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Consistent signatures in the human gut
microbiome of old- and young-onset
colorectal cancer

Youwen Qin 1,2,7 , Xin Tong 1,7, Wei-Jian Mei 3,7, Yanshuang Cheng3,
Yuanqiang Zou 1,4, Kai Han 3, Jiehai Yu 3, Zhuye Jie1, Tao Zhang 1,5,6,
Shida Zhu2, Xin Jin 1, Jian Wang1, Huanming Yang 1, Xun Xu 1,
Huanzi Zhong 1,2, Liang Xiao 1,4 & Pei-Rong Ding 3

The incidence of young-onset colorectal cancer (yCRC) has been increasing in
recent decades, but little is known about the gutmicrobiomeof these patients.
Most studies have focused on old-onset CRC (oCRC), and it remains unclear
whether CRC signatures derived from old patients are valid in young patients.
To address this, we assembled the largest yCRC gut metagenomes to date
from two independent cohorts and found that the CRC microbiome had lim-
ited association with age across adulthood. Differential analysis revealed that
well-known CRC-associated taxa, such as Clostridium symbiosum, Peptos-
treptococcus stomatis, Parvimonas micra and Hungatella hathewayi were sig-
nificantly enriched (false discovery rate <0.05) in both old- and young-onset
patients. Similar strain-level patterns of Fusobacterium nucleatum, Bacteroides
fragilis and Escherichia coli were observed for oCRC and yCRC. Almost all
oCRC-associated metagenomic pathways had directionally concordant chan-
ges in young patients. Importantly, CRC-associated virulence factors (fadA,
bft) were enriched in both oCRC and yCRC compared to their respective
controls. Moreover, the microbiome-based classification model had similar
predication accuracy for CRC status in old- and young-onset patients, under-
scoring the consistency of microbial signatures across different age groups.

Colorectal cancer (CRC) is one of the most common non-sex-specific
cancer worldwide, after lung cancer, and accounts for about one mil-
lion deaths in 20201. In the last few decades, the incidence of CRC has
remained stable or decreased in the developed countries2. However,
the number of young-onset CRC (yCRC, colorectal cancer diagnosed in
patients under the age of 50 years) has been increasing globally3. The
striking number of young-onset patients is a growing challenge in CRC
management and global health. Despite up to 34% of yCRC having a

family history of colorectal cancer3, the majority of cases are without
clear genetic factors. The genetic background of world population is
unlikely changed over the last several decades. The increasing inci-
dence of yCRC may be attributed to changing environmental and
lifestyle factors.

Amongenvironmental factors, the gutmicrobiome—themicrobial
ecosystem residing primarily in the large intestine—has been impli-
cated in colorectal carcinogenesis. Animal studies have pinpointed
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three prominent examples of gut microbial toxins in colorectal
carcinogenesis4,5. For example, Bacteroides fragilis toxin promotes
colon tumorigenesis by activation of the TH 17 cell response6. Addi-
tionally, Fusobacterium nucleatum adhesion protein A (FadA) can bind
to E-cadherin of CRC cells, activates beta-catenin signaling, and reg-
ulates oncogenic responses7. Certain strains of Escherichia coli pro-
duce colibactin, a small-molecule genotoxin that can adduct to DNA
and induce double-strand DNA breaks8. In humans, about a dozen
metagenomic studies on various populations across the world have
identified substantial changes in abundance of specific bacteria9–16.
Meta-analyses of these datasets have identified globally cross-cohort
microbial signatures that can predict CRC at high accuracy13,14,17.
However, the studied cohorts have predominantly consisted of old-
onset patients. The number of yCRC patients in these studies varied
from 0 to 28, accumulating to 72 in total (Supplementary Table 1). It is
uncertain whether these microbial signatures are specific to oCRC or
can be generalized to yCRC.

A very recent study using 16S rRNA gene sequencing reported
distinct dysbiosis in the human gut microbiome of yCRC patients18.
Although they validated their findings in a subset of individuals using
metagenomic sequencing, their main discoveries were based on 16S
rRNA data. The technical limitations of this approach have limited the
ability to draw definitive conclusions19. Further efforts based on
metagenomic sequencing in larger cohort are needed to explore the
gut microbial signatures in yCRC. Deep metagenomic sequencing can
be leveraged to investigate strain-level diversity, providing valuable
insights for experimental validation.

In this study, we generated 460 CRC stool metagenomes,
including data from 167 yCRC patients. By integrating these datawith
a publicly available yCRC dataset, we identified consistent microbial
signatures in both oCRC and yCRC. These signatures encompassed
well-known CRC-associated taxa and virulence factors. Our strain-
level analysis, focusing on three CRC-associated species (F. nucle-
atum, B. fragilis and E. coli), supported the concordance in oCRC and
yCRC. We further leveraged other publicly available CRC metage-
nomic datasets and demonstrated that the microbiome-based pre-
dictive models had similarly high accuracy in both oCRC and yCRC
patients. These results provide valuable insights into the general-
izable microbial signatures of CRC and expand our understanding of
CRC microbiome.

Results
We recruited 460 CRC patients from a single hospital in Guangzhou
(Methods). All patients were treatment naïve by the time of enroll-
ment. Our cohort included patients with a wide age range, from 21 to
88 years old (Fig. 1a), with 95 patients diagnosed under the age of 40
and 167 patients under the age of 50. Across all age groups (Supple-
mentary Data 1), there were more male patients than female patients.
14.8% (n = 68) of cancers were stage I, 32.0% (n = 147) stage II, 36.1%
(n = 166) stage III and 17.2% (n = 79) stage IV; 24.8% (n = 114) were from
the right hemicolon, 34.8% (n = 160) left hemicolon and40.4% (n = 186)
rectum; 14.6% (n = 67) were with family history of CRC. There was no
correlation between incidence age and sex (P =0.06), tumor stage
(P = 0.10), tumor location (P =0.13), and family history of CRC (P = 0.3).
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Fig. 1 | Limited association between the gut microbiome and age in CRC
patients. a The number of patients in the Guangzhou cohort stratified by age and
sex. b Two-dimension scatter plot shows the overall pattern of samples. Principle
coordinate analysis (PCoA) was performed based on the Bray–Curtis distance cal-
culated from the abundance profile at species level. Each point represents one
sample, and color scale indicates age. Samples from female andmale patients are in

triangles and squares, respectively. Scatterplots of relationship between age and
PCoA axis 1 (c), PCoA axis 2 (d), number of species (e), and Shannon index (f). The
correlation coefficient was calculated using the Spearman method. The solid red
line was fitted by smooth function in R, and the gray area is the 95% confidence
interval. The Shannon index was calculated based on the abundance profile at the
species level.
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We observed a weak correlation between body mass index (BMI) and
age (Pearson correlation coefficient = 0.12, P = 0.01).

Limited associationbetween thegutmicrobiomeandage inCRC
patients
The relationship between age and the gut microbiome in CRC patients
was investigated using shotgun metagenomic sequencing of stool
samples. We generated a total of 32,403million paired-end high-quality
reads, with an average of 70 million paired-end reads per sample
(Methods). We found no correlation between age and alpha-diversity,
defined as the number of observed species and Shannon index
(Fig. 1e, f). The adjustment of confounders (BMI, sex, tumor location
and stage, and smoking) did not increase the association between
alpha-diversity and age. Similarly, therewas no correlation between age
and thefirst twocoordinates of theprincipal coordinate analysis (PCoA)
(Fig. 1b–d). Thiswas supportedby thepermutationmultivariate analysis
of variance (PERMANOVA) test, showing that age only explained a small
fraction of microbiome variance (R2 = 0.003, P=0.15).

To identify specific taxa associated with age, we tested the cor-
relation between age and species abundance (Methods). We only
found that the abundance of four species, namely Prevotella stercorea,
Bifidobacterium dentium, Prevotella copri, and Prevotella bivia, were
significantly correlated with age (false discovery rate (FDR) adjusted
P < 0.05, SupplementaryData 2). The associations of Prevotella species
were negative, while that of B. dentium was positive. B. dentium and P.
bivia’s associations with age were independent of body mass index
(BMI), sex, tumor location and stage, family history of CRC, and
smoking. Although Prevotella species are commonly found in the
human gut microbiota and have been linked to dietary habits, their
relative abundances were age-dependent and dropped from adult-
hood to old age20. B. dentium, which is commonly found in the human
oralmicrobiome21, had increased abundance and prevalence in the gut
with age22. While two dozen of other bacterial species have been
identified as age-associated23, their associations with age in CRC
patients wereweak, suggesting that CRC statusmay outperformage in
shaping the gut microbiome.

As CRC is one of the most studied traits in gut microbiome
research, a collection of CRC-associated taxa has been robustly iden-
tified in previous studies.We obtained a list of 118 CRC-associated taxa
from gutMDisorder24 (Methods). Among them, 24/25 taxa reported in
at least two studies were detected in our cohort with prevalence rates
from 15.43% to 90.65% (average 58.41%), with 16 taxa presented in over
half patients. Importantly, only the abundance of P. copri was corre-
lated with age, but its correlation was not significant after adjustment
for confounders (Supplementary Data 2).

Additionally, we validated our findings in a recently published
yCRC cohort (Fudan cohort)18. In this cohort, age was given as a binary
variable, oldor young,with the cutoff of 50. Consistently,we separated
our Guangzhou patients into old (age ≥ 50) and young (age < 50)
groups. We only found nine species with differential abundance
(P < 0.05) between old and young groups in both cohorts (Supple-
mentary Data 3). Four of them (P. stercorea, B.dentium, P. copri and P.
bivia) werementioned above. Although the other five species included
previously reported CRC-associated microbe Alistipes indistinctus10,15,
and CRC-depleted microbes Eubacterium rectale10 and Faecalibacter-
ium prausnitzii10, none passed the multiple testing correction (FDR
adjusted P > 0.05). Taken together, there was limited (if any) associa-
tion between the known CRC-associated taxa and age.

Bacterial species associated with oCRC and yCRC
To investigate the gut microbiome changes in oCRC and yCRC
patients, we compared them to age-matched controls. We reanalyzed
the stool metagenomic data from the Fudan cohort18 and integrated it
with our Guangzhou cohort (Methods). In accordance with Yang
et al.18, the yCRCwas defined as age under 50 years old, and the others

were oCRC. A PCoA based on species-level abundance showed that
disease effect surpassed the batch effect (Fig. 2a–c). The Guangzhou
patients had similar distributions in PCoA1 and PCoA2 with patients in
the Fudan cohort, and lower median values than the controls. Fur-
thermore, the CRC status explained a slightly higher variance than
study effect (R2 = 0.00408 and 0.00376, PERMANOVA). Therefore, the
batch effect in Guangzhou and Fudan cohorts was limited.

Previous studies have suggested that the microbiome of CRC
patients had a higher alpha diversity than controls, possibly due to the
expansion of typically oral microbes in addition to the baseline gut
microbiome13,14,17. We confirmed this finding in the Fudan cohort,
where oCRC and yCRC patients had a higher Shannon index than their
controls (Fig. 2d). Guangzhou patients also had a higher Shannon
index than the Fudan controls, supporting the increased diversity in
CRC patients.

To identify taxa that are differentially abundant in CRC patients,
we conducted two sets testing. The first set of testing was conducted
only on the Fudan cohort, while the second set was conducted on the
Guangzhou patients and Fudan controls (Methods). Our analysis
revealed four species (Clostridium symbiosum, Peptostreptococcus sto-
matis, Parvimonas micra, and Hungatella hathewayi) that were con-
sistently enriched (FDR adjusted P <0.05) in oCRC and yCRC patients
in both cohorts compared to Fudan controls (Fig. 2e, Supplementary
Data 4). These four species are well-known CRC-associated
biomarkers13,14 and were not associated with age (Supplementary
Data 3). C. symbiosum, for instance, was first reported by a qPCR
study25 and confirmed in a meta-analysis study that integrated five
shotgun metagenomic studies13. P. micra and P. stomatis were among
the most important features in CRC classifiers built on stool micro-
biome data13.

We also found six other microbial species that were differentially
abundant (FDR adjusted P <0.05) in oCRC and showed similar trends
in yCRC inboth cohorts (Supplementary Fig. 1, Supplementary Data 4).
Among these six taxa, Eggerthella lenta, Erysipelatoclostridium ramo-
sum, and Flavonifractor plautii were enriched in CRC groups and have
been previously reported as biomarkers for CRC10,18. In particular, F.
plautii was identified as a biomarker for yCRC by Yang et al.18. Two
known bacteria Eubacterium rectale and Ruminococcus bicirculans, as
well as ametagenomically assembled taxon Eubacterium sp. CAG38was
depleted in CRC microbiome. E. rectale is one of the most prevalent
human gut bacteria26 and was reproducibly reported with decreased
abundance in CRC patients compared to healthy controls9,10.

On the other hand, three of the four taxa (Alistipes indistinctus,
Clostridium aldenense, Eisenbergiella tayi, and Fusobacterium sp. oral
taxon 370) enriched in yCRC showed similar trends in oCRC as well
(Supplementary Fig. 2, Supplementary Data 4). Fusobacterium sp. oral
taxon 370 is one of the typical oral bacteria linked to CRC in old-onset
patients14. While A. indistinctus was at a low abundance in the human
gut microbiome, it was involved in CRC carcinogenesis and treatment
response27. We specifically analyzed two taxa, B. fragilis6 and
F. nucleatum7, with proposed carcinogenesismechanism. Although the
B. fragilis abundance was higher in CRC than control, the significance
was lost after multiple hypothesis adjustment (Supplementary Fig. 3).
F. nucleatum’s prevalence was surprisingly low in the Fudan cohort,
while its abundance had a similar distribution in oCRC and yCRCof the
Guangzhou cohort. Additionally, at the significant level of nominal
P <0.05, 23 of 24 species passing the threshold had directionally
consistent changes in old- and young-onset patients compared with
their controls (Supplementary Data 4). Overall, our findings indicate
that most of the CRC-associated taxa showed concordant changes in
both oCRC and yCRC microbiomes compared to their controls.

Strain-level diversity of F. nucleatum, B. fragilis, and E. coli
Our deepmetagenomics sequencing data allowed us to investigate the
strain-level insights into CRC-associated species. Given the inherent
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challenges of strain level, we focused on three CRC-associated species
F. nucleatum (Fn), B. fragilis (Bf), and E. coli (Ec) in the Guangzhou
cohort. We used StrainPhlAn317 to construct the phylogenetic tree and
used inStrain28 to examine the genome-wide sequence diversity
(Methods).

Fnwas identified in 63 samples according to its marker genes and
the corresponding phylogenetic tree showed no correlation with
patient age, tumor stage, and location (Supplementary Fig. 4a). No
significant difference was observed in the Fn prevalence between
oCRC and yCRC. Genome-wide sequence analysis revealed similarly
high population-level average nucleotide identity (popANI)28 values to
the Fn reference genome in oCRC and yCRC metagenomes, with no
significant difference (Supplementary Fig. 4b). We also evaluated the
nucleotide diversity, an indicator of strain diversification. Our analysis
revealed no association between Fn nucleotide diversity and patient
age, tumor stage or location (Supplementary Fig. 4c–e). A study
reported that F. animalis (Fa, also known as Fn subspecies animalis)
had higher abundance and prevalence than Fn in tumor samples29. In
line with this finding, we found Fa in more samples with higher cov-
erage than Fn in our cohort (Fig. 3). Fa prevalence, popANI, and
nucleotide diversity values showed no difference in oCRC and yCRC
(Supplementary Fig. 5). Taken together, the analysis of Fn and Fa dis-
tribution and diversity revealed no distinctions between oCRC and
yCRC. However, we noted a higher nucleotide diversity of Fa in the

colon compared to rectum tumors (Supplementary Fig. 5). A similar
trend was observed for Fn, albeit with lower significance due to a
smaller sample size. Thisobservation suggests that Fn and Faexhibited
increased diversity in patients with colon tumors.

For Bf, we identified two distinct phylogenetic clusters (Supple-
mentary Fig. 6a). Cluster 1 (N = 267) was dominated by samples with
metagenome-assembled genomes (MAGs) annotated to strain
NCTC9343 (average nucleotide identity (ANI) > 95%), while cluster 2
(N = 67) was dominated by samples with MAGs annotated to strain
Q1F2 (Methods). The distribution of oCRC and yCRC was not different
in the two clusters. The phylogenetic tree revealed no correlation with
patient age, tumor stage or location, within or between clusters
(Supplementary Fig. 6a). Genome-level analysis demonstrated high
popANI values to the reference genomes in oCRC and yCRC (Supple-
mentary Fig. 6b). While the nucleotide diversity of cluster 1 was not
associated with age, the nucleotide diversity of cluster 2 was higher in
yCRC than oCRC (P =0.02, Supplementary Fig. 6c). This suggests that
Bf strain in cluster 2 samplesmay be under stronger selection pressure
in yCRC patients.

For E. coli, our analysis identifiedonly one strain cluster (ANI > 95%
to strain ATCC 11775) in 317 (69%) samples, with no significant differ-
ence in prevalence between oCRC and yCRC. The marker gene-based
phylogenetic tree analysis revealed no correlation with patient age,
tumor stage or location (Supplementary Fig. 7a). Genome-level

−0.4

−0.2

0.0

0.2

−0.2 0.0 0.2 0.4 0.6
PCoA1 (11.79%)

PC
oA

2 
(7

.3
2%

)

Disease
Control

CRC

Group
oControl (n=50)

oCRC_Fudan (n=50)

oCRC_Guangzhou (n=293)

yControl (n=50)

yCRC_Fudan (n=50)

yCRC_Guangzhou (n=167)

0.019

0.00078
0.89

0.31

0.36
0.7

−0.4

0.0

0.4

0.8

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

PC
oA

 1

0.059

0.021
0.64

0.46

0.012
0.093

−0.5

0.0

0.5

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

PC
oA

 2

0.19

0.0025
0.081

0.053

1.7e−05
0.035

2

4

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

Sh
an

no
n 

in
de

x

Clostridium_symbiosum Hungatella_hathewayi Parvimonas_micra Peptostreptococcus_stomatis

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

oC
on

tro
l

oC
RC_F

ud
an

oC
RC_G

ua
ng

zh
ou

yC
on

tro
l

yC
RC_F

ud
an

yC
RC_G

ua
ng

zh
ou

−6

−4

−2

0

R
el

at
iv

e 
ab

un
da

nc
e 

(lo
g1

0)

a

d

b c

e

Fig. 2 | Consistent changes ofCRC-associatedmicrobes in old- and young-onset
patients in two independent cohorts. a Two-dimension scatter plot shows the
overall distributionof Fudan andGuangzhou samples. Principle coordinate analysis
(PCoA) was performed based on the Bray–Curtis distance calculated from the
abundance profile at species level. Eachpoint represents one sample. Samples from
Fudan and Guangzhou cohorts are in red and blue, respectively. Circles are control
samples,while triangles areCRC samples. Violinplots showvalues of PCoAaxis 1 (b)
PCoA axis 2 (c), and Shannon index (d) across different groups. The thick horizon

line indicates the 50% percentile. P values on the top were calculated by two-side
Wilcoxon rank-sum test. e Four well-known CRC-enriched species significantly
enriched in both oCRC and yCRC patients at false discovery rate (FDR) adjusted
P <0.05. The sample size of each group is the same as a. The relative abundance is
in log10 scale and zeros were replaced by a small value. The box plots show the
median (thick line), interquartile range (box limits), 1.5× the interquartile range
span (whiskers), andoutliers (dots). Diamond shape indicates themeanabundance.
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analysis indicated a similar popANI value to the reference genome in
oCRC and yCRC (Supplementary Fig. 7b). Nucleotide diversity analysis
showed no association with patient age, tumor stage or location
(Supplementary Fig. 7c–e).

Functional metagenomic signatures for oCRC and yCRC
Unlike 16S rRNA gene amplicon data, metagenomes allow us to access
the functional capacity of the gut microbiome. In our Guangzhou
cohort, age did not have a significant association with the top two axis
of PCoA, calculated from the microbial pathway profile (Supplemen-
tary Fig. 8). In PERMANOVA, age explained a small and non-significant
amount of overall variance of the microbial pathway variation
(R2 = 0.005,P =0.13). To identify specificmicrobial pathway associated
with age, we tested the associations between age and abundances of
metaCyc30 pathways (Methods). Only one metaCyc pathway, PWY-
6608: guanosine nucleotides degradation III, was associated with age
at P <0.01 with and without adjustment for confounding factors
(Supplementary Data 5).

To identify functional signatures associatedwith oCRC and yCRC,
we integrated the functional pathway profiles of our Guangzhou
cohort and the published Fudan cohort. PCoA showed thatGuangzhou
patients were closer to Fudan patients than controls (Supplementary
Fig. 9). In addition, CRC status explained higher variance than the
study effect (R2 = 0.014 vs. 0.006, PERMANOVA). We then conducted
differential analysis in metaCyc pathways (Methods). Out of the 435
tested metaCyc pathways, 69 had differential abundance between
oCRC and age-matched controls in both cohorts (FDR adjusted
P <0.05, Supplementary Data 6). Among these, while only one path-
way, PWY-7316: dTDP-N-acetylviosamine biosynthesis, was differential
in yCRC and their controls at the same significant level, the majority
(60/69) had concordant enrichment direction in yCRC.

We next examined the well-known CRC-associatedmicrobial cutC
gene, which encodes choline trimethylamine-lyase responsible for
production of the disease-associated trimethylamine (TMA). In total,
113 UniRef9031 gene families annotated as cutC orthologs were detec-
ted in at least one sample in Guangzhou or Fudan cohorts. Of these, 8
cutC orthologs presented inmore than half of Guangzhou patients had
concordant enriched direction in oCRC and yCRC compared to their
controls (Supplementary Data 7). Remarkably, two cutC orthologswith
represented sequences from Bacteroides species, including Bf ),
reached a statistically significant level of nominal P <0.05. The sum
abundance of cutC gene families was higher in oCRC and yCRC com-
pared to their controls (Supplementary Fig. 10).

We accessed CRC-associated virulence factors and toxins, focus-
ing on fadA (encodes Fn adhesion protein A)7, bft (encodes Bf
enterotoxin)5, the pks genomic island (encodes colibactin in some Ec
strains)8, and the bai operon (encodes enzymes for the conversion of
primary to secondary bile acids in Clostridium species)32 (Methods).
fadA exhibited significant enrichment in both oCRC and yCRC com-
pared to their respective controls (Fig. 4a). In the strain-level analysis,
we identified Fn and Fa in our samples. Here we further explored fadA
abundance in the context of Fn and Fa. fadA abundance was not dif-
ferent in samples with either Fn or Fa (Fig. 4b). Samples with both Fn
and Fa had the highest fadA average abundance, while samples with-
out any strain exhibited the lowest fadA average abundance. For bft,
we observed an enrichment trend in CRC compared to controls
(Fig. 4a). Notably, both bft abundance and prevalence were differ-
entiated in the two phylogenetic clusters defined in the strain-level
analysis section (Fig. 4c). The pks abundance exhibited variability
between cohorts, being higher in CRC than controls in the Fudan
cohort but lower in the Guangzhou CRC than controls (Fig. 4a). Strain-
level analysis identified strain EcNCTC9343was the dominant strain in
theGuangzhou cohort, and the reference genomeof this strain did not
contain the pks island.We explored the correlation between Ec and pks
abundances, finding a positive correlation in the Guangzhou cohort
but no correlation in the Fudan cohort (Fig. 4d). This discrepancy
suggests a potential difference in the ecological context between
populations. For bai, its abundance was significantly higher in yCRC
than in the respective controls (Fig. 4a). In the Fudan cohort, oCRCand
their controls had similar levels of bai, whichwere higher than those in
young controls. This finding aligns with reports of elevated bile acid
metabolism in elderly people33, indicating that agingmay influence the
association between bai and CRC in the elderly. In summary, CRC-
associated virulence factors (fadA, bft) were enriched in both oCRC
and yCRC.

Associations between microbial markers and CRC
characteristics
CRC is heterogenous and has diverse molecular characteristics. Here,
we investigated the associations between 18 taxonomicmarkers (those
highlighted in Fig. 2, Supplementary Figs. 1–3) and CRC molecular
characteristics, including tumor stage and location, mismatch repair
(MMR), BRAF and HER2 mutation status (Methods, Supplementary
Data 8). Higher abundance of P. stomatis was observed in stage III
patients, while E. rectale showed increased abundance in stage II
patients, both compared to stage I patients. Additionally, the

−5−4−3−2−1
relative abundance (log10)

4.0 2.0 01 8.0 6.0
genome breadth genome coverage (log10)

Fn

Fa

Fn

Fa

Fn

oCRC (n=67) yCRC (n=43)

Fig. 3 | Higher prevalence and abundance of F. animalis than F. nucleatum in
CRC patients. Heatmap shows the abundance, genome-wide breadth, and cover-
age of F. nucleatum (Fn) and F. animalis (Fa). Only 110 samples which had genome

breadth >0.1 and coverage >0.1 for Fn (RefSeq GCF_008633215.1) or Fa (RefSeq
GCF_000158275.2) reference genomes were included. Samples were sorted in
decreasing order by the relative abundance of Fn, calculated by MetaPhlAn 3.
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abundance of E. ramosum was lower in patients with rectal tumors, E.
rectalewas higher in patients with left-side tumors, P.micrawas higher
in patients with rectal tumors, relative to their counterparts with right-
sided tumors. However, in our trend analysis, we did not observe any
statistically significant monotonic relationships of these 18 taxa con-
cerning tumor stage and location.

Notably, the relative abundance of Fn (maker-gene-based quan-
tification) was higher in MMR deficient (dMMR) patients than MMR
proficient (pMMR) patients, and higher in patients with HER2 over-
expression compared to those without overexpression (Supplemen-
tary Data 8). We further investigated such associations using genome-
based quantification, which can offer strain-level resolution as descri-
bed in the preceding section. Intriguingly, both Fn and Fa demon-
strated elevated abundance in patients with dMMR and HER2
overexpression, relative to their counterparts (Fig. 5).

We additionally examined the associations between genemarkers
(fadA, bft, pks, and bai) and tumor stage, location, as well as MMR,

BRAF, and HER2 mutation status. No significant association was iden-
tified in our cohort.

Similar prediction accuracy of CRC status in old- and young-
onset patients
Several studies have demonstrated the potential of tailoring the gut
microbiome for predicting CRC status13,14,17. To access the transfer-
ability of classifiers across different patient groups, we employed the
random forest algorithm to train machine learning models separately
onoCRCand yCRCpatients (Methods). Our results revealedpromising
cross-application performance. The model trained on Fudan oCRC
patients exhibited robust predictive capability for Fudan yCRC
patients, achieving an area under receiver operator curve (AUROC) of
0.7688, only slightly lower than the cross-validated AUROC of 0.8127
(Fig. 6a). Similarly, the model trained on Fudan yCRC patients per-
formed similarly to the cross-validation on oCRC patients, with an
AUROC of 0.7548 and 0.7671, respectively (Fig. 6a). We extended our
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of CRC-associated virulence factors in different groups. RPM means reads per
million mapped reads, see Methods for gene quantification. fadA encodes F.
nucleatum adhesion protein A; bft encodes B. fragilis enterotoxin; the pks genomic
island encodes enzymes to produce genotoxic colibactin (in E. coli); the bai operon
encodes bile acid-converting enzymes (present in some Clostridiales species).
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breadth >0.1 and coverage >0.1. cNormalized log abundance and prevalence of bft
stratified by B. fragilis strain clusters. Cluster assignment was conducted based on
marker genes and genome-wide sequence analysis (Methods). P values on the top
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smooth function in R, and the gray area is the 95% confidence interval. The boxplot
conventions are consistent with the description in Fig. 2.
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evaluation to theGuangzhou cohort. The oCRCmodel demonstrated a
high recall rate of 0.7952 when predicting CRC status in Guangzhou
oCRC patients, and surprisingly, it outperformed the yCRC model in
predicting CRC status in Guangzhou yCRC patients (0.7485 vs.
0.5629, Fig. 6b).

To overcome the limitation of small sample size in the Fudan
cohort, we incorporated the publicly available dataset that consisted
of 600 CRCs and 662 controls, which included only 72 patients diag-
nosed under the age of 509–16. The model trained on this expanded
dataset predicted CRC status slightly better in Fudan oCRC patients
compared to yCRC patients (AUROC=0.8048 vs. 0.7784, Fig. 6a).
Similarly, the model predicted CRC status in the Guangzhou cohort
with a slightly higher recall rate in oCRC than yCRC patients (0.8908
vs. 0.8683, Fig. 6b). When we included Guangzhou CRC patients in the
training data, the resulting model had similar prediction accuracy for
oCRC and yCRC patients in the Fudan cohort (AUROC=0.7800 and
0.7860, Fig. 6a). The model trained on the public and Fudan datasets
also showed similar performance on oCRC and yCRC patients in the
Guangzhou cohort (recall rate=0.9044 and 0.9042). In summary, our
results suggest that the microbiome-based classifiers can predict CRC
status in both old- and young-onset patients with similar accuracy.

Additionally, we trained the random forest models using meta-
genomicpathwayprofiles to predictCRC status (Methods). The overall
performance of the pathway-basedmodel, asmeasured by the AUROC
and recall rate, was lower than that of the species-based model

(Supplementary Fig. 11). This aligns with previous studies reporting
that metagenomic pathway-based CRC prediction models tend to
exhibit relatively poorer performance compared to species-based
models13,17.

Finally, we replicated our machine learning experiments using
another method, least absolute shrinkage, and selection operator
(LASSO) logistic regression. Consistent with the findings from the
random forest approach, the LASSO models built on species profiles
performed better than the pathway profiles (Fig. 6c, d, Supplementary
Fig. 11c, d). Importantly, the performance of LASSO models on oCRC
and yCRC was similar, suggesting the models’ transferability across
different age groups.

Discussion
The CRC microbiome has been extensively studied in old-onset
patients, but less is known in young-onset patients. By integrating
public data with our own data, we assembled the largest metagenome
dataset of young-onset CRC patients to date. Our results revealed that
the gut microbiome changes associated with CRC were similar in both
old- and young-onset patients in two independent cohorts. We
observed the enrichment of key CRC-associated bacteria, including P.
micra, P. stomatis, C. symbiosum, and H. hathewayi, in both patient
groups. CRC-associated virulence factors (fadA, bft) were enriched in
both old- and young-onset CRC compared to their respective controls.
Our strain-level analysis reinforced the consistency of CRC-associated
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microbial signatures in old- and young-onset CRC. Additionally, the
similar prediction accuracy of our microbiome-based models for CRC
status in both old- and young-onset patients underscores the con-
sistency of microbial signatures across different age groups.

In contrast to the widespread assumption that intestinal dysbiosis
is generally associated with decreased alpha diversity, the gut micro-
biome in CRC exhibits higher richness than controls13,14. Our findings
indicated that the increased alpha diversity was not only observed in
old-onset patients but also in young-onset patients in both the
Guangzhou and Fudan cohorts. However, in the original study of the
Fudan cohort, they reported a reduction in alpha diversity in old-onset
CRC but an increase in young-onset CRC based on 16S rRNA gene
amplicon sequencing18. The observed discrepancy may stem from the
methodological differences betweenmetagenomic and 16S rRNA gene
amplicon data. The robustness of our metagenomic approach in cap-
turing microbial richness highlights the importance of considering
sequencing methodologies in microbiome research.

Discrepancy was also found in individual taxa. The Fudan study
identified F. plautii as an important bacterial species in yCRC, but not
in oCRC18. We confirmed its enrichment in yCRC patients in our

Guangzhou samples. Whereas the abundance of F. plautii was also
increased in oCRC in the Guangzhou and Fudan cohorts according to
metagenome data. Moreover, the four disease-enriched species (P.
micra, P. stomatis C. symbiosum, and H. hathewayi) were not distin-
guishable in 16S rRNA data between CRC and controls in the Fudan
study18. These discrepancies may be accounted by the better resolu-
tion of species-level profiling offered bymetagenomic data34. Notably,
F. nucleatumwas not among the CRC-associated features in the Fudan
study18. Throughgenome-wide sequence analysis, we confirmed that F.
nucleatum can only be detected (with breadth >0.1 and coverage >0.1)
in two Fudan samples. The low prevalence of this species did not
provide a sufficient sample size for rigorous statistical testing.

Accumulating evidence has shown that insights into microbial
strain levels are essential for understanding disease-associated com-
mensal bacteria5. Our strain-level analysis of the deep sequencing data
found two closely related Fusobacterium species Fn and Fa in the stool
metagenome of CRC. This finding aligns with a previous study that
highlighted Fa’s prevalence over Fn in CRC tumor biopsies29. Notably,
in the final revision of this manuscript, a comprehensive study repor-
ted the dominance of a distinct clade of Fa in the CRC niche35. The
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abundance of fadA exhibited similar levels in our samples containing
either Fn or Fa, suggesting potential pathogenicity associated with
both species. Furthermore, both Fn and Fa were enriched in patients
with dMMR andHER2 overexpression, as opposed to pMMRandHER2
non-overexpression patients, respectively. Given that dMMR patients
appear to be susceptible to immunotherapy36 and Fn has been shown
to enhance the efficacy of PD-L1 blockage in CRC through both in vivo
and in vitro evidence37, the enrichment of Fn/Fa in dMMR CRC raises
questions regarding their roles in treatment response. However, fur-
ther investigations are warranted to understand the interplay between
Fn/Fa and treatment response, as Fn has also been reported to induce
resistance to immunotherapy38. Taken together, our study demon-
strates the dynamics of Fusobacterium species in CRC, shedding light
on their varying abundance across distinct molecular subtypes.

We found two B. fragilis strain clusters in CRC. Interestingly, the
abundance and prevalence of enterotoxin gene bft was higher in
cluster with strains closely related to NCTC9343 than cluster with
strain closely related toQ1F2. This example supports existing literature
on the complex roles of B. fragilis in human health and disease5.
However, further studies are required to determine the identity of
these strains.

Our metagenomic functional analysis revealed an age-
independent enrichment of the N-acetylviosamine biosynthesis path-
way in the CRC microbiome. Given that N-acetylviosamine is a com-
ponent of the O-antigen, which is part of the lipopolysaccharide
(LPS)39, our findings align with a recent study indicating LPS enrich-
ment in blood samples from CRC patients40. As LPS is a prevalent
product in the human gut microbiome, capable of activating Toll-like
receptor 4 and inducing immune responses and inflammation41, our
results support the immune and inflammation hypothesis of CRC
carcinogenesis4.

While our study contributes valuable insights into the age-
independent changes in the gut microbiome associated with CRC, it
is crucial to acknowledge certain limitations. Given the incidence rate
of young-onset CRC is about an order of magnitude lower than old-
onset CRC42, the number of young-onset patients in our study was
smaller than that of old-onset patients. Despite this limitation, our
investigation remains the most extensive analysis of the gut micro-
biome in young-onset CRC patients to date. Moreover, we cannot
definitively establish whether the CRC-enriched microbes are merely
associated with the disease or have causal roles in carcinogenesis.
Despite age-related changes in the gut microbiome observed in the
general population23, our results unveiled convergent changes in gut
microbiome in old- and young-onset CRC patients, regardless of age.
This implies that the tumor status may drive the alteration of the
microbial ecosystem in the gut, surpassing the age-related changes.
AlthoughMendelian randomization studies have highlighted potential
causal links between microbial factors and diseases43,44, its application
in CRC-associated markers remains challenging. One obstacle is the
low prevalence of CRC-associated markers in the general population,
requiring large sample size to obtain reliable genetic instruments. It is
important to note the limitations stemming from the absence of
dietary information in our study. Dietary factors play an important role
in shaping the gut microbiome. Given the complexity of Chinese
cooking culture (characterized by diverse and complex dishes)45,
obtaining precise and reliable dietary informationwas out of the scope
of this study. The absence of dietary information in our study
emphasizes the need for future investigations to explore the intricate
interplay between diet, convergent changes in the gut microbiome,
and their potential roles in promoting carcinogenesis.

Microbiome-based models have been explored and strongly
support the promise of non-invasive CRC diagnostics13,14. Our study
expanded this promise by demonstrating that the model could be
applied across a broad age range. Fecal sample has been recognized as
an ideal source for non-invasive CRC screening. Currently, the main

large-scale implemented CRC screening tests include the fecal immu-
nochemical test (FIT) and the fecal DNA methylation test. However,
both methods lack an optimal threshold for young and old popula-
tions, as the fecal hemoglobin concentration varies with age and sex46,
andDNAmethylation changes aremore likely absent in young patients
than old patients47. The similar prediction accuracy of the gut
microbiome-based predictionmodel shown in our studymay facilitate
the generalization of CRC screening to all adulthood.

In conclusion, our study highlights the age-independent sig-
natures in the gut microbiome of CRC. The identified microbial pat-
terns emphasize the potential of microbiome-based models for non-
invasive CRC diagnostics across a diverse age group. Our findings also
demonstrate an example of investigating disease-associatedmicrobial
signatures at the strain-level, contributing to a more nuanced under-
standing of the intricate relationships between the microbiome
and CRC.

Methods
Study cohorts and data
Guangzhou cohort. All patients were recruited from Sun Yat-sen
University Cancer Center in Guangzhou in accordance with the study
protocol approved by the Ethics Committee of Sun Yat-sen University
Cancer Center (B2019-214-X02). Informed consent was obtained from
every patient. The inclusion criteria were newly diagnosed pathologi-
callyproven locally advanced colonor rectal adenocarcinoma.Patients
with any previous tumor history, tumor treatment history, antibiotics,
and/or probiotics treatment within 1-month were removed from the
study. Clinical data was obtained from regular medical checkups and
questionaries. The tumor molecular characteristics (MMR, HER2, and
BRAF mutation status) were determined by immunohistochemistry
(IHC) test. dMMR was defined as loss expression in any of MSH2,
MSH6, MLH1, and PMS2 proteins. HER2 overexpression was defined as
strong (3+) membranous staining by IHC48. A summary of metadata for
the recruited patients was given in Supplementary Data 1.

Stool samples were collected by patients following the manu-
facturer’s instructions either at homeor in thehospital49. Sampleswere
transferred to the laboratory and stored at −80 °C within 7 days and
kept thawed until shipped to BGI-Shenzhen. Stool DNA was extracted
using MagPure stool DNA KF kit B (no. MD5115-02B). DNA concentra-
tions were estimated using Qubit (Invitrogen). The DNA library was
constructed with 200ng DNA as input. Shotgun metagenomic
sequencing was then performed on the BGI-seq platform50 to generate
at least 10 million paired-end reads (length 100bp) for each sample.

Fudan cohort. For the Fudan cohort, sequencing data was down-
loaded from the NIH National Center for Biotechnology Information
Sequence Read Archive (SRA) with BioProject ID PRJNA763023. In
total, there were 200 metagenomes consisting of four individual
groups (50 samples in each group): old control (oControl), old-onset
colorectal cancer (oCRC), young control (yControl), and young-onset
colorectal cancer (yCRC). The age cutoff for old and young-onset CRC
was 50 years old. Details of the cohort can be found in the original
study by Yang et al.18.

Public cohort. The public cohort comprised samples from eight dif-
ferent studies9–16. Instead of downloading original sequencing reads,
we obtained the processed MetaPhlAn3 taxonomic and HUMAnN3
functional profiles from the supplementary table in Beghini et al.17.
There were 600 CRC patients and 662 controls. The number of sam-
ples in each cohort stratified by age was provided in Supplementary
Table 1.

Metagenomic sequencing data processing
The quality control of sequencing reads was done according to the
metapi workflow (https://github.com/ohmeta/metapi/). Sequences

Article https://doi.org/10.1038/s41467-024-47523-x

Nature Communications |         (2024) 15:3396 9

https://github.com/ohmeta/metapi/


with average quality score below Q30 (0.001% error rate) were
removed. Adapter sequences and low-quality tails were trimmed. Only
sequences with a length of 70 bp or more were retained. High-quality
sequences were then aligned to the human reference genome build
hg38withbowtie2 (v2.4.2)51. Sequencesmapped to the humangenome
under --very-sensitive mode were removed, and the resulting sequen-
ces were used in downstream analysis. Supplementary Data 9 provides
a summary of each quality control step. Since 449 out of 460 samples
(97.6%) had over 10 million paired-end reads for downstream analysis,
we did not subsample the sequences to the lowest sequencing depth
to avoid data loss.

To ensure the comparability of our analysiswith several large CRC
microbiome studies, we calculated the taxonomic and functional
abundance profiles using MetaPhlAn3 and HUMAnN317. Default para-
meters were used, and the smallest relative abundance value was set
to 1 × 10−5.

We also applied the same quality control and taxonomic analysis
to the 200 metagenomes of Fudan cohort.

Alpha and beta diversity
We assessed the microbiome alpha-diversity using Shannon index and
the observed number of species, and beta-diversity using the
Bray–Curtis distance. The alpha-diversity was only evaluated on the
species abundance profile, while the beta-diversity was evaluated on
both the species and pathway abundance profiles. R package vegan
(version 2.6.4) was used for these calculations.

In our Guangzhou cohort, the Shannon index did not show a
correlation with sequencing depth (rho = −0.027, P =0.56). We used
permutationmultivariate analysis of variance (PERMANOVA) based on
the Bray–Curtis distance matrix to estimate the variance explained by
age, sex (self-report), bodymass index (BMI), smoking, tumor location
and stage in the Guangzhou cohort. We also used PERMANOVA to
evaluate the disease and batch effect when integrating the Guangzhou
and Fudan cohorts. For each experiment, the number of permutations
was set to 10,000.

Identification of differential taxa and microbial pathway
To evaluate the correlation between the abundance of each species
and age, we used Spearman correlation with and without correction
for covariates. As most of the previously reported CRC-associated
microbes presented in >15% of the individuals in the Guangzhou
cohort, we focused on taxa with a prevalence rate of at least 15% to
ensure the power of analysis. We corrected for covariates by first
applying the central log-ratio (CLR) transformation to the relative
abundance profile52, followed by fitting a linear regression model with
sex, BMI, tumor location and stage, family history of CRC, and smoking
as covariates. We then calculated the Spearman correlations between
the residuals and age. The obtained Spearman correlation coefficients
demonstrated high concordance with those derived from MaAsLin2
(v1.16.0)53, a widely-used microbiome analysis tool (Pearson correla-
tion coefficients = 0.95 and 0.84, with and without correction for
covariates). In addition, unweighted analysis based on the presence
and absence of taxa was performed using MaAsLin2, by fitting linear
models with and without correction for covariates. The same analyses
were applied to microbial pathways.

We used Wilcoxon–Mann–Whitney test to identify microbial taxa
and pathways with differential abundance between CRC patients and
controls in the Fudan (50 oCRC, 50 oControl, 50 yCRC, and 50 yCon-
trol) andGuangzhoucohorts (293 oCRCand 167 yCRC).We conducted
four different comparisons: (1) Fudan oCRC versus Fudan oConrol, (2)
Fudan yCRC versus Fudan yControl, (3) Guangzhou oCRC versus
Fudan oControl, and (4) Guangzhou yCRC versus Fudan yControl. We
corrected P values formultiple hypotheses using Benjamini–Hochberg
(FDR) procedure for all taxa in each comparison. This analysis was
conducted in R.

Strain-level analysis of F. nucleatum, B. fragilis, and E. coli
Weused twodistinctmethods, StrainPhlAn317 and inStrain (v1.8.0)28, to
explore the strain-level diversity of three well-known CRC-associated
bacteria: F. nucleatum (Fn), B. fragilis (Bf), and E. coli (Ec). StrainphlAn3
relies on marker genes, while inStrain considers the genome-wide
sequences. Our analysis focused on 460 Guangzhou samples, which
had higher sequencing depth than the Fudan and public samples.

For StrainPhlAn3, default parameters were applied, requiring a
minimum of 20 marker genes per sample, each marker gene found in
at least 80% of samples. Fnwas found in 63 (14%) samples based on 36
marker genes. Bf was found in 334 (73%) samples based on 46 marker
genes. Ec was found in 317 (69%) samples based on 24 marker genes.

For inStrain analysis, we built a comprehensive reference genome
from de novo assembly and NCBI RefSeq genomes. Using the metapi
pipeline, which employed megahit (v1.2.9)54 for genome assembly,
metabat255 for binning, and bowtie2 for alignment, we obtained 37,441
metagenome-assembled genomes (MAGs) with a minimum length of
200 kb. We then used GTDB-Tk (v2.1.0)56 to annotate these MAGs
referring to GTDB release20757 with default parameters. For Fn, only
6 samples had MAGs annotated to Fusobacterium nucleatum_J (RefSeq
assembly GCF_008633215.1, NCBI strain identifier 13-08-02), while
11 samples hadMAGs annotated to Fusobacteriumanimalis (Fa, RefSeq
assembly GCF_000158275.2, strain identifier 7_1). Fawas also known as
Fn subspecies animalis. For Bf, 261 samples had MAGs annotated to
RefSeq assembly GCF_000025985.1 (NCBI strain NCTC9343), and
60 samples had MAGs annotated to RefSeq assembly
GCF_002849695.1 (NCBI strain Q1F2). For Ec, 285 samples had MAGs
annotated to RefSeq assembly GCF_003697165.2 (NCBI strain ATCC
11775). As a sanity check, samples with MAGs annotated to Fn, Bf, and
Ec strains were recovered in the corresponding StrainPhlAn3 analysis.
We combined 6356 high-quality MAGs (>90% completeness and <5%
contamination, according to the definition in Bowers et al.58) and 5
RefSeq genomes (mentioned above) together and used dRep (v3.2.0)59

to select a unique set of reference genomes. After dereplication, 3084
genomes remained, including the 5 RefSeq genomes. Subsequently,
reads from 460 Guangzhou samples were aligned to the dereplicated
genomes using bowtie2, and the inStrain analysis was applied to the 5
RefSeq genomes.

Given the varied abundances of different taxa, we used taxon-
specific parameters for the interpretation of inStrain results. For Fn
and Fa, we used breadth >0.1 and coverage >0.1 (meaning that at least
10% of the reference genome was mapped and the average genome-
wide mapping frequency is at least 0.1); for Bf, breadth >0.5 and cov-
erage >1.0; for Ec, breadth >0.1 and coverage >0.2. These criteria
retained 50 samples for Fn (including 5 with MAGs annotated to
RefSeq assembly GCF_008633215.1 and 22 supported by StrainPhlAn3)
and 84 samples for Fa (including 11 with MAGs annotated to RefSeq
assembly GCF_000158275.2). For Ec, 328 samplesmet the criteria, with
299 (91%) supported by StrainPhlAn3.

For Bf, 275 samples remained for strain NCTC9343 (271 samples
supported by StrainPhlAn3) and 67 samples for strain Q1F2 (66 sam-
ples supported by StrainPhlAn3). Of note, strain Q1F2 was not covered
in StrainPhlAn3 due to the absence of marker genes for this taxon. We
inspected the gene marker-based phylogenetic tree of Bf. There were
two distinct clusters, one was predominantly composed of samples
with MAGs annotated to strain NCTC9343, and the other was domi-
nated by samples with MAGs annotated to strain Q1F2. Consequently,
we manually divided the 334 StrainPhlAn3 samples into two clusters.
Cluster 1 (related to NCTC9343) comprised 267 samples, all supported
by inStrain analysis. Cluster 2 (related to Q1F2) consisted of 67 sam-
ples, with 61 supported by inStrain analysis.

Known CRC-associated microbial taxa
Known CRC-associated microbial taxa were obtained from the
gutMDisorder24 (http://bio-annotation.cn/gutMDisorder) database
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with parameters: Species=Human, Condition=Colorectal Neoplasms
(distal cancer), Sequencing Technology=Wholemetagenomic sequencing
and Taxonomy Rank=species. The resulting list of 148 records covering
118 species was downloaded in March 2023 and shown in Supple-
mentary Data 10.

CRC-associated genes
We obtained reference sequences of CRC-associated genes from
Wirbel et al.14. Specifically, representative sequences for fadA, bft, the
pksgenomic island, and thebaioperonwere identified from integrated
gene catalog (IGC)60 using the gene-specific Hidden Markova Model.
Subsequently, metagenomic sequencing reads were mapped to the
IGC using bowtie2, and the read count for each gene was calculated.
The number of mapped reads for each gene was then normalized by
dividing it by the total number of mapped reads in each sample. The
resulting number can be interpreted as the number of reads per mil-
lionmapped reads (RPM). The abundances of fadA, bft, the pks and bai
were the sumof all theirmember genes. For the cutC gene, weused the
output from Humman3 calculations for the gene family. The abun-
dance of the cutC gene was determined as the sum of its member gene
clusters.

Microbiome-based classification
We evaluated the microbiome-based classification capabilities for
oCRC and yCRC using two widely adopted algorithms: random forest
and least absolute shrinkage and selection operator (LASSO) logistic
regression. The random forest algorithm, known for its superior per-
formance among various machine learning tools61, has been success-
fully employed in previous large-scale CRC microbiome studies13,17.
The LASSO logistic regression hasbeen used in a comprehensivemeta-
analysis study on CRC microbiome14. The assessment was conducted
on two types of microbiome quantitative profiles: species and
pathway-level relative abundances calculated by MetaPhlAn3 and
HUMAnN3. To enhance the generalizability of our models, we filtered
out features not presented in all studied cohorts. This resulted in a
dataset comprising 199 taxa and 401 pathways that were consistently
found in at least one sample in each of the Guangzhou, Fudan, and
public cohorts.

In the random forest task, we used the algorithm implemented in
R package mlr3 (v0.17.2). Each training iteration consisted of an
ensemble of 10,000 estimator trees, with the number of features per
tree set to the square root of the total number of features. The impurity
score was determined by Shannon entropy (‘gini’) to evaluate the
quality of tree growing. Other parameters included no-maximum
depth for the trees and one sample as the minimum amount for the
leaf node. To estimate the within-dataset prediction capability, 10-fold
cross-validation was employed for Fudan oCRC and yCRC, and this
process was repeated 100 times. The reported results represent an
average over 100 validation folds. For cross-study prediction, the
model was trained once on all the training samples and applied to the
testing samples. These experiments were conducted using the output
values from MetaPhlAn3 and HUMAnN3, as the random forest algo-
rithm is robust to data normalization.

In the LASSO logistic regression task, the relative abundances
were log10-transformed and standardized as z-scores. Zeros in the
species and pathway abundance table were replaced by a pseudo-
count of 1 × 10−6 and 1 × 10−8 before the log10-transformation. During
the training phase, a 10-fold cross-validation strategy was employed to
tune the lambda parameter (regulation strength). The lambda para-
meter for each model was selected to maximize the area under the
precision-recall curve. We repeated the ten-fold cross-validation 100
times for models trained exclusively on Fudan data and 10 times for
models trained on public data (with or without Fudan and Guangzhou
data). In the prediction phase, the prediction evaluation was averaged
across all models. For models trained on Fudan data, a nested feature

selection step was implemented, and the models with the best per-
formance were reported. All these experiments were conducted in R
with package SIAMCAT (v2.6.0)62.

Statistical analysis
To access the correlation between age andmetadata, Guangzhou CRC
patients were grouped into six age categories: [20,30), [30,40),
[40,50), [50,60), [60,70) and ≥70. Subsequently, the distribution of
sex, tumor stage, and location, family history of CRC, smoking status,
and tumor molecular characteristics (MMR, MSH2, MSH6, MLH1,
PMS2, HER2, and BRAF status) across these age groups was examined
using the chi-square test. The Fisher test was employed if any count
was <5. Furthermore, patients were divided into two groups based on
age, specifically, old-onset (age ≥ 50) and young-onset (age < 50), and
the same tests were repeated. For bodymax index (BMI), the means in
oCRC and yCRC were compared using the Wilcoxon–Mann–Whitney
test. The association betweenBMI and age in all patients wasmeasured
using Pearson correlation. The R functions chisq.test(), fisher.test(),
wilcox.test() and cor.test() were used for these analyses.

We employed MaAsLin2 (v1.16.0) to examine associations
between microbial markers and tumor characteristics, including
tumor stage, location,MMR,HER2, andBRAFmutation status. For each
clinical factor, two linearmodels were fitted: one without adjusting for
any covariate and the other adjusted for age, sex, tumor stage and
location, family history of CRC. Both weighted and unweighted ana-
lyses were performed. In the weighted analysis, relative abundance
underwent CLR transformed. For the unweighted analysis, the pre-
sence and absence matrix was derived from the relative abundance
matrix, with a threshold of zero. Benjamini–Hochberg method was
used for multiple testing adjustment. Trend analysis was conducted
using ANCOMBC2 (v2.4.0)63 to assess the monotonic relationship
between microbial markers and tumor stage and location. To reduce
the burden of multiple tests, we only applied these analyses to 18 taxa
whichwere highlighted by our cohort (Fig. 2, Supplementary Figs. 1–3)
and the well-known gene markers (fadA, bft, pks, and bai).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study and data obtained from Yang et al.18

have been deposited into CNGB Sequence Archive (CNSA)64 of China
National GeneBank DataBase (CNGBdb)65 with accession num-
ber CNP0004314. This archive contains the fastq sequences, de novo
assembly, and binning results. A copy of data has also been deposited
into the Genome Sequence Archive (GSA) with submission number
HRA004617. The metagenomic data of Yang et al. can be found
by PRJNA763023.

Code availability
No unique software or computational code was created for this study.
Themicrobiome data and associated codes used inmicrobiome-based
classification tasks are available on GitHub repository https://github.
com/Owen-haha/CRCmicrobiome.
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