivity profile of the targeted cells. We appreciate the

Fig. 6 | Effects of cortical position on perceptograms. a Examples of percepto-
grams obtained along the posterior-anterior axis of the central IT cortex. b Pixel
distance of seed to the perceptogram. The abscissa represents the stimulation
position relative to the interaural line along the posterior-anterior anatomical axis
of IT cortex. The ordinate shows the pixel distance of the perceptograms resulting
from each AP position from one seed image. Blue: Sp, Orange: Ph. While all per-
ceptograms showpixel distance from their seed images, the effect does not change
across cortical AP positions on this measure, and the line graph is statistically flat
(df = 8 and 11, p =0.202 and 0.197 for Sp and Ph, respectively, ANOVA).
c Classification confidence of a Yolo (real-time object detection system) fed by

perceptograms obtained fromdifferent cortical positions on the posterior-anterior
axis. The abscissa is the same as in (b), and the ordinate shows classification con-
fidence. Blue: Sp, Orange: Ph. Classification confidence significantly increases for
the perceptograms obtained from anterior cortical positions (df = 8 and 11,
p =0.026 and 0.005 for Sp and Ph, respectively, ANOVA). d FID distance from the
seed. The abscissa is the same as in b, c. The ordinate shows the FID of the per-
ceptograms obtained from each LED to its seed image. Blue: Sp, Orange: Ph. FID,
normalized to mean, significantly differs across cortical positions (df = 8 and 11,
p =0.009 and 0.011 for Sp and Ph, respectively, ANOVA). Error bars indicate ±1
standard error of mean for all subplots.
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importance of neural recordings; nevertheless, we argued that neural
recording is an existing concept that can be added later to the toolset,
but accurate measurement of subjective percepts is a conceptual
challenge, thus, it should be the first problem to tackle. Therefore in
this study, given the existing limitations in optogenetics technology,
we decided to focus on characterizing the perceptual events induced
by neural stimulation as it has been a historical and methodological
bottleneck. This modified challenge had two faces of its own; one
required reliable high-throughput stimulation in a large brain, and the
other demanded custom-tailored artificial intelligence in order to
develop effective perceptograms. As for the first one, we chose
optogenetics over traditional electrical stimulation as it providesmore
accurate andmore interpretable stimulation capacity given that it does
not target axons of passage34,35, and it is less invasive by being a surface
implant13. Furthermore, electrical stimulation is not reliable for the
high number of stimulation trials required here36. The second face of
the challenge demanded not only searching a very large image space
but alsomimicking the effect of stimulationwell enough to deceive the
animals against reward. Ahab controlled the search function (see
methods), and DaVinci masteredmimicking images by combining two
GAN-generated images to achieve an accurate reconstruction of ima-
ges outside its original training set (see methods).

Facing this two-faced challenge, perceptography provides pic-
tures that are behaviorally exchangeable, to a good degree, with the
state of being cortically stimulated. Given the parametric nature of
these pictures, we can now provide objective and quantitative evi-
dence of the nature and quality of stimulation-driven visual perceptual
effects. This allows measurement of the causal contribution of a given
neural group into the perceptual space37. Characterization of this
causal contribution, once combined with descriptions of neural sen-
sory responses33, establishes the missing link between neural activity
and perception. This can be done in the context of quantitative
modeling of the decoding theory that links the two.While existing fully
theoretical models of visual hallucinations yield encouragingly com-
parable results to our observations38,39, further research is needed in
order to complete the picture. Completion of these steps will provide
access to thebuildingblocks of a potential unifyingmechanistic theory
of perception and consequently provide a deeper understanding of
visual hallucinations in mental disorders. It also allows the develop-
ment of better visual prosthetic devices. Visual prosthetic devices
traditionally target theprimary visual cortex. This forces the prosthetic
system to recreate any visual scene by “phosphene” elements, the
result of local stimulation in the primary visual cortex. However, it is
challenging to restore a rich and complex visual experience only by
shapeless phosphene elements40,41. The current manuscript docu-
ments the high-level visual effects induced by stimulation of IT cortex.
Understanding these high-level visual distortions allows us to control
them and use them, potentially besides phosphenes, as building ele-
ments for recreation of the visual experience.

Altogether, given that the amount of work left to be done in this
important area is practically beyond theworking bandwidth of a single
lab, we find this adventure incomplete yetmature enough to be shared
with the scientific community. We hope this work sparks interest in
those interested in underlying mechanisms of visual perception and
encourages technique developers to invest in platforms that allow
easy, high-throughput simultaneous recording and stimulation of the
cortex in large brains.

Methods
We conducted experiments and gathered data involving two adult
male Rhesusmonkeys (Macacamulatta), named Sp and Ph. The details
of the complimentary surgical and anesthesia procedures, along with
postoperative care and methods of implantation, were thoroughly
documented in a prior publication14. All procedureswere conducted in

accordance with and approved by the National Institute of Mental
Health Animal Use and Care Committee guidelines.

The optical array
We injected AAV5-CaMKIIa-C1V1(t/t)-EYFP (nominal titer: 8 × 1012
particles/ml) in the cortex using a custom-made injection array con-
sisting of four 31-gauge needles arranged in a 2 × 2mm square42. We
tiled the central IT cortex four times with sixteen evenly spaced
injection loci, resulting in a ~6 × 6mm viral transduction area. At each
injection site, 10μl (10mm3) of the virus was injected at the rate of
0.5μl/min, totaling an injection volume of 160 uL (160mm3). After
each injection, a 10-min wait period was introduced before array
removal to allow for virus diffusion into the cortical tissue to ensure
uniform viral expression.

We later implanted OptoArrays (Blackrock Neurotech - 530 nm
wavelength) on the virally transduced area as well as the same anato-
mical region in the opposite hemisphere not injected with the virus.
The 3D models of the animals’ brains and skulls were reconstructed
with the FLoRIN method to facilitate the surgery and LED
placement43,44. The LED board spanned from 7mm to 12mm anterior
to the interaural line, crossing fromTEpd (dorsal posterior TE) to TEad
(dorsal anterior TE) according to the Saleem and Logothetis atlas45.

At each “stimulated” trial, one LED on the array was activated for
150ms, and the LED power was kept constant during 150ms of sti-
mulation (square wave). The LED illumination levels used varied
depending on the experiment and location on the cortex, but it was
kept between 1 and 11mW of total photometric output, adjusted to
keep the animal’s performance below the behavioral ceiling. The
choice of LED and illumination power was kept constant at each
perceptography cycle.

Psychophysics
The experiments were performed in a well-lit test chamber in order to
avoid retinal dark adaptation that could potentially help the animals
detect the cortically delivered light through their skull (see Azadi et al.
2023 for more). The animals sat 57 cm away from a calibrated screen
(32”, 120Hz, 1920 × 1080 IPS LCD, Cambridge Research System Ltd).
The data was collected using a customMWorks script46 and a Mac Pro
2020. Eye tracking was performed using an Eyelink 1000 Plus (SR
Research). All of the behavioral and surgical procedures used in this
study were in accordance with the NIH guidelines.

DaVinci
DaVinci, our illustrator engine, was built based on BigGAN19, which
generates images with high levels of naturalness, surpassing the other
GANs. In order to construct the stimuli, DaVinci superimposed a ran-
dom image over the seed image (both generated in BigGAN), then
randomly perturbed the image parameters as well as the transparency
of the top layer. The seed images were chosen randomly from 1000
classes provided by the BigGAN pretrained package. These images
were pushed into the perceptography pipeline without any pre-
selection. The altered image parameters included image class invol-
vement (out of 1000 classes of ImageNet), truncation factor, and the z
vector. Given our preliminary results (see Fig. 1d), we figured thatmost
of the image searchwould happen not too far from the seed image; the
two-layered image structurewas considered to ease this. Nevertheless,
wewantedDaVinci to be capable of venturing far and creating virtually
any image by varying image parameters as well as layer transparency.
To test this, we created seven target images that were not included in
DaVinci’s training set (ImageNet) and forced DaVinci to start from a
random image seed and recreate the target image in an iterative pro-
cess using a pixel dissimilarity loss function. The target images ranged
from thepicture of thedinner plate of oneof the authors tomodernart
pieces warped in Photoshop. In all cases, DaVinci recreated the target
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image with high fidelity (mean pixel similarity distance = 17.44%,
StD = 4.28) (See Supplementary Fig S2).

Ahab
Ahab was the optimizer that logged the behavioral responses and
navigated DaVinci in order to find the perceptogram. The Ahab algo-
rithm included a VGG-1647,48 convolutional neural network (pretrained
on ImageNet) as a feature extractor that kept track of the feature-
vectors of the images that satisfy the following criteria: FA rate >50%
and Miss rate <5%. By extracting and putting together the most com-
mon feature-vectors from the selected images, Ahab created an image
prototype called average-feature-prototype (AFP). Then, Ahab created
a pool of images sprayed around the AFP in the image space to achieve
the range of image parameters in the vicinity of the AFP. Based on
these parameters, Ahab guided DaVinci to make 2–6 mutants for
each image.

Feature distance
Tomeasure feature-vector distance across images, we used amodified
FID (Fréchet Inception Distance) measure (mseitzer/pytorch-fid pack-
age). This measure uses the feature-vector from multiple layers of its
underlying deep neural network and is shown to strongly correlate
with human visual quality judgments49.

For comparing feature-vector distance across image classes, for
each image class, wenormalized the rawFIDmeasure by themaximum
FID observed in that class.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data and material that support the findings of this study will be
available upon the request. Pretrained model that we used in DaVinci
and Ahab https://tfhub.dev/deepmind/biggan-deep-128/1. Seed_image
collection: https://github.com/eliashahbazi/Seed_collection.git. Source
data are provided with this paper.

Code availability
The code is available upon request. Interested parties should contact
Elia Shahbazi at elia.shahbazi@google.com for access.
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