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Cell cycle dependent coordination of surface
layer biogenesis in Caulobacter crescentus

MatthewHerdman 1, Buse Isbilir 2,AndrikovonKügelgen 1,2,UlrikeSchulze3,
Alan Wainman 1 & Tanmay A. M. Bharat 2

Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline
arrays that constitute a major component of the cell envelope in many pro-
karyotic species. In this study, we investigated S-layer biogenesis in the bac-
terial model organism Caulobacter crescentus. Fluorescence microscopy
revealed localised incorporation of new S-layer at the poles and mid-cell,
consistent with regions of cell growth in the cell cycle. Light microscopy and
electron cryotomography investigations of drug-treated bacteria revealed that
localised S-layer insertion is retained when cell division is inhibited, but is
disrupted upon dysregulation of MreB or lipopolysaccharide. We further
uncovered that S-layer biogenesis follows new peptidoglycan synthesis and
localises to regions of high cell wall turnover. Finally, correlated cryo-light
microscopy and electron cryotomographic analysis of regions of S-layer
insertion showed the presence of discontinuities in the hexagonal S-layer lat-
tice, contrasting with other S-layers completed by defined symmetric defects.
Our findings present insights into how C. crescentus cells form an ordered
S-layer on their surface in coordination with the biogenesis of other cell
envelope components.

Cell envelopes of prokaryotes are complex, multi-layered structures
that fulfil a variety of roles, such as mediating interactions with the
environment including neighbouring cells, regulating import and
export of material, and protection from external attack1,2. Many pro-
karyotes including archaea, diderm, andmonoderm bacteria express a
macromolecular, proteinaceous sheath known as the surface layer
(S-layer) as oneof themost exterior part of their cell envelope3–6. There
is increasing evidence suggesting that S-layers are prevalent in pro-
karyotes, with a majority of bacteria and most archaea expressing an
S-layer on their envelopes4,7. S-layers are two-dimensional arrays made
up of repeating copies of S-layer proteins (SLPs). Since SLPs are the
highest copy number proteins in many prokaryotic cells, by several
estimations they are one of themost abundant protein family found in
nature3,8,9. Given their position as one of the outermost components of
the envelope, coating the entire cell surface, it is no surprise that
S-layers are important for several aspects of cell biology and are sug-
gested to be an ancient form of a cellular exoskeleton10,11. S-layers have

been implicated in the maintenance of cell size and shape11,12, evasion
from predators13, attachment to substrates14,15, and as a protection
against a range of environmental pressures16–18.

The understanding of the evolution of S-layers is far from com-
plete, since SLPs appear in even the most deep branching lineages of
prokaryotes and show a high level of sequence variability4,12,19,20.
Despite this variability, S-layers share several organisational features;
for example, SLPs are often bipartite in nature, encoding distinct
lattice-forming and cell-anchoring domains, often within the same
protein4,21–23. Secondly, many SLPs utilise metal ions to facilitate both
their retention on the cell surface, as well as lattice assembly24–31.
Thirdly and intriguingly, insertion of new S-layer subunits is localised
at themid-cell and cell poles inmanyprokaryotes, including archaeal32,
Gram-positive33 and Gram-negative bacterial species4,32,34.

One of the best characterised systems for studying bacterial
S-layers is provided by the model organism Caulobacter
crescentus35. The S-layer of C. crescentus is comprised of a single SLP
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called RsaA36, which has the prototypical bipartite arrangement of
SLPs4. We have reported the X-ray structure of the C-terminal
domain of RsaA (RsaACTD), consisting of residues 250–1026, which
form the highly-interconnected outer S-layer lattice29, and solved
the cryo-EM structure of the N-terminal domain (RsaANTD, residues
1–249) in complex with the O-antigen of lipopolysaccharide
(LPS)28,37, on which the S-layer is anchored38. S-layers of multiple
species assemble in a metal-ion dependent manner24,26,27,30,39. Like-
wise, C. crescentus requires a high concentration of extracellular
calcium ions for SLP oligomerisation and retention on the cell
surface31,40. Further, new S-layer insertion in C. crescentus is localised
at the mid-cell and cell poles, by a mechanism that is not yet
understood31,34. In general, S-layer-expressing prokaryotes synthe-
sise SLPs at high levels, and in the case of C. crescentus, RsaA has
been suggested to account for between 10 and 31% of total protein
content of the cell41,42 and its concentration appears to be tightly
regulated to prevent cytoplasmic build-up of excess protein41–44.
Given the material and energetic demand imposed on the cell by S-
layer, it is reasonable to expect that S-layer assembly is also care-
fully regulated during the cell cycle.

In this study, we have investigated the cell cycle dependence of
S-layer biogenesis in C. crescentus, using cellular fluorescence micro-
scopy and electron cryotomography (cryo-ET), which allowed us to
visualise the S-layer arrangement on cells, down to the level of single
S-layer hexamers. Our results show that S-layer biogenesis is tightly
linked with cell elongation and cell growth. We provide evidence
showing that cell division and cell envelope biogenesis are regulated at
multiple levels, providing new insight into the exciting field of S-layer
biology, offering clues to why all S-layers (thus far) appear to be
inserted at discrete locations in the cell.

Results
S-layer insertion is localised to regions of cell-cycle dependent
envelope growth in C. crescentus
To understand the cell-cycle dependency of S-layer insertion, we uti-
lised a dual-labelling approach previously described in our study of
calcium binding by RsaA31,45. Briefly, to distinguish between old and
newly inserted regions of the S-layer, we pulse-saturated the surface of
C. crescentus cells expressing RsaA-467-SpyTag (RsaA-467-ST) with
SpyCatcher-mRFP1 (SC-mRFP1), followed by washing and chase label-
ling with SpyCatcher-sfGFP (SC-sfGFP) during exponential growth
(Methods). Following labelling of the surface available SpyTags, we
observedC. crescentus cells with distinct fluorescent regions ofmRFP1-
and sfGFP-labelling, corresponding to the pulse and chase respectively
(Fig. 1a). Cell populationswere asynchronous andfluorescenceprofiles
varied depending on the cell size and cell cycle stage. Non-dividing
cells showed limited or polar sfGFP labelling (Fig. 1b), while pre-
divisional cells hada strongmid-cell sfGFP signal (Fig. 1c), in agreement
with previous reports31,34.

To determine the relationship between S-layer localisation and
cell size, cell profiles were ordered according to cell length inMicrobeJ
using previously described methods46, and their fluorescent signals
were then visually inspected (Fig. 1d, e). This analysis revealed a clear
temporal progression of new S-layer biogenesis (labelled with sfGFP
signal) from poles to mid-cell. To further quantify the relationship
between the cell cycle stage and the labelling pattern, the fluorescence
profiles of non-dividing swarmer cells (cell length <2 µm) and dividing
cells (assigned by the presence of a mid-cell invagination) were nor-
malised and plotted against relative cell length. As expected from the
visual inspection of the data, non-dividing cells (Fig. 1f) showed a
stronger normalised sfGFP signal at their poles,whiledividing cells had
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Fig. 1 | Incorporation ofRsaA into the growing S-layer ofC. crescentus relocates
from the cell poles to themid-cell during cell development. aMicrographs of C.
crescentus RsaA-467-ST cells pulse-chase labelled using SC-mRFP1 (top, magenta),
SC-sfGFP (middle, green). Merged channels (bottom) show distinct localisation of
the two SC-conjugates along the cell surface. Micrographs were gaussian filtered to
removenoise. Scale bar = 5 µm.b, cMicrographs (SC-mRFP1 (top left,magenta), SC-
sfGFP (top right, green), and merged channels (bottom)) of a representative non-
dividing and dividing C. crescentus cell. Polar and mid-cell localisation of newly
inserted S-layer being more prominent in non-dividing and dividing cell popula-
tions, respectively. Scale bar = 1 µm. The data presented is representative of one

experiment, repeated three times with comparable results. d, e Demograph
showing normalised fluorescent profiles of dual-labelled C. crescentus cells (n = 575
cells), ordered by ascending length. d SC-mRFP1 signal corresponds to old S-layer,
while (e) SC-sfGFP signal represents new S-layer. Shorter, non-dividing cells show a
propensity for polar localisation of new S-layer, while longer cells show mid-cell
localisation of the sfGFP signal. Relative intensity profiles of mRFP1 and sfGFP in (f)
non-dividing cells and (g) dividing C. crescentus cells (n = 100 cells for both plots).
Points were selected across the medial axis of each cell, and the normalised signal
plotted by relative position along the cell. The thick green and magenta lines show
mean value and error bars denote standard deviation.
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amuch stronger signal at theirmid-cell (Fig. 1g). The LPS-boundS-layer
has been previously shown to be non-diffusing relative to the under-
lying cell following oligomerisation34. To confirm this, we labelled the
cell surfacewith SC-mRFP1, and imaged the cells live, during growth at
30 °C. As expected, we observed the same localisation of the old, SC-
mRFP1-labelled S-layer on the cell body, away from themidcell and cell
poles (Supplementary Fig. 1). As the cells grew, these regions remained
stationary and non-diffusing relative to the cell, evident in kymographs
of growing cells. The non-fluorescent areas in the kymographs, which
appeared to expand, represent those regions that would have been
occupied by SC-sfGFP if we had dual-labelled the cell surface, i.e., the
new S-layer, shown above in our pulse-chase experiments (Fig. 1).

As a control, C. crescentus cell cultures were briefly synchronised
using density centrifugation with Percoll and pulse-chase labelled as
above, resulting in a similar labelling pattern to non-synchronised cells
(Fig. 2). In addition, cells labelled in this manner often displayed vari-
able stalk labelling, including occasional dual-labelled stalks (Fig. 2b).
Stalks are polar appendages produced by division-competent C. cres-
centus cells, which are also encompassed by an S-layer29,36. Stalk bio-
genesis is drivenby the recruitment of peptidoglycan (PG) remodelling
machinery at the old cell pole47–49, following a rapid transition from
swarmer to sessile cell type in C. crescentus, the latter representing the
dividing population49–51. In dual-labelled cells, new S-layer labelled in
SC-sfGFP was localised toward to stalk base, further affirming the
potential colocalisation of S-layer biogenesis with underlying cell wall
turnover.

Inhibition of cell-division does not cause delocalisation of
S-layer insertion
To further explore processes underpinning the localisation of new
RsaA insertion into the S-layer, we sought to perturb the cell cycle ofC.
crescentus using compounds that interfere with various aspects of the
cell cycle, to assess the local accumulation of new and old S-layer
material in response to the treatment. To aid comparison between

treatments, the distinctive regions of old (mRFP1) and new (sfGFP)
S-layer observed using our pulse-chasemethodwere quantified for co-
localisation using Pearson’s Correlation Coefficient (PCC)52,53. PCC
quantifies the linear correlation between twodatasets (in this case, two
channels of a fluorescence image): a PCC>0 suggests there is co-
localisation between the two channels, whereas PCC <0 shows
anticorrelation52,54–56. As expected fromvisual inspection of our data, in
the absence of cell-cycle perturbing compounds, pulse-chase labelled
C. crescentus cells exhibited a strong anticorrelation (average PCC =
−0.46) between the old and the new S-layer regions (Fig. 3a, d).

To test how S-layer biogenesis may be affected by disrupted cell
division, we next treated cells with cephalexin, a cephalosporin anti-
biotic that inhibits cell division by inhibiting penicillin-binding protein 3
(PBP3), which is a divisome-associated protein mediating PG synthesis
at the mid-cell during division57–59. We used a concentration of cepha-
lexin that allowed the cells to grow, thus remaining amenable to our
pulse-chase labelling methods, but with partial disruption of cell divi-
sion. Based on growth curves using varying concentrations of cepha-
lexin (Supplementary Fig. 2a) and quantification of cephalexin-induced
cell elongation (Supplementary Fig. 3), we supplemented the PYE
growth medium with 50 µg/mL cephalexin. This sub-lethal level of
cephalexin exposure significantly inhibited cell division, and resulted in
the formation of lines of connected filamentous cells (Supplementary
Fig. 3), consistent with previously published work60. These filamentous
cells were labelled in the same manner as untreated cells, but with a
prolonged chase (3 h) to allow for growth. Despite cephalexin’smarked
impact on cell morphology, which could be caused by inhibition of
other PBPsbeyondPBP3, remarkably cephalexin-treated cells retained a
dual-labelled S-layer patternwith distinct regions of old and new S-layer
(Fig. 3b and Supplementary Fig. 4). Repeating the co-localisation ana-
lysis in these cells confirmed that the old and new S-layer regions were
strongly anticorrelated, almost to the same extent as untreated cells
(Fig. 3d, average PCC= −0.45, not significantly different fromuntreated,
as measured by a two-tailed Student’s t test). The localisation pattern is

a b
SC-mRFP1 MergeSC-sfGFP SC-mRFP1 MergeSC-sfGFP

Non-dividing Cells Dividing Cells

*

*
Fig. 2 | S-layer localisation patterns in dividing and non-dividing C.
crescentus cells. Comparison of labelling in (a) non-dividing cells and (b) dividing,
stalked cells. Cellswere synchronised prior topulse-chase labelling using SC-mRFP1
and SC-sfGFP as described. The micrographs are taken from a single experimental
replicate, of which three were performed with comparable results. Polar labelling

can be seen in all cells, but mid-cell labelling is only apparent in dividing cells.
Additionally, dual-coloured stalks (SC-sfGFP at the base of the stalk, and SC-mRFP1
at the stalk tip) are indicated by an asterisk. This is consistent with previous
research that shows that new stalk material is created from the base of the stalk120.
Scale bars = 1 µm.
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also consistent between untreated and cephalexin-treated cells, with
new S-layer localising to the mid-cell and cell poles (Supplementary
Fig. 4a–d). The cephalexin-treated cells often showed some additional
newS-layer in the cell body, equidistant between the cell poles andmid-
cell, at potential sites of disrupted cell division.

While S-layer localisation had clearly been retained, we sought to
confirm the S-layer in division-disrupted, cephalexin-treated cells had
a normal appearance. Cells were vitrified on electronmicroscopy (EM)
grids following treatment with 50 µg/mL cephalexin and imaged using
cryo-ET. Reconstructed tomograms confirmed that the S-layer is
positioned ~18 nm away from the outer membrane, forming a hex-
agonal lattice (Fig. 4, Supplementary Fig. 5 and Supplementary
Movie 1), consistent with tomograms of untreated cells in published
data31. These results together suggest that disrupting cell division via
cephalexin treatment does not affect the localisation of S-layer
assembly, nor does it disrupt RsaA secretion.

To ensure the observed retention of discrete S-layer localisa-
tion is not concentration-dependent, cells were incubated with an
increased concentration of cephalexin (100 µg/mL), which results in
arrest of culture growth, as measured by OD600 (Supplementary
Fig. 2a). In addition, we incorporated the division-disrupting drug
mitomycin-C (MMC) into the labelling protocol at lethal con-
centrations in an additional experiment (Supplementary Fig. 2b).
MMC is a well-characterised DNA-crosslinking agent61 that induces
cell filamentation via the SOS response62. Under MMC treatment,
cells inhibit their division, preventing the propagation of mutations

to progeny cells. This has beenwell characterised inC. crescentus63,64

and other bacterial species, including Streptomyces venezuelae65,66.
As expected, both the increased concentration of cephalexin and
MMC resulted in cell elongation (Fig. 5a). In addition, both condi-
tions produced cells with an anticorrelated localisation of old and
new S-layer, evidenced by strong, negative PCC R-values, compar-
able to untreated cells (Fig. 5b). Together, this confirms that dis-
rupting cell division through multiple pathways does not lead to
delocalisation of S-layer biogenesis.

Disruption of the cytoskeletal protein MreB delocalises S-layer
insertion
Having shown that interrupting cell division using cephalexin or MMC
did not disrupt the discrete localisation of S-layer biogenesis, we next
investigated the effect of disrupting cell elongation and rod morpho-
genesis by the sequestering of the bacterial actin homologue MreB.
MreB is amajor cytoskeletal component ofC. crescentus,mediating cell
elongation, stalk biogenesis, and cell polarity48,67,68. To disrupt MreB,
we treated C. crescentus cells with the compound A22, which has been
shown to bind to MreB and disrupt cell shape67,69 and cell polarity68,70.
We investigated the effect of disruption of MreB filaments on S-layer
biogenesis using sub-lethal concentrations of A22 (Supplementary
Fig. 2c). Strikingly, S-layer integration at the surface of these A22-
treated cells was delocalised (Fig. 3c, d). Furthermore, pulse-chased
labelled cells adopted a “lemon”-shape and showed several regions of
new S-layer without the previously observed mid-cell or polar
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Fig. 3 | Inhibition of MreB, but not cell division, results in delocalisation of
S-layer proliferation in C. crescentus. a–c Micrographs of dual-labelled C. cres-
centus RsaA-467-ST cells. SC-mRFP1 (left, magenta), SC-sfGFP (centre, green) and
merged channels (right). Cells were pulse-chase labelled using the same procedure
to that of Fig. 1, but under varying conditions, including (a) no treatment, (b) cells
treated with 50 µg/mL cephalexin, and (c) 3 µg/mL A22. Scale bars = 5 µm. Each
labelling experimentwas repeated at least three timeswith comparable results. The
micrographs presented are representative of a single experimental repeat.
d Analysis of colocalisation by PCC show that untreated and cephalexin treated
cells have a negative colocalisation (R value) between the mRFP1 and sfGFP

channels, as expected given the visually observable separation of old and new
S-layer (horizontal line shows the mean). A22 treated cells show a positive R value
and colocalisation between the both channels, suggesting MreB inhibition has
resulted in the loss of discrete localisation of RsaA insertion into the S-layer during
cell growth. Ordinary one-way ANOVA analysis of the data shows a strong sig-
nificant difference between A22 treated cells and both other conditions
(p <0.0001),whereas comparinguntreated and cephalexin treated cells showedno
significant differences (two-tailed Student’s t test, p =0.625). n = 30 cells analysed
for each treatment condition. Sourcedata are provided as anaccompanying Source
Data file.
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localisation. Quantification for co-localisation (Fig. 3d) confirmed that
this treatment led to loss of the anticorrelation between newandold S-
layer, as illustrated by a positive average PCC (R-value 0.44). The PCC
analysis results were significantly different to that of both untreated
and cephalexin treated cells (p <0.0001, measured by two-tailed Stu-
dent’s t tests). Furthermore, the patterns of new and old S-layer loca-
lisation observed in these experiments were significantly different
from those seen in control untreated and cephalexin-treated cells
(Supplementary Fig. 4).

Broadly, twodifferent types of labelling patternswere observed in
“lemon”-shaped A22-treated cells (Fig. 6). The first type exhibited
almost no new S-layer labelling, with cells primarily stained for old
S-layer. In the second type, old and new S-layers both appeared delo-
calised (Fig. 3c and Fig. 6). To better understand these labelling pat-
terns and to examine ultrastructure of the S-layer in the A22-treated
cells, we performed cryo-ET of A22-treated cells (Fig. 6c, d and Sup-
plementary Fig. 5). In line with the fluorescence microscopy, tomo-
grams also confirmed two phenotypes, both of which were “lemon”-
shaped and possessed an S-layer with similar morphological para-
meters to that of the wild-type S-layer (Fig. 6c, d and Supplementary
Movie 2). One set had severe cellular disruption including invaginated
membranes (Fig. 6d, Supplementary Fig. 5 and Supplementary

Movie 3); these membrane distortions are likely responsible for the
patchy fluorescence and disrupted S-layer localisation.

Dysregulation of MreB should be cautiously interpreted, as
several cellular processes are potentially being simultaneously
disrupted. However, the loss of discrete regions of old and new
S-layer, which were observed in both untreated and cephalexin-
treated cells, taken together with the retention of an ordered and
intact S-layer, suggests that the effects on localised biogenesis are
derived from MreB inaction.

LPS-inhibition by polymyxin-B, but not inhibition of protein
synthesis, disrupts discrete S-layer localisation
Given the dramatically different effects on S-layer localisation fol-
lowing exposure to cell-cycle disrupting compounds, we sought to
explore how biogenesis might be affected by targeting aspects of
RsaA synthesis and S-layer assembly. The addition of sublethal
concentrations of polymyxin B (7.5 µg/mL, Supplementary Fig. 2d),
an LPS-binding antibiotic, resulted in a dramatic loss of antic-
orrelation between old and new regions of S-layer, confirmed by
PCC analysis (Fig. 6). While the exact mechanisms by which poly-
myxin B disrupts localised S-layer biogenesis cannot be inferred,
our results show clearly that localised S-layer biogenesis is LPS
dependent. The activity of polymyxin B is proposed to depend on its
binding to lipid A71, leading to disruption. An alternate hypothesis is
that polymyxin B displaces cations like Ca2+ from the LPS causing
inhibition72–74,40. The presence of SC-associated fluorescence sug-
gests that RsaA-467-ST, and therefore the O-antigen and lipid A, are
all present on our polymyxin-B-treated cells. It is possible that
polymyxin B binding to the LPS disrupts cation and RsaA binding,
resulting in loss of the S-layer and an increased frequency of gaps,
leading to the observed loss of anticorrelation of new and old
S-layer regions.

In contrast, inhibition of protein synthesis by the addition of
chloramphenicol (Supplementary Fig. 2e) appeared to have no
observable effect on new and old S-layer anticorrelation, resulting in
cells with labelling comparable to that of untreated cells (Supple-
mentary Fig. 2f). Chloramphenicol, which acts by binding the 50S
subunit of the bacterial ribosome, inhibits protein synthesis75. This
inhibitory effect, despite RsaA being the highest copy number protein
of the cell, is a nonspecific effect, resulting in a global reduction of
protein synthesis. It is unsurprising then that it results in a significant
growth defect (Supplementary Fig. 2e) and, while cells are slowed in
their growth, they retain their usual labelling pattern of separated
regions of new and old S-layers.

Cell wall turnover precedes S-layer biogenesis at the mid-points
of dividing cells
Given the known dependence of PG biogenesis on MreB in C.
crescentus48, we next explored the relation between new PG and new
S-layer by labelling newly synthesized PG using fluorescent D-amino
acids76 alongside old and new S-layer. PG labelling with HADA (a
blue fluorescent D-amino acid) showed distinct fluorescent punctae
in cells (Fig. 7a), seen previously in several bacteria76, including C.
crescentus77. A visual inspection of fluorescent images suggested the
co-localisation of new PG and new S-layer insertion. To test this
hypothesis, we obtained profiles along the length of each cell and
ordered each cell according to their lengths (Fig. 7b–d). This ana-
lysis revealed that HADA fluorescence was localised at the mid-cell
in short cells in earlier stages of the cell cycle, while the integration
of new S-layer material, as indicated by the presence of sfGFP,
occurs in longer cells at later stages of the cell cycle, suggesting that
PG turnover precedes S-layer biogenesis (Fig. 7b–d and Supple-
mentary Fig. 6). New S-layer insertion begins at the mid-cell in
dividing cells, regions where no old S-layer is detected. In the
longest cells analysed, new PG insertion was not detected, despite

a b
Cell Body

Cell Body

Cell Body

SC-mRFP1

SC-sfGFP

Merge

S-layer Outer Membrane Inner Membrane

Fig. 4 | Elongated, cephalexin-treated cells retain a continuous S-layer bound
to the OM. a Micrographs of dual-labelled, cephalexin-treated C. crescentus RsaA-
467-ST cells, SC-mRFP1 (top, magenta), SC-sfGFP (centre, green) and merged
channels (bottom). Scale bar = 5 µm. Cephalexin-treatment experiments were
repeated at least three times with comparable results. The micrographs presented
are representative of a single experimental repeat. b Slices through tomograms of
vitrified cephalexin-treatedC. crescentus cells, showing a complete S-layer bound to
the OM. Scale bar = 50nm.
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the presence of new S-layer insertion, indicating that PG insertion
concludes around the time new S-layer insertion begins.

To confirm quantitatively that new PG and new S-layer is
inserted in the same locations in cells, we repeated the co-
localisation analysis described above (Fig. 3), measuring HADA
fluorescence co-localisation with both new and old labelled S-layer
(Fig. 7e–g). In non-dividing cells, there was no significant difference
between the co-localisation measured between new PG and new or
old S-layer (PCC = −0.10 new PG/new S-layer and PCC = −0.12 new
PG/old S-layer). In contrast in dividing cells, new PGwas co-localised
with new S-layer (PCC = 0.30) rather than with old S-layer (PCC =
−0.15), in a statistically significant difference (measured by a two-
tailed Student’s t test, p < 0.0001). These observations suggest that
cell wall expansion is a driving force in cell envelope growth and a
predictor of local S-layer biogenesis. The localisation of HADA
fluorescent signal to the cell pole was also evident (Fig. 7d), likely
corresponding to the aforementioned stalk biogenesis machinery
and, potentially, recent division events. Due to the speed and
unpredictable timing of stalk synthesis, as well as the temporal
offset associated with labelling the separate envelope components,
colocalisation of cell wall and S-layer biogenesis events at the stalk
is more challenging to investigate. In several cells, the polar HADA
signal does appear to colocalise with new S-layer labelled in SC-
sfGFP (Fig. 7e), as expected following the observation of dual-
coloured stalks (Fig. 2b).

S-layer insertion occurs at regions of discontinuity in the S-layer
lattice
Having studied the cell-cycle dependence of S-layer biogenesis, we
next scrutinized hownewRsaAmolecules insert themselves into a pre-
existing two-dimensional lattice packed with proteins spanning the
cell envelope. For this, we utilised cryo-ET data of C. crescentus cells,
focusing on the mid-cell, as done previously78,79, or the cell poles
(Fig. 8), i.e., regions of the cell where we have shown the new S-layer is
inserted (Fig. 1). Cryo-ET allowed us to observe the ultrastructure of
the S-layer, allowing us to go beyond the diffraction-limited optical
microscopy pictures to study the morphology of the new S-layer
insertion sites (Fig. 8). Unexpectedly, we observed disruptions in the
S-layer lattice at the S-layer biogenesis sites (Fig. 8). As a control, we
vitrified dual S-layer-labelled C. crescentus cells on EM grids for cryo-
correlated light and electron microscopy (cryo-CLEM). Cryo-light
microscopy of the vitrified cells, although limited in resolution in our
widefield setup, allowed us to identify cells with clear dual labelling
and identifiable sites of new S-layer insertion (Supplementary
Fig. 7a, b). These cells were then located in the electronmicroscope by
overlaying the light microscopy images with overview images of EM
grid squares. Cryo-ET of these dual labelled cells confirmed disrup-
tions in the S-layer at the site of new S-layer insertion (Supplementary
Fig. 7c), confirming our cryo-ETobservations (Fig. 8a–f). These regions
contain points of S-layer discontinuity, where either two lattices
appear to overlap, or rows of hexamers are missing (Fig. 8a–f). At
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several areas, two separate two-dimensional sheets of S-layers appear
to meet, showing up as a line defect on the cell surface. Given their
placement at regions of cell-envelope expansion, these likely represent
regions of RsaA insertion or lattice formation.

Discussion
Based on our analyses, we suggest a new model of S-layer biogenesis,
which is dependent on turnover and expansion of the cell wall, leading
to growth of the cell envelope (Fig. 9). We suggest that areas of cell
growth contain new membranes and potentially freshly secreted LPS
molecules, which do not assemble precoated with RsaA, likely result-
ing in discontinuities in the S-layer (Fig. 9). Additionally, regions of cell
growth in C. crescentus often contain significant membrane curvature,
which likely contribute to shear stress in the S-layer leading to lattice
rupture, because geometrically, a hexagonal lattice cannot tesselate
perfectly along closed curved surfaces. A pool of freely diffusible RsaA
molecules is present between the OM and previously crystallised S-
layer, secreted by the partner T1SS41, evidenced by light microscopy34,
cryo-EM structures and cryo-ET of cells28. These unassembled RsaA
molecules would always be available to plug any gaps in the lattice,
caused by damage from environmental pressures or, as observed in
our study, regions of cell growth and high membrane curvature. Once
integrated into the S-layer, RsaA is non-diffuse, moving with the
underlying membrane. While S-layer assembly and retention by the
cell appears to be remarkably robustwhen challengedwith a variety of

drugs, as seen in cryo-ET, S-layer localisation is selectively disrupted by
MreB inhibition by A22 and polymyxin B inhibition of LPS. In the
future, deeper understanding of the mechanisms driving S-layer
localisation would be best examined by genetic manipulation of the
RsaA secretion (RsaDEF)machinery and other cell cycle proteins.What
this study indicates is that the insertion of new LPS into the OM is
probably kinetically faster than the diffusion of RsaA to the O-antigen
tip, leading to S-layer discontinuity in the observed regions (Fig. 9).
Using unassembled RsaAmolecules to plug S-layer gaps allows the cell
to retain a nearly complete S-layer as it moves through the cell cycle,
with a constant supply of RsaA.

The localisation pattern of S-layer biogenesis, as observed by our
SpyCatcher-labelling, approach is remarkably similar to the localisa-
tion of several proteins key to cell division. For example, fluorescently
labelled components of the divisome machinery in C. crescentus, such
as DipM (LytM endopeptidase), FtsW (PG polymerase), FtsL (divisome-
recruitment protein), and PBP3 (PG-crosslinking divisome protein),
share marked similarities with new S-layer biogenesis59,80–82. Unlike
S-layer biogenesis, the recruitment of these components is much
better understood and relies on the highly-conserved prokaryotic
tubulin homologue, FtsZ, which, alongwith several other key proteins,
comprises the divisome complex in C. crescentus78,81,83–85. As successful
cytokinesis requires the breaking and remodelling of the PG cell wall,
many of these division proteins are associated with significant cell wall
turnover and would therefore likely co-localise with new S-layer
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S-layer
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S-layer
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Cell Body
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Fig. 6 | A22-treated cells undergo dramatic envelope folding, retaining a con-
tinuous S-layer. a Micrographs of dual-labelled, A22 treated C. crescentus RsaA-
467-ST cells. Both channels and the merge are shown. Scale bar = 5 µm. b A repre-
sentativeA22-treated cell showing “patchy” S-layer labellingwith overlapping sfGFP
and mRFP1 signals. Scale bar = 1 µm. A22-treatment experiments were repeated at
least three times with comparable results. The micrographs presented are repre-
sentative of a single experimental repeat. c,dSlices through tomogramsof vitrified,

A22-treated C. crescentus cells. c Enlarged cell showing budding vesicle forming at
the presumed cell pole. d Deformed cells showing folding of envelope resulting
from A22 exposure. Folds in the envelope have been labelled (green). The second
panel shows a higher Z-slice of the same reconstructed tomogram, where the top
view of the S-layer is clearly visible and adopts a regular hexagonal arrangement.
Scale bar = 50nm.
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insertion60,86–88. Whether there is a higher-level coordination of S-layer
biogenesis beyond local cell envelope expansion, for example through
cytoskeletal localisation, is difficult to determine. Past studies on cell
division and our results here suggest at least a transient co-ordination
ofmultipleenvelope components inC. crescentus (Fig. 9). There is clear
tendency for many bacterial and archaeal cells to synchronise the
biogenesis of different envelope components4, which appears to be
the case in C. crescentus as well.

While it is tempting to suggest that unbound LPS at the observed
regions of discontinuous S-layer is freshly secreted, remarkably little is
known regarding the potential localisation of LPS integration into the
OM in C. crescentus. In two Gram-negative bacteria Brucella abortus

and Agrobacterium tumefaciens that exhibit polar growth89, localisa-
tion of the LPS-biosynthetic machinery to regions of cell-growth has
been demonstrated90. Additionally, previous studies have shown that
the OM is diffusion restricted and that the OM composition is directly
regulated by cell wall turnover in bacteria such as Escherichia coli91.
Polymerised C. crescentus S-layer (but not monomeric RsaA), is also
diffusion-restricted (Supplementary Fig. 1), so it is possible that these
SLP-deficient OMs and associated LPS may also have been recently
inserted in C. crescentus.

Owing to the crystalline nature of the C. crescentus S-layer, SLPs
(RsaA molecules) are likely able to self-integrate themselves into the
growing lattice at gaps in the two-dimensional crystal. This has been
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Fig. 7 | Cell wall turnover precedes and colocalises with S-layer expansion in
dividing C. crescentus cells. a Three-colour labelled C. crescentus cells, pulse-
labelled with SC-mRFP1 (magenta), chased with SC-sfGFP (green). Channels
showing S-layer labelling are merged (third panel) and the HADA fluorescence
shown in cyan (fourth panel). Calibration bars are provided for each channel. Scale
bars = 5 µm. Demographs of labelled C. crescentus cells ordered by length (n = 100
cells), showing (b) SC-sfGFP, (c) SC-mRFP1, and (d) HADA fluorescence profiles for
each cell. HADA signal localises to themid-cell at shorter cell lengths thanSC-sfGFP,
which precedes an apparent colocalization of the sfGFP and HADA signals. The
HADA signal at mid-cell eventually subsides, concurrent with further new S-layer
insertion. Demograph intensities are calibrated to the same levels as in (a). PCC
scores (R-values) for correlationof HADAwith sfGFP andHADAwithmRFP1 signals,

comparing (e) dividing and (f) non-dividing cells. R-values are displayed next to
their respective cells in the relevant channels. Scale bars = 1 µm. g PCC scores (R-
values) between HADA and sfGFP or mRFP1 channels for dividing (n = 45) and non-
dividing (n = 31) cells measuring colocalization (horizontal lines signify mean of the
dataset). Dividing cells show a significantly higher R-value between HADA and
sfGFP ( ) compared to mRFP1 ( ) (measured by two-tailed Student’s t test,
p <0.0001 for dividing cells and ns for non-dividing cells), suggesting stronger
colocalisation. Non-dividing cells showed a negative PCC R-value on average for
HADA correlation between both sfGFP ( ) and mRFP1 ( ) signals, with no sig-
nificant difference (measured by two-tailed Student’s t test, p =0.070). Source data
are provided as an accompanying Source Data file.
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observed in vitro, where purified RsaA in the presence of calcium
spontaneously forms hexameric lattices comparable to those seen on
the cell surface29,30,92. This presents an ingenious solution to a difficult
logistical problem of the polymerisation of the highly ordered S-layer,
requiring no further energetic input from the cell beyond secretion of
the constituent SLP into the extracellular milieu, where it will bind the
surface and oligomerise. It is remarkable therefore, that other studied
S-layers with a similar mid-cell insertion phenotype, do not possess
extensive gaps in the lattice, but rather complete the S-layer with
defined geometric defects93–95. For example, in the archaeal S-layer of
Haloferax volcanii, pentamers and heptamers were observed on cells,
which were coated to near-perfect continuity by the hexagonal
S-layer12. Geometrically, to close a hexagonal sheet, defects or gaps
must be present, therefore it will be intriguing to study why different
organisms have adopted different solutions to this problem. Future
research in this direction will illuminate our understanding of curved
lattices in cells, which are ubiquitous across domains of life.

Our study did not localise the RsaA secretionmachinery, the type
1 secretion system (T1SS) RsaDEF, components of which share
homology with a variety of other T1SS machineries38,41,42,44,96–98. While
principles of egress by T1SS have been extensively investigated, there
is little literature on the localisation of T1SS across Gram-negative

bacteria99–101. Interestingly, inC. difficile, the secretionmachineryof the
major structural SLP SlpA, called SecA2,was localised using amodified,
fluorescent version of SlpA blocked for secretion by an N-terminally
linked dihydrofolate reductase33. This study found that while SecA2
was localised all along the cell surface, SlpA integrated into the
growing S-layer at regions of cell wall turnover. These findings are
consistent with our proposed model for S-layer biogenesis, despite C.
crescentus and C difficile having strikingly different cell cycles and
envelope organisations (diderm versus monoderm, respectively). In
contrast, the S-layer assembly machinery of H. volcanii appears to be
consistently localisedwith regions of new S-layer biogenesis32, which is
also colocalised with FtsZ. This difference in spatial localisation of
secretion vs. biogenesis may arise from the fact that in H. volcanii, the
S-layer glycoprotein is lipidated, attached directly to the membrane
and that the S-layer constitutes themajor structural component of the
cell envelope22,102. For the C. crescentus S-layer, future studies on the
localisation of RsaDEF using genetic mutants would provide further
context into the mechanisms of S-layer secretion, and how this com-
pares to other species.

S-layers are widespread in prokaryotes, but fundamental biology
related to S-layers is poorly understood. This cell biology study of
S-layer insertion in C. crescentus attempts to address an important gap
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Fig. 8 | S-layer insertion events at regions of cell growth and high membrane
curvature identified in our light microscopy experiments. a–f Slices through
tomograms of C. crescentus cells and zoomed views (defined by the red square)
showing possible insertion events. Insertion events cover regions of S-layer bio-
genesis, as established by our light microscopy. a–cMid-cell discontinuities of the

S-layer. d Flagellate cell pole (flagellum visible at lower Z-slices). e, f C. crescentus
polar stalks. Components of the cell enveloped have been labelled. Specifically,
yellow arrows denote regions of discontinuities or overlaps in the S-layer lattice.
Cases where the Z-slice have been changed for the zoomed panel have been
marked. Scale bars = 100 nm.
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in our knowledge and will help place future studies on S-layers into
context. Our results into S-layer biogenesis will alsobe of great interest
to microbiologists studying cell division and the cell cycle because
S-layer biogenesis appears to be tightly linked to the cell cycle in many
organisms across domains of life4,32,33,95,103. In addition, S-layers are
purported to be one of the earliest and simplest attempts of cells to
construct a cell wall1; the energy efficient mechanisms by which they
oligomerise and bind their underlying cells represent an intriguing
solution to the many challenges the cell surface must address31.

Moreover, our studies have implications in the design and utili-
sationof S-layers asplatforms for synthetic biology applications104. The
C. crescentus S-layer has already been adapted as an engineering hub
for purposes ranging from protein display96 to customisable scaffolds
for the design of living materials45,105. The exploitation of natural sys-
tems for the development of engineered living materials has broad
applications106. In particular, the self-organising and self-healing nature
of S-layers provides an ideal scaffold for the design of a high-density
biological interaction45,105. We expect that uncovering themechanisms
of spatiotemporal localisation of S-layer biogenesis will help further
harness the C. crescentus’ S-layer as a platform for synthetic biology.
Particularly, our demonstration of the consistent and predictable
nature of RsaA integration into the expanding S-layer, supports fine
tuning of protein scaffolding on the cell. These implications on syn-
thetic biology, together with the improved insight into fundamental
microbiology highlight why vital future research is needed to under-
stand these captivating S-layer arrays found in abundance in
prokaryotes.

Methods
SpyCatcher purification
His-tagged SpyCatcher conjugates were purified as previously descri-
bed using nickel-affinity chromatography31. Briefly, plasmids pDEST14-
SpyCatcher-sfGFP and pBAD-SpyCatcher-mRFP1 were transformed
into chemically competent E. coli BL21 (DE3) and LMG194 cells
respectively and grown on LB agar supplemented with 100 µg/mL

Ampicillin (LB-Amp). A single colony of each strain was inoculated into
6 Lof LB-Ampmedia and incubated at 37 °Cwith shaking until cells had
reached mid-log growth phase. Cells were induced with 0.2% (w/v)
arabinose (LMG194) or 0.4mM Isopropyl β-D-1-thiogalactopyranoside
(IPTG) (BL21) and incubated with shaking at 20 °C for 16 h. Induced
cultures were harvested by centrifugation (15,000 relative centrifugal
force (x g), 30min, 4 °C), resuspended in lysis buffer (30mM Tris/HCl
pH 8.0, 500mM NaCl, 1mM MgCl2, 50 µg/mL DNase, 300 µg/mL
lysozyme, and 1x cOmplete Protease Inhibitor), and lysed by five pas-
ses through the homogeniser at 15,000psi (pounds per square inch)
pressure. Cell debriswerepelleted (50,000 (x g), 45min, 4 °C), and the
supernatant filtered using a 0.22 µmsyringe filter. SpyCatcher proteins
were then bound to a 5mL HisTrap HP column (GE Healthcare) using
an ÄKTA pure 25M system (GE Healthcare) and eluted against the
same buffer including 500mM imidazole over 10 column volumes.
Eluates were dialysed overnight with 1:100 (w/w) His6-TEV protease at
4 °C against 2 L of MilliQ H2O. The dialysates were further purified via
size exclusion chromatography using a HiLoad Superdex S200 16/600
(prep grade) column; final proteins were eluted in HEPES buffer
(25mM HEPES/NaOH pH 7.5, 150mM NaCl), and flash frozen in liquid
nitrogen and stored at −80 °C.

SpyCatcher and HADA labelling of C. crescentus
C. crescentus expressing RsaA-467-SpyTag (CB15N ΔsapA rsaA467:S-
pyTag) cells were grown in PYEmedia (0.2% (w/v) Bacto Peptone, 0.1%
(w/v) yeast extract, 0.5mMCaCl2, 1mMMgSO4) at 30 °Cwith aeration
by shaking to mid-log growth phase. For SpyCatcher labelling, cells
were resuspended toOD600 0.1 in PYE, followed by pulse labellingwith
10 µMSC-mRFP1 at 4 °C for 16 h, after which point cells were harvested
by centrifugation (3min, 8000× g) and washed three times with chil-
led PYE. For chase labelling, cells were resuspended in fresh PYEmedia
and incubated at 30 °C for 1.5 h in the presence of 10 µM SC-sfGFP to
stimulate growth. After labelling, cells were harvested by centrifuga-
tion and washed as described above, followed by resuspension in a
final volume of 50 µL PYE. For PG labelling, cells were supplemented
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with 500 µM of the fluorescent D-amino acid HADA107 (Cambridge
Biosciences) for the last 10min of the chase-labelling incubation. Cells
were harvested and washed (as above). When required, cells were
resuspended in chilled 4% formaldehyde (in PBS) for fixation. Samples
were kept at 4 °C for 20min prior to washing (as above) and imaging.
All incubation steps were carried out with the specimen protected
from light-exposure.

When necessary, cells were synchronised using density cen-
trifugationmethod using colloidal silica as follows108. Cells were grown
and pulse labelled by incubation overnight with SC-mRFP1, as descri-
bed. Cells were washed three times with PBS and resuspended in
750 µL ice-cold PBS. Samples were mixed 1:1 with syringe-filtered 33%
chilled Percoll (Sigma-Aldrich), then centrifuged at 15,000× g in a
tabletop centrifuge for 20min at 4 °C, separating the cells into top
(stalked cell) and bottom (swarmer cell) bands. The top band was
carefully removed, and the bottom band collected, in a final volume of
50–200 µL depending on the band size. Swarmer cells were pelleted
and washed three times in ice-cold PBS media to remove excess Per-
coll. Cells were then resuspended in fresh PYE and chase labelled using
SC-sfGFP as described above.

SpyCatcher labelling of the drug treated C. crescentus
To select sub-lethal concentrations of the selected drugs for sub-
sequent pulse-chase labelling experiments, growth curves of C. cres-
centus were generated at various concentrations of the drugs by
measuring optical density (OD at 600nm wavelength of light) of cul-
tureswith hourly intervals. Following analysis of the growth curves, the
selected sub-lethal concentrations were as follows: 50 µg/mL for
cephalexin, 7.5 µg/mL for polymyxin B, 0.5 µg/mL for chloramphenicol,
3 µg/mL for A22 and 0.5 µg/mL for MMC. For the drug treated cells,
pulse-chase labelling experiments were performed as described above
except for the SC-sfGFP chase incubation step, which was exten-
ded to 3 h.

Light microscopy
Two µL of labelled cell suspensions were spotted onto agarose pads
(1% (w/v) in distilled water) enclosed by a 15 mm× 16mm Gene
Frame (ThermoFisher) on a glass slide and sealed with a glass cov-
erslip. For cells labelled using only SpyCatcher conjugates, cells
were imaged using an Olympus SoRa spinning disc confocal
microscope, equipped with Olympus IX-83 inverted frame, Yoko-
gawa SoRa super-resolution spinning disc module, and Prime BSI
camera. Slides were kept at room temperature and imaged using the
60x (1.5 NA) lens, with excitation at 488 nm (sfGFP) and 561 nm
(mRFP1) (solid state lasers), 200ms exposure. Z-stacks were taken
at 0.26 µm intervals and an Olympus Super Resolution filter was
applied to the entire stack using Olympus CellSens software, fol-
lowed by deconvolution using a maximum likelihood algorithm (5
iterations). In general, Z-stacks were condensed using a maximum
Z-projection of frames containing the cell of interest (±1 frame on
the upper and lower Z-axis). For HADA-labelled samples, cells were
imaged using an Olympus Fluoview FV1200 equipped with equip-
ped with GaAsP detectors. Images were acquired using a 100 x (1.4
NA) lens with excitation via solid state 405 nm (HADA), 559 nm
(mRFP1), and argon 488 nm (sfGFP) lasers, with scanning at
1024 × 1024 pixels. A Kalman filter (2 iterations) was applied for all
image collections. Single slices through the middle of the cells were
taken, without Z-stacks, to limit photobleaching of the sample.
Images were background-subtracted and filtered using a 0.5-pixel
Gaussian blur (ImageJ) unless stated otherwise. For the drug treated
samples, cells were imaged using a Nikon W1 spinning disc confocal
microscope with spinning disc module, and sCMOS camera (95%
QE). For the drug-treated samples, slides were kept at room tem-
perature and imaged using the 100x (1.4 NA) lens, with excitation at
488 nm (sfGFP) and 561 nm (mRFP1).

Light microscopy image analysis
Demographs and cell intensity profiles were generated using the
MicrobeJ 5.13 plugin for ImageJ/FIJI46. Cell debris, overlapping cells, or
cells on the edge of the micrographs were excluded from the analysis.
The remaining cells were normalised for fluorescence intensity and
plotted according to length from shortest to longest. Cell intensity
profiles are representative of 100 dividing and non-dividing cells,
assigned by the presence of invagination at the mid-cell, from the
demograph. Normalised profile intensities from the sfGFP and mRFP1
channels, including standarddeviation,wereplotted relative to the cell
length. For individual cell-profile analyses, a line was manually drawn
along the indicated region of the cell through the cell body, straigh-
tened, and the pixel values extracted. Intensity values were normalised
for each channel and plotted relative to the cell contour. Where given,
cell profiles were binarized according to the presence of the strongest
fluorescence intensity value. For colocalisation studies, masks were
created for individual cells in ImageJ and colocalisation measured
using PCC in the Coloc2 plugin. Amaskwas created for individual cells
and the colocalisation of the RFP1- and sfGFP-labelled regions was
measured by PCC. All micrograph images were generated in Ima-
geJ/FIJI.

Electron cryotomography (cryo-ET) sample preparation, data
collection and analysis
Cryo-ET grid preparation was performed as described
previously31,78,109. Briefly, 2.5 µL of the relevant C. crescentus cell sample
(OD600 0.5–0.7 in PYE orM2G)mixed with 10 nmprotein-A gold (CMC
Utrecht) was applied to a freshly glow discharged Quantifoil R2/2 or
R3.5/1Cu/Rh 200 mesh grid, adsorbed for 10 s, blotted for 2.5 s and
plunge-frozen into liquid ethane in a VitrobotMark IV (ThermoFisher),
while the blotting chamber was maintained at 100% humidity at 10 °C.
For tomographic data collection, the SerialEM3 software110 wasused as
described previously111, using the Quantum energy filter (slit width
20 eV) and the K2 or K3 direct electron detector running in counting
mode. Tilt series with a defocus range of −5 to −8 µm were collected
between ±65° in a bidirectional (only for Fig. 8a–c) or ±60° dose
symmetric scheme with a 1° tilt increment. A total dose of 150 e-/A˚2

(only Fig. 8a–c) or 73 e-/A˚2 was applied over the entire series. Cryo-ET
data analysis was performed in IMOD112 and tomographic reconstruc-
tion was carried out using the SIRT algorithm implemented within
Tomo3D113,114. Datasets weremotion corrected and doseweighted with
MotionCor2115 implemented in Relion 3.0116. Contrast transfer func-
tions (CTFs) of the resulting motion corrected micrographs were
estimated using CTFFIND4117. Tomogram slices for visualisation were
prepared using USCF Chimera118 or ChimeraX 1.4119.

Additional quantification and statistical analyses
Graphs, with the exception of cell profile plots and demographs, were
generated in and statistical analyses were carried out using GraphPad
Prism 9.5.1. Where possible, the number of measurements performed
are reported within the relevant figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data underlying Figures with plotted graphs is available
with this manuscript as a Source Data file. All other data, including
cryo-ET and light microscopy images, are available from the authors
upon request. Source data are provided with this paper.
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