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Unveiling unique microbial nitrogen cycling
and nitrification driver in coastal Antarctica

PingHan 1,2,3, Xiufeng Tang1, HannaKoch4,5, XiyangDong 6,7,8, LijunHou 2,3,
Danhe Wang1, Qian Zhao1, Zhe Li1, Min Liu 1,3 , Sebastian Lücker 4 &
Guitao Shi 1,2

Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has
notably low levels of nitrogen. Though our understanding of biological sour-
ces of ammonia have been elucidated, the microbial drivers of nitrate (NO3

−)
cycling in coastal Antarctica remains poorly understood. Here, we explore
microbial N cycling in coastal Antarctica, unraveling the biological origin of
NO3

− via oxygen isotopes in soil and lake sediment, and through the recon-
struction of 1968 metagenome-assembled genomes from 29 microbial phyla.
Our analysis reveals the metabolic potential for microbial N2 fixation, nitrifi-
cation, and denitrification, but not for anaerobic ammonium oxidation, sig-
nifying a unique microbial N-cycling dynamic. We identify the predominance
of complete ammonia oxidizing (comammox) Nitrospira, capable of per-
forming the entire nitrification process. Their adaptive strategies to the Ant-
arctic environment likely include synthesis of trehalose for cold stress, high
substrate affinity for resource utilization, and alternatemetabolic pathways for
nutrient-scarce conditions. We confirm the significant role of comammox
Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable
isotope probing. This research highlights the crucial contribution of nitrifica-
tion to the N budget in coastal Antarctica, identifying comammox Nitrospira
clade B as a nitrification driver.

Antarctica, a region largely insulated from anthropogenic nitrogen (N)
deposition, exhibits notably low N concentrations1. These diminished
N levels play an integral role in sustaining ecological equilibrium in the
continent’s barren, ice-free terrains2,3. Consequently, elucidating the
intricacies of microbial N-cycling pathways in Antarctic ecosystems—
including diazotrophy (N2 fixation), nitrification, anaerobic ammo-
nium oxidation (anammox), and denitrification—is paramount4. Dia-
zotrophic Cyanobacteria are the primary producers of biologically

accessible ammonium (NH4
+) in these environments5. Alongside NH4

+,
nitrate (NO3

−) constitutes a significant inorganic N pool in polar
biomes6,7. The synthesis of NO3

− in Antarctic ecosystems can be
attributed to both abiotic atmospheric deposition, particularly within
mineral-richAntarctic soils8, andbiotic nitrification processes. Still, the
discrete contributions of these sources to the coastal Antarctic NO3

−

reservoir remain inadequately characterized, necessitating further
investigation.
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Nitrification plays a pivotal role in the global biogeochemical N
cycle9 and contributes significantly to the emissions of nitrous oxide
(N2O)

10, a potent greenhouse gas. The process of nitrification encom-
passes the oxidation of ammonia (NH3) to NO3

− via the intermediate
nitrite (NO2

−). Traditionally, these two metabolic steps have been
attributed to distinct microbial guilds: ammonia-oxidizing bacteria
(AOB)11 and archaea (AOA)12, responsible for converting NH3 to NO2

−,
and nitrite-oxidizing bacteria (NOB)13, which facilitate the subsequent
oxidation of NO2

− to NO3
−. Beyond these canonical nitrifiers, the

recently identified complete ammonia oxidizers (comammox) within
the genusNitrospira, specifically lineage II, perform full nitrification on
its own14,15. These organisms are increasingly recognized for their sig-
nificant role in nitrification across diverse ecosystems, including both
engineered systems16 and natural environments17. The contribution of
comammox bacteria to nitrification and subsequent NO3

− production
in Antarctic ecosystems, however, remains an enigma.

Phylogenetically, comammox Nitrospira cluster into clades A and
B14, distinguished by their respective ammonia monooxygenase genes
(amoA). Physiological assessments of clade A comammox Nitrospira
have revealed an exceptionally high NH3 affinity, suggestive of an oli-
gotrophic niche adaptation18,19. In stark contrast, clade B comammox
Nitrospira, despite their widespread distribution in various habitats,
including those characterized by low temperatures such as the Tibetan
Plateau20,21 and Arctic permafrost22, have yet to be cultured for phy-
siological scrutiny.

This study aims to unravel the complexities of the microbial N
cycle in the ice-free regions of East Antarctica, identifying the pri-
mary sources of NO3

− and examining the potential roles of micro-
organisms in the nitrification process. Our research is strategically
centered on the Larsemann Hills (LH)23, a vast ice-free rocky land-
scape in East Antarctica, dotted with over a hundred oligotrophic
lakes shrouded in ice. Through a comprehensive approach, we dis-
cover that (i) the origin of NO3

− is primarily the biological nitrifica-
tion process; (ii) the microbial N cycle is distinct, encompassing
most microbial N-cycling processes except for the anammox path-
way; and (iii) the comammox Nitrospira clade B serves as an abun-
dant and active driver of nitrification, possessing various survival
strategies against the cold and oligotrophic conditions of the coastal
Antarctic environment.

Results and discussion
Isotopic signatures indicate the biological origin of nitrate
Depending on how NO3

− is produced, the composition of its oxygen
isotopes differs, allowing differentiation between abiotic and biotic
sources24. For biologically produced NO3

−, one oxygen atom (O) is
expected from atmospheric oxygen (O2) and two from the surround-
ing water (H2O)

24. Biologically produced NO3
− would have a δ18O of

~0.6‰, since δ18O of atmospheric O2 is 23.9‰
25 and the measured δ18O

of Larsemann Hills (LH) lake water is –12.7 ± 1.5‰ (Supplementary
Table 1). In addition, while biologically produced NO3

− has a Δ17O of
0‰, which is identical to that of O2 and H2O, atmospheric NO3

− is
usually characterized by high oxygen isotopic ratios26,27 and can reach
Δ17O ≥ 35‰ in the atmosphere in Antarctica26. Atmospheric NO3

− in
Antarctica is mainly produced by the reaction of nitrogen oxides
(NOx), ozone (O3), and hydroxyl radicals (OH·)27.

The mean δ18O of NO3
− in sediments from LH lake is 4.6‰. The

annual mean δ18O of NO3
− in snow and the atmosphere at the coastal

Zhongshan station, situated in LH, is approximately 92‰28. From
these, the contributions of atmospheric deposition and biological
production to sedimentary NO3

− pools can be quantified by isotope
mass balancing, indicating that the nitrification process constitutes
95% of the NO3

− in sediments. In addition, limited data of sediment
NO3

− Δ17O produced amean of ~1.3‰, which strengthens the observed
>90% contribution of nitrification considering the very high Δ17O of
atmospheric NO3

− at Zhongshan station (~32‰)28. Similarly, the

isotope mass balance of δ18O and Δ17O suggested ~96% of soil NO3
− in

the two study areas is from nitrification. Thus, we demonstrated here
that sediment and soil NO3

− predominantly originated from biological
production in and nearby the investigated lakes.

Unique microbial nitrogen cycle in coastal Antarctica
The primary production of NO3

− is largely attributed to the microbial
nitrification process, rather than atmospheric precipitation. Conse-
quently, the origin ofNH4

+, the substrate fornitrification, canbe traced
back to biological N2 fixation, as well as mineralization. The qPCR-
based quantification of functional N-cycling genes (Fig. 1) revealed a
comparable amount of N2 fixation (nifH, encoding nitrogenase) to
nitrification genes (amoA and nxrB, encoding ammonia mono-
oxygenase subunit A and nitrite oxidoreductase subunit B, respec-
tively), with quantities ranging from 102 to 104 copies ng−1 DNA. The
relatively low quantity of the gene encoding hydroxylamine dehy-
drogenase (hao) (<10 copies ng−1 DNA) can be attributed to the low
coverage of the applied primers (targeting AOB rather than comam-
mox Nitrospira, Supplementary Table 2) and the absence of the bac-
terial hao gene in the genomes of AOA29, which are of notable
abundance in the studied samples.

In addition to N2 fixation and nitrification processes, we also
observed the significant metabolic potential of denitrifiers, as indi-
cated by the high abundances (>103 copies ng−1 DNA) of genes
encoding the sequential reduction of NO3

− (nar, nap), NO2
− (nir), nitric

oxide (NO, nor), and N2O (nos) (Fig. 1). The relatively higher abun-
dances (>104 copies ng−1 DNA) of nirS and nirK genes (Fig. 1) can likely
be attributed to their presence not only in denitrifiers but also in
nitrifiers. Interestingly, we found substantial quantities (102 to 104

copies ng−1 DNA) of the functional gene for dissimilatory nitrate
reduction to ammonium (DNRA, nrfA) and assimilatory nitrite reduc-
tion (ANR, nasA) (Fig. 1). The potential for DNRA and ANR is wide-
spread among phylogenetically diverse microorganisms and these
processes ensure the retention of bioavailable inorganic N in an
ecosystem.

Strikingly, the hzo gene (encoding hydrazine oxidoreductase), a
biomarker for the anammox process, was not detected in any of the
tested sediment and soil samples. Anammox bacteria catalyze the
anaerobic oxidation of NH4

+ using NO2
− as an electron acceptor, pro-

ducing N2 as the final product. These bacteria were first identified in
wastewater treatment systems30 and were subsequently discovered in
various environments, including marine31, coastal32, terrestrial33, and
engineering systems34. The absenceof anammox functionalmarkers in
coastal Antarctica suggests unique microbial N-cycling properties in
this remote region.

Diverse microbiomes and the microbial N-cycling processes
From an extensive dataset exceeding 450 gigabases of sequencing
data, wemanaged to reconstruct a dereplicated collection of 724 high-
quality and 1244 medium-quality35 metagenome-assembled genomes
(MAGs) (Supplementary Data 1). The recovered genomes encompass
29 distinct phyla (Supplementary Data 1 and 2), marking, to the best of
our knowledge, the most comprehensive inventory of Antarctica
coastal soil and sediment genomes to date. On average, we obtained
around 60MAGs per sample site studied (Fig. 2a). The most abundant
phyla included Actinobacteriota, Pseudomonadota, Bacteroidota,
Chloroflexota, Verrucomicrobiota, Acidobacteriota, Patescibacteria,
Planctomycetota, and Gemmatimonadota (Fig. 2a and Supplementary
Data 1), aligning with findings from other Antarctic surveys5,36,37. Cya-
nobacteria also featured among the top ten most abundant MAGs
(Supplementary Data 1), a deviation from the Mackay Glacier Region,
where they were largely absent in most soil samples37. We identified
only five archaeal MAGs within the Thermoproteota phylum, all of
which were further classified as ammonia-oxidizing archaea (AOA)
within Group I.1b.
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To comprehend the metabolic strategies that sustain the abun-
dant bacterial life in these extremely nutrient-poor sediments and
soils, we examined the distribution and affiliation of 52 marker genes
conserved across different energy conservation and carbon acquisi-
tion pathways37 in the MAGs we retrieved. As predicted, genes for
aerobic respiration were encoded by nearly all community members
(Fig. 2b and Supplementary Fig. 1). Consistent with observations from
theMackay Glacier Region37, a significant number of the MAGs appear
to fix carbon via the Calvin-Benson-Bassham (CBB) cycle (212MAGs) or
the 3-hydroxypropionate cycle (345 MAGs) (Fig. 2b). These mechan-
isms facilitate the generation of biomass throughmeans that are either
separate from or complementary to photoautotrophy, a role pre-
dominantly carried out by Cyanobacteria (Supplementary Fig. 1).
Genomic analysis revealed that the most abundant and widespread
community members encoded trace gas oxidation genes. In a pattern
similar to previous discoveries37,38, carbon monoxide (CO) dehy-
drogenases (CoxL) were exclusive to Actinobacteriota and Chloro-
flexota (Fig. 2b). Interestingly, uptake [NiFe]hydrogenases were
encoded by MAGs from Acidobacteriota, Chloroflexota, and Verruco-
microbiota (Fig. 2b), which aligns with observations from temperate

soil where Acidobacteriota are known to be active atmospheric H2

consumers39, albeit with slight differences.
In the realmofNmetabolism, a comprehensive arrayof functional

genes was identified within theMAGs we analyzed (Fig. 2b). N2 fixation
appears to be predominantly carried out by taxa within Acidobacter-
iota, Cyanobacteria, Desulfobacterota, Myxococcota, and Verrucomi-
crobiota (Fig. 2b). Consistent with the quantitative analyses, the hzs
gene, indicative of the anammox process, was not present in the
retrieved MAGs. While a total of 96 Planctomycetota MAGs were
obtained, subsequent verification through taxonomic classification
confirmed that none of these MAGs belong to the anammox family
Brocadiaceae (Fig. 2b and Supplementary Data 2). The absence of
anammoxprocessmay be attributed to the optimal temperature range
of 12–17 °C, which is characteristic of anammox process found in
similarly cold Arctic fjord sediments40, suggesting a limited tolerance
to low temperatures. This assertion is further reinforced by the
absence of anammox bacteria in the McMurdo Dry Valleys (an Ant-
arctic desert)41 and in Arctic regions42 as well. The pervasive distribu-
tion of denitrification genes across nearly all phyla underscores the
robust and widespread microbial denitrification activity in Antarctica,
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Fig. 1 | Overview of sampling sites, sample types, and quantities of functional
nitrogen-cycling genes in coastal Antarctica. a A photograph illustrating the
location of the Larsemann Hills (LH) and South Victoria Land (SVL) (left) in Ant-
arctica, locations of studied surface soil and lake sediments in LH (center), and
locations of surface soil samples in SVL (right). Red and green circles represent soil
and sediment samples, respectively. Solid circles denote samples that have
undergone metagenomic analysis, while empty circles denote samples that have
been subjected solely to quantitative PCR analysis. The asterisk indicates samples
that were used exclusively for metagenomic analysis and did not undergo

comprehensive N-cycling functional gene screening. b–d Abundance of functional
microbial N-cycling genes in the LH soils (b), LH lake sediments (c), and SVL soils
(d). The studied functional N-cycling genes encompass N2 fixation (nifH), nitrifi-
cation (amoA, hao, and nxrB), denitrification (napA, narG, nirS/K, norB, and nosZ);
dissimilatory nitrate reduction to ammonium (DNRA; nrfA), assimilatory nitrite
reduction (ANR; nasA and nirA), and anaerobic ammonium oxidation (anammox;
hzo). The relative abundance of the associated functional genes is indicated by the
line thickness. Source data are provided as a Source Data file.
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corroborating previous research that highlights the ubiquity of cold-
adapted denitrifiers across diverse Antarctic ecosystems43. Regarding
the nitrification process, the marker genes-amoA (associated with
ammonia oxidation) and nxrB (linked to nitrite oxidation) were found
exclusively in the Thermoproteota and Nitrospirota phyla (Fig. 2b).
Although Antarctic soil nitrification was previously reported back in
199744, attributed to AOB genera Nitrosospira and Nitrosomonas, as
well as AOA within group I.1b45–48, no investigation has yet been con-
ducted into the presence and function of the recently discovered
comammox bacteria within the Nitrospira genus14,15. Here, we present
data showing the prevalence of the comammox Nitrospira amoA gene

in Antarctica lake sediments and soils, strongly suggesting the activity
of comammox Nitrospira in this region.

Abundant nitrification drivers in coastal Antarctica
The quantitative evaluation of nitrification-related functional genes,
including amoA and nxrB (Supplementary Fig. 2), established that AOA
and comammox bacteria were the predominant nitrifiers in the ana-
lyzed soils and sediments (Supplementary Fig. 3). Our metagenomic
analysis corroborates these findings, having identified only AOA and
Nitrospira MAGs among the various nitrifying groups (Fig. 2b), sug-
gesting they outnumberAOB. Furthermore, amore detailed analysis of
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Fig. 2 | Community composition and relative abundance of selected functional
genes derived frommetagenomic analyses of various sediments and soils from
coastal Antarctica. a Overview of the microbial community composition derived
from metagenome-assembled genomes (MAGs) extracted from six soil and six
sediment samples in the Larsemann Hills (LH), as well as two soil samples from
South Victoria Land (SVL). The statistical box in the top right corner presents the
numerical distribution of the MAGs retrieved from the studied samples (Co-

assemblies are not included in this statistic). b Distribution of selected key func-
tional genes in the obtained MAGs, including those involved in respiration, N-
cycling, carbon fixation, and trace gas metabolism. The adjacent heatmap displays
the distribution of these genes across a set of 1968 MAGs, comprising 29 phyla.
Summary and statistics of the presence/absence of key metabolic marker genes in
the obtained MAGs are provided in Supplementary Data 1 and 2. Source data are
provided as a Source Data file.
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the abundance and community structure of all identified nitrifying
groups was conducted using amplicon amoA and nxrB sequencing.
Subsequent phylogenetic assessment revealed an unexpected dom-
inance of clade B comammox Nitrospira in this environment (Supple-
mentary Table 5 and Supplementary Fig. 8). This was surprising given
the successful extraction of diversity information from AOA (Supple-
mentary Fig. 6) and AOB (Supplementary Fig. 7) in the samples
investigated (Supplementary Results and Discussion).

Among the dereplicated MAGs, five were classified as Group I.1b-
AOA within the genera Nitrosocosmicus and Nitrospharea of the Ther-
moproteota phylum. This categorization stemmed from GTDB taxo-
nomic classification, phylogenomic assessments, and average
nucleotide identity (ANI) analyses (Supplementary Data 2 and Supple-
mentary Fig. 4). These findings are in agreement with the data obtained
from amoA amplicon sequencing, as discussed in the Supplementary
Results and Discussion section. Together with their previous detection
inArctic soils49,50, this suggests a capacityofNitrosocosmicus-likeAOA to
thrive in cold and nutrient-deficient conditions.

Of the seven Nitrospirota MAGs analyzed, four were verified as
comammox Nitrospira, and the remaining three belonged to the
exclusively nitrite-oxidizing lineages II and IV of Nitrospira. This clas-
sification was substantiated by phylogenomic and average nucleotide
identity (ANI) analyses (Fig. 3a, b, Supplementary Table 4, and Sup-
plementary Fig. 5), and these results concur with the phylogenetic
assessment based on the amoA and nxrB gene of Nitrospira (Supple-
mentary Figs. 8, 9). The notably high abundance of these Nitrospira
MAGs in the soil and sediment metagenomes studied (reaching up to
0.173%, Supplementary Table 3) further emphasizes their significant
roles in nitrification within these ecosystems.

Two high-quality comammox MAGs, Nitrospira sp. La1-X1 and
Nitrospira sp. La3-X1, have genome sizes of 4.26Mb and 3.78Mb,
respectively (Supplementary Table 3). The amoA gene sequences from
La1-X1 and La3-X1 align closely with the dominant amoAOTUs andwith
previously published sequences from clade B comammox (Fig. 4c and
Supplementary Fig. 8). Consistent with the amoA-based phylogeny,
phylogenomic analysis also demonstrates a distinct clustering of these
comammox MAGs within clade B (Fig. 3a). For La1-X1, the ANI was
highest with MAG Nitrospira sp. palsa1310, which was identified from
Arctic permafrost soil22. The ANI between these genomes is 96.67%
(Fig. 3b), surpassing the species threshold of 95%51, suggesting that
these genomes represent different strains of the same Nitrospira spe-
cies, potentially adapted to cold environments. In contrast, La3-X1 is
grouped within a clade B subset that includes MAGs from drinking
water treatment systems and glacier surface soil52, but it did not share
high ANI values with any other clade B genomes (≤85%, Fig. 3b). This
suggests that La3-X1 represents a unique so far undetected group
within clade B.

Metabolic potential and surviving strategy
The clade B comammox MAGs Nitrospira sp. La1-X1 and Nitrospira La3-
X1 harbor the complete genetic machinery for NH3 and NO2

− oxidation,
the respiratory chain, and the reduced tricarboxylic acid (rTCA) cycle,
which is the conserved CO2 fixation pathway in Nitrospira (Fig. 3c, d).
These core metabolic features are highly conserved in comammox
Nitrospira, as reported inprevious studies53,54. Similar tootherNitrospira
genomes52, La1-X1 and La3-X1 do not encode nitric oxide reductase
(NOR), which is crucial for enzymatic N2O production55. They do carry
genes for urea transport andhydrolysis by theurease, indicating theuse
of urea as an alternative ammonia source, as shown for other comam-
mox Nitrospira14,15,56. In addition, like some Nitrospira that have the
confirmed ability to use hydrogen and formate as alternative energy
sources57,58, the comammox MAGs La1-X1 and La3-X1 contain genes for
formate and hydrogen oxidation. The formate dehydrogenases of
comammox are similar to their nitrite-oxidizing counterparts. In con-
trast, comammox bacteria possess a 3b-type [NiFe] hydrogenase, which

is rarely identified in canonical Nitrospira and its physiological role
remains unclear54,59. While the capacity for formate oxidation is widely
distributed in clade B, the 3b-type [NiFe], hydrogenase has beenmainly
identified in clade A comammox species54 (Fig. 3d). However, the pre-
sence of this hydrogenase type in a few clade B genomes52,54 including
La3-X1 challenges the clade specificity of this feature.

In addition to the canonical F1F0 H
+-driven ATPase, La1-X1 and La3-

X1 encode a potentially Na+-pumping F1F0 ATPase, previously detected
in the haloalkalitolerant nitrite-oxidizing Ca. Nitrospira
alkalitolerans60, marine nitrite-oxidizing Ca. Nitronereus thalassa61 and
clade A comammox Ca. Nitrospira kreftii19. Similar to these genomes,
La3-X1 also possesses a Na+-translocating NADH:ubiquinone oxidor-
eductase (NQR), a feature missing in La1-X1 (Fig. 3c). These Na+-
pumping enzyme complexesmight represent an adaption of La3-X1 to
saline or haloalkine conditions similar to other Nitrospira.

The disaccharide trehalose is one of several solutes known to
protect bacteria against cold stress, andmay also protect against other
harmful environmental conditions, such as osmotic stress62. La1-X1
possesses a trehalose-6-phosphate synthase (OtsA) and the corre-
sponding phosphatase (OtsB) to potentially produce the non-reducing
disaccharide in two steps from UDP-glucose, as shown for E. coli63. In
contrast, La3-X1 encodes several other trehalose synthesis enzymes in
one gene cluster, indicating that this species might convert NDP-
glucose (trehalose synthase) and maltose (trehalose synthase/amy-
lase) to trehalose. However, all these trehalose synthesis pathways
have also been identified in Nitrospira from mesophilic environments
and might thus not be a distinguishing feature for cold adaptation. In
addition to trehalose synthesis, La1-X1 and La3-X1 possess other fea-
tures for coping with different stresses. Whereas a gene cluster
encoding a nitrile hydratase has been detected in La1-X1 and La3-X1,
the genomes lack an amidase to degrade the produced amides further
to the corresponding carboxylic acid and ammonia, which could serve
as an energy source. An example of a potential amidase is a putative
formamidase identified in a clade B MAG obtained from the Rifle
aquifer52. Other detoxificationmechanisms include catalases and Fe or
Mn superoxide dismutases (SOD) for reactive oxygen defense identi-
fied in both clade B genomes, and a periplasmic Cu-Zn SOD, which is
present in La3-X1 and many other clade B genomes, but absent in La1-
X1 (Fig. 3c, d).

An adaptation to oligotrophic conditions (SupplementaryTable 1)
might be the methionine salvage pathway (MSP) of La1-X1 (Fig. 3c).
This pathway recycles the sulfur-containing intermediate 5’-methyl-
thioadenosine back to methionine, thus allowing the use of reduced
sulfur compounds under sulfur limitation. However, similar to the
high-quality genome of the nitrite-oxidizing Nitrospira lenta57 and
other clade B genomes, the mtnE gene encoding the last step in this
pathway is missing in La1-X1. Whether other enzymes might complete
the MSP in these Nitrospira species remains to be determined.

Nitrification and N2O production activity
We have demonstrated that comammox Nitrospira potentially
serves as crucial drivers of nitrification in coastal East Antarctica, and
further investigated their survival strategies from a genomic per-
spective. Additionally, we confirmed the nitrification activity of
comammox Nitrospira using DNA-SIP on two lake sediment samples
(LA1 and LA2) and one soil sample (LS4). DNA-SIP incubations were
conducted at 4 °C (for LA1) and 10 °C (for LA1, LA2, and LS4), and the
production of NO3

− served as an indicator of nitrification activity
(Fig. 4a and Supplementary Fig. 11). During the incubations,
comammox Nitrospira were actively growing, as evidenced by the
peak shifts of their DNA in the 13C-treatment (Fig. 4b and Supple-
mentary Fig. 4). Subsequent sequencing of the amoA genes from the
labeled DNA revealed clade B amoA OTUs, including those of
comammox MAGs La1-X1 and La3-X1, in both the 4 °C and 10 °C
incubations (Fig. 4c). Despite the temperature used in the DNA-SIP
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incubations not being identical to the in situ condition, our data
strongly suggest an active role for clade B comammox Nitrospira in
nitrification.

The addition of NH4
+ resulted in an increase of NO3

− production,
however, did not stimulate higher N2O production compared to
incubations without NH4

+ addition (Fig. 4a), indicating the low N2O
production potential of comammox Nitrospira55. The addition of
chlorate, a potential comammox-specific inhibitor64, slightly reduced

the production of NO3
− and N2O (Fig. 4a). However, since chlorate can

also influence other nitrite-oxidizing Nitrospira species as well as
denitrifiers, the observed reductions in NO3

− and N2O levels cannot be
solely attributed to changes in comammox activity. Notably, prior
research has shown the resilience of clade B comammox Nitrospira to
freeze-thaw cycles, which underscores the endurance of this particular
nitrifier group in environments with low and even subfreezing
temperatures65. Raising the temperature (10 °C) stimulated the activity
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single-copy core genes. b Average nucleotide identity (ANI) analysis of selected
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of AOA (in LA2) and AOB (in LA2 and LS4) (Supplementary Fig. 4,
Supplementary Results and Discussion), indicating that these nitrifiers
are more competitive under elevated temperature conditions, an
important finding to predict ecosystem changes in response to global
warming.

Implications and outlook
In this study,we elucidated the uniquemicrobialN cycle in pristine and
oligotrophic coastal Antarctic soil and lake sediments, identifying the
microbial nitrification process as the primary pathway for NO3

− pro-
duction. Our metagenomic and quantitative functional gene-targeted
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analyses both revealed clade B comammox Nitrospira to be a key
nitrifier in these environments. This finding not only expands our
understanding of microbial diversity but also underscores the pivotal
role of specificmicrobial groups in biogeochemical cycling in extreme
environments. Our results also revealed fascinating patterns of niche
differentiation between clade A and B comammox Nitrospira and
canonical nitrifiers. Clade B species might have superior affinity for
their substrate ammonia, and are potentially best adapted to survive
and thrive in cold and oligotrophic environments. This niche differ-
entiation could have significant implications for N-cycling in cold
environments and it will be important to determine how the nitrifier
and overall microbial communities will react to global warming.

In addition, we have successfully obtained in total of 1968 MAGs,
significantly expanding the existing microbial genomic data for Ant-
arctica. These MAGs provide invaluable insights into the microbial
diversity and their metabolic capabilities in the extreme and unique
environment of coastal Antarctica. The availability of these MAGs will
undoubtedly facilitate further research into the intricate relationships
between microbial communities, biogeochemical cycles, and climate
change in polar regions and beyond.

This study underscores the importance of understanding the
unique microbial N cycle in coastal Antarctica. We have uncovered
clade B comammox Nitrospira to be a nitrification driver in low-
temperature environments, and investigated their survival strategy
and potential impact on climate change through the production of
greenhouse gas N2O

55,66. It is crucial to further investigate how
comammox Nitrospira evolve and survive in Antarctic ecosystems,
meeting one of the six priorities for Antarctic science67. Recognizing
the climatological significance of N-cycling and biogeochemical pro-
cesses, future research should continue to monitor these microbes, as
they could hold the key to understanding the broader implications of
microbial activity on our planet’s climate.

Methods
Sample collection and treatment
Samples were collected in Larsemann Hills (LH), the second-largest
ice-free land in East Antarctica with an area of ~50 km2. LH has a cold
and dry continental climate, with an annual mean temperature of ~
−10 oC and the temperatures occasionally above 0 oC in summer68

lead to this region typically free of snow cover in summer. As a result
of seasonal snow cover and the glacier melting, a number of land-
locked lakes are developed in this region. Surface sediment (the
upper ~5 cm) and surfacewater samples were collected from six lakes
(LA1-LA6) in LHs in February 2020 (Fig. 1a). The surface sediment
samples were collected using a stainless-steel spade on the shore of
lakes, with typical water depths of ~150–200 cm.Approximately 1 L of
surface water near the lake shore was also sampled with clean poly-
ethylene (PE) bottles, a portion of which was used to measure tem-
perature, pH, salinity, and conductivity utilizing a multi-probe water
quality meter (YSI Professional Plus series; Supplementary Table 1).
The remainder of the water samples was filtered using 0.22-μm
polytetrafluoroethene (PTFE) filters for chemical analyses. Addi-
tionally, a surface soil sample (the top ~5 cm) was collected near each
lake, ~100m from the lake shore, using a clean stainless spatula. At
each sampling site, larger gravels were removed firstly, and five soil
sub-samples (four corners and the center of a square) were collected
at a distance of 5–10m and then mixed to obtain a representative
sample (LS1-LS6). For a comprehensive understanding of N-cycling
processes in the ice-free areas in coastal Antarctica, surface soil
samples (SVL1–SVL10) were also collected in February 2022 at Inex-
pressible Island, South Victoria Landwhere the climate is comparable
to that of LH, following the same sampling protocols. All of the
sediment and soil samples were stored in sealed PE bags, and all
samples were transported to the laboratory at temperatures of ~
−20 °C for subsequent analysis.

Physiochemical analysis
In the laboratory, ~50 g of the sediment and soil samples were freeze-
dried in 50-mL clean centrifuge tubes (ALPHA 1-4/LD, Martin Christ
Inc.). After drying, the samples were homogenized using an agate
mortar and pestle, and subsequently passed through a 1mm sieve for
further chemical analysis. For determining total organic carbon (TOC)
content, approximately 5 g of samples were digested with 10% HCl
(v/v) to remove carbonate. Then, TOCwasmeasuredwith an automatic
element analyser (Elementar, VARIO EL III), with acetanilide used as the
external standard. The detection limit (DL) of the TOC was estimated
to be ~0.005%. All samples were measured in triplicate, yielding a
relative standard deviation (1σ) of <10% for each sample. For chemical
ion analysis, ~5 g of freeze-dried samples were placed in sterile 50-mL
centrifuge tubes and suspended in 25mL Milli-Q water (18.2MΩ). The
solution was then ultrasonicated for 40min. The supernatant was first
centrifuged for 15min at 3000×g, and then filtered through 0.22-μm
PTFE filters for nutrient determination. Nutrient concentrations (NH4

+,
NO3

−, and PO4
3−) in the sediment, soil extracts, and lake water samples

were determined using an Aquion RFIC ion chromatograph (IC,
Thermo Scientific, USA), equipped with the analytical columns CS12A
(2 × 250mm), AS11-HC (2 × 250mm), methanesulfonic acid (MSA), and
potassium hydroxide (KOH) as eluents for cations and anions,
respectively. In addition, the concentrations of SiO3

2- were determined
using an automated QuAAtro™ nutrient analyser (Seal Analytical Ltd.,
UK). During sample analysis, replicate determinations (n = 5) were
performed, and 1σ for all species was <5%.

Isotopic analysis of nitrate
The isotopic composition of NO3

− was determined using the bacterial
denitrifier method at the Environmental Stable Isotope Laboratory of
East China Normal University (ECNU-ESIL). Briefly, the denitrifying
bacterium Pseudomonas aureofaciens, which lacks the N2O reductase
enzyme, quantitatively transformsNO3

− into gaseous N2O
69,70. The δ15N

and δ18O of the generated N2O were measured in duplicates using
isotope-ratio mass spectrometry (IRMS, Thermo Scientific Delta V).
The Δ17O of NO3

− was separately analyzed through the thermal
decomposition of N2O into N2 and O2

71, followed by measurements at
m/z 32, 33, and 34 on the IRMS. The pooled standard deviation (1σp)
was employed to ascertain the measurement precision of the overall
denitrifier method72,73. The 1σp of all duplicate samples executed in at
least two different batches was 0.6‰ for δ15N (n = 10), 0.3‰ for δ18O
(n = 10), and 0.8‰ for Δ17O (n = 8). However, due to the limited
amounts of NO3

− in the samples, only three sediment and five surface
soil samples were analyzed for Δ17O of NO3

−.
In addition, lake water stable isotopes (δ18O and δ2H) were ana-

lyzed using laser absorption spectrometry (TIWA-45EP, Los Gatos
Research, Inc.). To ensure quality control, replicate analyses (n = 5)
were performed, yielding relative standard deviations of 0.05‰ and
0.2‰ for δ18O and δ2H, respectively.

DNA extraction, quantification, and sequencing analysis
Total DNA was extracted from 0.5 g sediment/soil samples using the
Fast DNA SPIN kit (MP Biomedicals, Santa Ana, CA) according to the
manufacturer’s protocols. The final DNA quality and quantity were
determinedusingQuant-iT PicoGreendsDNAAssayKit (ThermoFisher
Scientific, China). A detailed description of the quantitative PCR
(qPCR) analysis for functional N-cycling genes is provided in the Sup-
plementary Methods section. It also elaborates on the procedures for
PCR and high-throughput amplicon sequencing, as well as the sub-
sequent phylogenetic analysis of nitrification genes.

Metagenomic sequencing
The total DNA from the original sediment and soil samples was
sequenced on the Illumina HiSeq X ten platform using a 150-bp paired-
end library at Beijing Novogene Biotech Co., Ltd. (Beijing, China).
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The NEXTFLEX Rapid DNA-Seq Library Prep Kit 2.0 (Bioo Scientific,
Austin, TX, USA) was used for DNA library preparation with an insert
size of ~300bp according to the manufacturer’s recommendations.
DNA was sheared using a Covaris S220 Focused Ultrasonicator to
create 150 bp fragments. Subsequently, rawmetagenomic sequencing
data in FastQ formatwas generated using the RTA (Real-TimeAnalysis)
v3.4.4 and bcl2fastq (btq) v2.16. Each individual sample yielded a range
of 20–50 gigabases of sequencing data.

Assembly and binning of metagenomes
Raw reads were processed using fastp v0.19.774 for adapter trimming,
quality filtering, and per-read quality trimming. The fourteen quality-
controlled metagenomes were individually assembled and co-
assembled using MEGAHIT v1.1.375 with default parameters (k-mers:
21, 29, 39, 59, 79, 99, 119, 141). Each of the assembly was initially binned
using the binning module (–metabat2 –maxbin2 –concoct; –metabat2
for co-assembly) in the metaWRAP pipeline76 v1.3.2, and were con-
solidated using DAS Tool v1.1.277 with default parameters. After a
dereplication check using dRep v3.0.078 (-comp 50 -con 10) and com-
pleteness and contamination evaluation using CheckM v1.1.379, 1968
MAGs were obtained, and the taxonomy of each MAG was assigned
using GTDB-Tk v1.5.080 with the Genome Taxonomy Database (Release
06-RS202). In the process of annotating metabolic functions, the
genomes thatwere extractedwere examined usingDIAMOND81 v0.9.14
against 52 tailor-made protein databases, which consisted of marker
genes representing common metabolic traits for energy conservation
as well as C and N fixation37. To confirm the existence of crucial
metabolic genes in the MAGs, maximum-likelihood phylogenetic trees
were generated to confirm their phylogenetic affiliation The relative
abundances (in percentage) for all dereplicated MAGs were deter-
mined by aligning each sample’s clean paired-end reads to the MAGs
utilizing CoverM v0.6.1 (https://github.com/wwood/CoverM) in gen-
ome mode, applying the default configurations. Moreover, the trim-
med reads were incorporated into CLC Genomics Workbench version
20.0 (CLCBio, Qiagen, Germany), and the de novo assembly algorithm
of CLC was employed to search for amoA and nxrB sequences. Contigs
that contained either amoA or nxrB genes were selected for phyloge-
netic analysis, in conjunction with amplicon sequences.

Phylogenomic analysis and genome annotation
Genomes and MAGs classified by the GTDB-Tk database R20282 as
Nitrospiracea, with estimated genome completeness ≥70% and
contamination ≤10%, were downloaded from NCBI. Dereplication
was performed using the drep v2.4.278 dereplicateworkflowwith cut-
offs for estimated genome completion ≥70% and contamination
≤10%, but otherwise default settings. In addition to these 95 Nitros-
piracea genomes, seven Nitrospira lineage IV and two clade B gen-
omes were included in the phylogenetic analysis using the UBCG
pipeline for the extraction and concatenated alignment of 91 single-
copy core genes83. In addition, two Leptospirillum genomes
(GCF_000284315.1, GCF_000299235.1) were included as outgroup. A
maximum-likelihood phylogenetic tree was constructed using IQ-
TREE v1.6.1284 with 1000 ultrafast bootstrap replications and the
GTR + F + I + G4 model identified by the implemented Modelfinder85.
ANI analysis of all clade B genomes was performed using the
OrthoANI86. Gene calling and automatic genome annotation were
performed using the MicroScope platform87, and annotations of
selected features were manually checked and refined. For analyzing
the distribution patterns of selected key features, 17 comammox
clade B genomes were annotated using prokka v.1.14.688 with the
“--gcode 11” and “--metagenome” options to obtain all protein
sequences for generating a BLAST database. The distribution of
selected key proteins within clade B was analyzed by conducting a
BLASTp search against this database with default settings, except for
an e-value cutoff of 1e-6. Only hits with an identity ≥35% (pident) and

a query coverage ≥80% (qcovs) were reported as present. Phyloge-
nomic and ANI analyses were carried out on the retrieved AOA
MAGs, using representative genomes (which include Group I.1a and
Group I.1b-AOA) and Group I.1b Nitrosocosmicus AOA genomes as
references, respectively.

DNA-stable isotope probing (SIP) incubation and analysis
Lake sediments (LA1 and LA2) and the soil sample (LS4) were selected
for DNA-SIP microcosm incubation experiments (Supplementary
Fig. 10) to mimic a low-temperature oligotrophic environment. (Note
that these three sampling locations are distributed almost uniformly
throughout LH.) Microcosms were constructed in 120mL serum bot-
tles containing 10g sediments or soil at 60% of maximum water-
holding capacity and were incubated for 56 days at 10 °C in the dark.
For each sample, two different treatments were established in tripli-
cate microcosms. The 13CO2 microcosms were amended with 5% (v/v)
13CO2 (99 atom%; Sigma-Aldrich Co., St. Louis, MO, USA) plus
approximately 5 µg 15N-NH4Cl-N g−1 dry weight soil/sediment (d.w.s.),
while the 12CO2 control treatments received 5% (v/v) 12CO2 plus ~5 µg
14N-NH4Cl-N g−1 d.w.s. The water content was restored weekly over an
8-week incubation period by opening the bottles. Additional labeled
or unlabeled NH4Cl was supplied (approximately once every
2–3weeks) tomaintain ~5 µgNH4Cl-N g−1 d.w.s. during the incubations.
The sediment/soil samplesweredestructively sampled after 56days of
incubation and transferred immediately to –80 °C for subsequent
molecular analysis. The remaining ~2 g of sediments were used for
end-point quantification of NH4

+, NO2
−, and NO3

− concentrations. The
LA1 sediment sample was additionally chosen for incubation at 4 °C,
adhering to the same procedure previously outlined for a period of
84 days (12 weeks). In addition to the ammonium substrate, 50μM
chlorate, a specific comammox inhibitor64, was introduced to study
the activity of comammox Nitrospira. Moreover, the production of
N2O

64 was actively monitored during these 4 °C DNA-SIP incubations.
The fractionation of DNA post-DNA-SIP incubations, along with the
subsequent quantification analysis of functional nitrification groups, is
described in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All AOA-, AOB-, and comammox Nitrospira-amoA and Nitrospira-nxrB
OTU sequences obtained in this study were deposited in GenBank,
with accession numbers MZ956347-MZ956585. Retrieved
metagenome-assembled genomes (MAGs) have been uploaded to
Figshare (https://doi.org/10.6084/m9.figshare.25435465). All raw
sequencing reads of amplicon sequencing and metagenomes have
been submitted to the National Center for Biotechnology Information
(NCBI) under BioProject accession No. PRJNA855145. The database
used in this study includes the GTDB database R06-RS202 (https://
data.gtdb.ecogenomic.org/releases/release202/). The nitrifiers refer-
ence genomes used for comparative genomic analysis were down-
loaded from the NCBI Refseq database. Source data are provided with
this paper.
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