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Enhancing photocatalytic H2O2 production
with Au co-catalysts through electronic
structure modification

Xidong Zhang 1, Duoduo Gao 2, Bicheng Zhu 1, Bei Cheng3, Jiaguo Yu 1 &
Huogen Yu 1

Gold-based co-catalysts are a promising class of materials with potential
applications in photocatalytic H2O2 production. However, current approaches
with Au co-catalysts show limitedH2O2 production due to intrinsically weakO2

adsorption at the Au site. We report an approach to strengthen O2 adsorption
at Au sites, and to improve H2O2 production, through the formation of
electron-deficient Auδ+ sites bymodifying the electronic structure. In this case,
we report the synthesis of TiO2/MoSx-Au, following selective deposition of Au
onto a MoSx surface which is then further anchored onto TiO2. We further
show that the catalyst achieves a significantly increased H2O2 production rate
of 30.44mmol g−1 h−1 in O2-saturated solution containing ethanol. Density
functional theory calculations and X-ray photoelectron spectroscopy analysis
reveal that theMoSxmediator induces the formation of electron-deficient Auδ+

sites thereby decreasing the antibonding-orbital occupancy of Au-Oads and
subsequently enhancing O2 adsorption. This strategy may be useful for
rationally designing the electronic structure of catalyst surfaces to facilitate
artificial photosynthesis.

Solar-driven photocatalytic H2O2 production through oxygen reduc-
tion reaction (ORR) is a promising method for addressing energy and
environmental crises due to its low energy consumption, safety, and
environmental friendliness1–5. However, the production of H2O2 via
photocatalysts is hindered by the low efficiency of electron transfer
and interface reaction6–8, resulting in suboptimal H2O2 yields9,10. To
address these challenges, cocatalyst deposition on the surface of
photocatalysts can not only effectively promote electron transfer but
also provide specialized active sites to facilitate interfacial ORR11–13. It is
well known that photocatalytic H2O2 production via ORR on the active
sites of cocatalysts involves multiple fundamental steps, such as O2

adsorption, intermediate *OOH formation, and H2O2 desorption8,14,15.
Of these, O2 adsorption at active sites is one of the most important
processes, as it facilitates the formation of intermediate *OOH and its
further conversion into H2O2

16–19. Sabatier principle20. Suggests that

the interaction between active sites and adsorbates must have an
optimal binding energy. Further research indicates that the electron
configuration of active sites fundamentally determines their interac-
tion with adsorbates, influencing their adsorption/desorption
performances21. However, in photocatalytic H2O2 production, current
cocatalysts usually suffer from a mismatch in the electronic config-
uration between the active site and the adsorbed O2, leading to either
excessively strong or weak O2 adsorption, which in turn limits H2O2-
production rates22–24. Therefore, it is quite meaningful and challenging
to modulate the electronic configuration of cocatalysts and optimize
their oxygen adsorption strength to achieve efficientH2O2 production.

Currently, noble metal cocatalysts (Pd, Pt, and Au) have made
significant advancements in improving photocatalytic ORR for H2O2

production25–28. Notably, Au cocatalysts usually exhibit a higher pho-
tocatalytic H2O2-production activity, attributed to the effective
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interfacial charge transfer between photocatalysts and Au
nanoparticles29. This transfer enables the rapid movement of photo-
generated electrons from the photocatalysts to the Au surface, facil-
itating the reduction of adsorbedO2 toH2O2 through either a two-step
single-electron or a one-step two-electron ORR process30–32. However,
metallic Au usually exhibits weak oxygen adsorption characteristics
due to its intrinsic electronic structure (Fig. 1a-(1))33,34, which limits the
formation of the *OOH intermediate and subsequentH2O2 production.
Consequently, precise modulation of Au’s electronic structure is
extremely crucial to optimize O2 adsorption and enhance photo-
catalytic H2O2 production. For instance, Tsukamoto et al. demon-
strated increased electronic density in Au by forming an Au-Ag alloy,
reducing H2O2 decomposition on Au sites35. Moreover, Wang et al.
prepared an efficient core-shell Cu@Au-modified BiVO4 nanos-
tructure. This structure reduces negative charge accumulation at the
Au active sites by forming an ohmic contact with Cu/BiVO4, thereby
enhancing the adsorption of O2 and its intermediate *OOH, leading to
efficient photocatalytic H2O2-production performance36. Although the
introduction of alloy and bimetallic core-shell structures have effi-
ciently enhanced the photocatalytic activity of Au sites, the relation-
ship about the H2O2-production activity, the Au-Oads bonds, and the
electronic structure of Au remains unclear. Fortunately, the molecular
orbital theory clearly states that the antibonding-orbital occupancy
degree between a metal and its adsorbate usually determines its
adsorption energy37, which provides a theoretical basis for the mod-
ulation of bond strength between Au and O2. Inspired by this,

selectively decreasing the antibonding-orbital occupancy of Au-Oads is
expected to further enhance the O2 adsorption on Au, potentially
achieving efficient photocatalytic H2O2 production. However, there
has been limited research focusing on this approach to date.

In this work, we propose an approach to strengthen the Au-Oads

bonds by modifying the electronic structure of Au active site. This is
achieved through the introduction of molybdenum sulfide (MoSx) as
an electron mediator to decrease the antibonding-orbital occupancy
of Au-Oads. In this case, the MoSx mediator serves to adjust the elec-
tronic structure of Au cocatalyst, resulting in the creation of electron-
deficient Auδ+ active sites and subsequently accelerating H2O2 pro-
duction (Fig. 1a-(2) and -(3)). To this end, TiO2/MoSx-Au photocatalyst
was synthesized by a two-stepmethod. This process involves the initial
MoSx deposition onto the TiO2 surface and subsequent S-induced
selective photodeposition of Au cocatalyst onto theMoSx surface. The
resulting TiO2/MoSx-Au photocatalyst achieves a boosted H2O2-pro-
duction rate of 30.44mmol g−1 h−1, which is 25.4 and 1.3 times higher
than TiO2 and TiO2/Au, respectively. Density functional theory (DFT)
calculations and ex-situ X-ray photoelectron spectroscopy (XPS) ana-
lysis have confirmed the effective reduction ofd-orbital electron onAu
cocatalyst upon the introduction of MoSx, leading to a decrease in
antibonding-orbital occupancy in Au-Oads (Fig. 1b). Consequently, the
Au-Oads bonds are significantly reinforced, which in turn enhances the
rate of photocatalytic H2O2 production. This work focuses on mod-
ifying the electron structure of Au cocatalyst to reduce the
antibonding-orbital occupancy of Au-Oads, offering a promising
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Fig. 1 | Strategy to design efficient electron-deficient Auδ+ cocatalyst for
improving H2O2-production kinetics. a Schematic illustration of electron-
deficient Auδ+ formation to reinforce Au-Oads bond: (1) weak Au-Oads bond on Au
surface; (2) the formation of electron-deficient Auδ+ sites byMoSx incorporation; (3)

strong Au-Oads bond onMoSx-Au surface. b Schematic diagram about reducing the
antibonding-orbital occupancy of Au-Oads by the free-electron transfer from Au to
MoSx cocatalyst.
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approach to enhance O2 adsorption for efficient photocatalytic H2O2

production.

Results and discussion
Synthesis and characterization of TiO2/MoSx-Au
To realize the successful deposition of MoSx-Au cocatalyst on the
surface of TiO2 photocatalyst, a facile two-step routewas carried out at
room temperature (Fig. 2a), including the initial deposition ofMoSx on
the TiO2 surface and the subsequently selective photodeposition of Au
onto the MoSx surface (Supplementary Fig. 1). First, (NH4)2MoS4
solution was mixed with a lactic acid solution to form brown MoSx
colloidal nanoparticles (Supplementary Fig. 1a-(1)). Subsequently, TiO2

nanoparticles were uniformly dispersed into this colloidal solution
with constant stirring. The positive charge on the TiO2 nanoparticles in
the lactic acid solution allowed for the efficient adsorption of MoSx
colloidal nanoparticles onto the TiO2 surface via electrostatic self-
assembly (Supplementary Fig. 1a-(2), c). The deposition ofMoSx on the
TiO2 surface can be verified by Fourier transform infrared (FTIR)
spectroscopy and Raman spectra analyses (Supplementary Fig. 2). A
new FTIR peak for S-S vibration and a newRamanpeak forMo-S can be
observed, providing strong evidence for the MoSx formation38,39. With
the further additionofHAuCl4 solution into theTiO2/MoSx suspension,
AuCl4

- ions can be selectively adsorbed onto the MoSx surface via the
strong interaction between S and Au atoms (Fig. 2a)40. Upon light
irradiation, the AuCl4

- ions were in situ reduced to form Au nano-
particles on the MoSx surface (Supplementary Figs. 1a-(3), d), evident
from a color change from light brown to purple (Supplementary
Fig. 1b), revealing the successful synthesis of TiO2/MoSx-Au

photocatalyst. The above result can further be supported by X-ray
diffraction (XRD) and Raman spectra. Compared with the TiO2/MoSx
sample, a new XRD peak of Au at 38.1° and an Au-S Raman peak41,42

confirm the selective deposition of Au nanoparticles on the MoSx
surface (Supplementary Figs. 3 and 4).

Transmission electron microscopy (TEM) analysis was employed
to further verify the selective deposition of Au on the MoSx surface
within the TiO2/MoSx-Au photocatalyst. As depicted in Fig. 2b–d,
numerous dark spots on the TiO2 surface are observed, which can be
attributed to theMoSx-Au cocatalyst. The high-angle annular dark-field
(HAADF) images (Fig. 2e, f) further indicate that the MoSx-Au nano-
particles were effectively deposited on the TiO2 surface. The corre-
sponding energy-dispersiveX-ray spectroscopy (EDS)mapping images
(Fig. 2g–l) show that four Au nanoparticles exhibit uniform and same
distribution with the Mo and S elements on the TiO2 particles,
unequivocally indicating that all the Au nanoparticles are selectively
deposited on the MoSx surface via the self-assembly of S-Au.
Ultraviolet-visible absorption spectra (UV-Vis) demonstrate a typical
surface plasmon resonance (SPR) absorption of Au (ca. 540nm)
(Supplementary Fig. 5)40,43,44, suggesting that Au was effectively
deposited on the surfaces of both TiO2 and TiO2/MoSx. Noticeably, the
SPR signal in the TiO2/MoSx-Au appears relatively weaker than that of
the TiO2/Au, which canbe attributed to the strong interaction between
Au and S atoms. According to the inductively coupled plasma optical
emission spectrometry (ICP-OES) results (Supplementary Table S1),
the contents of Mo, S, and Au elements in the TiO2/MoSx-Au photo-
catalyst are 0.62, 0.8, and 3.34wt%, respectively, indicating the pre-
sence of MoSx and Au in the TiO2/MoSx-Au system. These results

Fig. 2 | Synthetic strategy and morphology characterization. a Schematic
illustration for the synthesis of TiO2/MoSx-Au by the initial lactic acid-inducedMoSx
deposition on the TiO2 surface and subsequent S-induced selective

photodeposition of Au cocatalyst onto the MoSx surface. b, c TEM, d HRTEM,
e, f HAADF-STEM, and g–l elemental mapping pictures of TiO2/MoSx-Au
photocatalyst.
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(HRTEM, UV-Vis, and ICP-OES) collectively support the selective
deposition of Au on the MoSx surface.

Photocatalytic performance
The photocatalytic activities for H2O2 production were conducted in
an O2-saturated ethanol solution under Xe lamp irradiation. As shown
in Fig. 3a, TiO2 exhibits a lowH2O2-production rate of 1.20mmol g−1 h−1.
However, the introduction of Au nanoparticles onto the TiO2 surface
leads to an improved H2O2-production rate (24.22mmol g−1 h−1) for the
resulting TiO2/Au. With the further incorporation of MoSx cocatalyst
into TiO2/Au, the TiO2/MoSx-Au shows a significant enhancement in
the photocatalytic H2O2-production activity. Further investigation
indicated that the H2O2-production activity of TiO2/MoSx-Au photo-
catalysts is dependent on theAu amount (Supplementary Fig. 6).When
the Au is precisely maintained at 3%, the resulting TiO2/MoSx-Au
sample exhibits the highest H2O2-production rate with a value of
30.44mmol g−1 h−1 (Fig. 3a and Supplementary Fig. 6), which is 25.4 and
1.3 times higher than that of TiO2 and TiO2/Au, respectively. However,
increasing the Au content beyond this point to 5% leads to a reduction
in H2O2 yield due to the light-shielding effect. According to the
wavelength-dependent H2O2-evolution activity (Fig. 3b), the AQY of
TiO2/MoSx-Au achieves an impressive value of 7.2% at 365 nm. The
present H2O2-evolution performance is much higher than most
reported results in TiO2-based photocatalysts or other inorganic
photocatalysts (Supplementary Table S2). To investigate the applica-
tion potential of present TiO2/MoSx-Au, its photocatalytic H2O2-evo-
lution performance was further tested under different conditions. As
exhibited in Fig. 3c and Supplementary Fig. 7, it is clear that there is
almost no H2O2 generation over TiO2 in the air environment. In con-
trast, the H2O2 yield in the TiO2/MoSx-Au still maintains a high

concentration (14.45mmol g−1 h−1), indicating the great application
potential of the TiO2/MoSx-Au photocatalyst. Besides, no significant
decrease in the H2O2 concentration is observed after four cycles of
photocatalytic reaction (Fig. 3d), revealing the robust reusability of the
TiO2/MoSx-Au. From the above results, it can be concluded that the
introduction of MoSx mediator into TiO2/Au can effectively improve
the photocatalytic H2O2-production activity.

Photocatalytic mechanism of TiO2/MoSx-Au
Considering the boosted H2O2-production activity, the effect of the
MoSxmediator on the Au electronic structure is primarily investigated
by the first-principles calculations and XPS technology. For compar-
ison, three slab models of Au, MoSx, and MoSx-Au are reasonably
selected and optimized (Supplementary Fig. 8). Based on the opti-
mized models, the work functions (Φ) of MoSx (001) and Au (111) are
calculated to be 5.86 and 5.20 eV, respectively (Fig. 4a, b). In this case,
whenAu is loadedonto theMoSx surface, free electronswouldmigrate
inevitably from Au nanoparticles to MoSx (Supplementary Fig. 9)45,46,
thus inducing the formation of electron-deficient Auδ+ sites. This
electron transfer is further substantiatedby examining the local charge
density difference and the corresponding planar-averaged electron
density difference (Fig. 4c, d)47. Obviously, the MoSx-Au cocatalyst
shows a distinct electron-enriched region on the MoSx side, while
positive charges predominantly accumulate on Au atoms, leading to
the production of an electron-deficient Auδ+ layer (Fig. 4d). To quantify
the above charge transfer between Au and MoSx, Bader charge calcu-
lation was performed and shown in Fig. 4e. Clearly, they indicate a
more negative charge density for S and Mo atoms in MoSx-Au com-
pared to pure MoSx. Conversely, the charge density of Au atoms is
slightly increased (+0.07) to produce Auδ+ active sites in the MoSx-Au
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cocatalyst. The formation of above electron-deficient Auδ+ can further
be verifiedbyXPS analysis (Fig. 4f). Comparedwith the TiO2/Au, a clear
shift of binding energy (from 83.2 to 83.6 eV, Δ = 0.4 eV) to a higher
value is observed for Au 4f in the TiO2/MoSx-Au. In addition, the XPS
peaks of S 2p (162.0 eV) and Mo 3d (231.6 eV) shift to lower values
(Δ= 0.6 eV for S 2p, Δ= 0.3 eV for Mo 3d) than those of TiO2/MoSx
(Supplementary Fig. 10), indicating the efficient electron transfer from
Au toMoSx. The above electron transfer can also cause a slight change
of binding energy for the Ti element (Supplementary Fig. 11).
Unquestionably, both DFT calculation and experimental results
strongly support that the introduction of MoSx mediator can effec-
tively modulate the Au electronic structure to induce the formation of
electron-deficient Auδ+ sites in the MoSx-Au cocatalyst (Fig. 4g).

Thegeneration of electron-deficient Auδ+ impacts theO2 adsorption
capability of TiO2/MoSx-Au photocatalyst, as evidenced by various ana-
lyses: O2 adsorption energy, crystal orbital Hamiltonpopulation (COHP),
bonding distance analysis, and partial density of states (PDOS) calcula-
tions. Based on the optimized models in Fig. 5a and Supplementary
Fig. 12, the O2 adsorption energies (Ea) of Au sites before and after MoSx
introductionwerefirst calculated (Fig. 5b). Clearly, the electron-deficient
Auδ+ sites in the MoSx-Au cocatalyst exhibit more negative adsorption
energy (Ea =−0.14 eV) than pure Au (Ea =0.48 eV), indicating stronger O2

adsorption capability48. Further evidence of this enhanced adsorption is
provided by COHP calculations49, revealing a smaller integrated COHP
value (−1.40) for Au-Oads bonds in MoSx-Au than in pure Au (−1.38), and
shorter bond length (2.01 Å) compared to pure Au (2.10Å), signifying
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stronger Au-Oads bonding in electron-deficient Auδ+ sites (Fig. 5c)50. In
this case, the d-band center mechanism helps explain this enhanced
Au-Oads bonding in the MoSx-Au

51. As depicted in Fig. 5d, g, the d-band
center of Au 5d in pure Au cocatalyst is −2.23 eV, significantly far away
from Ef. Consequently, the lower d-band center causes exorbitant
antibonding-orbital occupancy, leading to a weak Au-Oads bond. How-
ever, whenAu is loaded on theMoSx surface, the resulting d-band center
of Au 5d in theMoSx-Au is closer to the Ef (−1.91 eV) than that of pure Au
suggesting that modulating the electron structure of the Au cocatalyst
to form electron-deficient Auδ+ sites can significantly elevate the d-band
center (Fig. 5g). In this case, when O2 is adsorbed on the electron-
deficient Auδ+ sites, the antibonding-orbital occupancy of Au-Oads is
decreased, resulting in a reinforced O2 adsorption. Therefore, the pre-
sence of MoSx cocatalyst in theMoSx-Au can effectively raise the d-band
center of Auδ+ sites for improved O2 adsorption, which is one of the
essential steps for the following H2O2 production.

It is worth emphasizing that a suitable Au-Oads bond can effec-
tively contribute to the formation of Au-OOHads intermediate, thus

greatly improving the selectivity and activity of photocatalytic H2O2

production (Supplementary Fig. 13). Hence, to explore the effect of
improved Au-Oads bonds on the formation of Au-OOHads intermediate
inMoSx-Au cocatalyst, COHP calculationwas carried out. As illustrated
in Fig. 5e, both COHP value (−1.66) and bond length (2.08Å, inset) of
Au-OOHads in MoSx-Au are smaller than those in pure Au (−0.99 and
2.18 Å), forcefully manifesting that the MoSx-Au possess stronger Au-
OOHads bonds, which is beneficial to improving the selectivity of
photocatalytic H2O2 production. The above selectivity and activity of
photocatalytic H2O2 production on MoSx-Au cocatalyst can further be
confirmed by the free energy of *OOH intermediate (ΔGHOO*) based on
the optimized models in Supplementary Fig. 1422. As shown in Fig. 5f,
the ΔGHOO* values on TiO2 and Au sites are estimated to be 5.01 and
4.5 eV, respectively, which are significantly higher than the ideal
ΔGHOO* value (4.2 eV)52. These results suggest that TiO2 and Au have
relatively weak adsorption and easier detachment for *OOH inter-
mediates, leading to sluggish interfacial H2O2-production kinetics
(Supplementary Fig. 13a). In contrast, the electron-deficient Auδ+ sites
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in the MoSx-Au cocatalyst showcase the best ΔGHOO* values (4.2 eV),
aligning with the ideal energy for *OOH adsorption and facilitating
rapid H2O2 generation (Supplementary Fig. 13b).

In addition to enhancing O2 adsorption for efficient H2O2 pro-
duction, the MoSx-Au cocatalyst also promotes the rapid transfer of
photogenerated electrons in the TiO2/MoSx-Au photocatalyst, which
is supported by the subsequent Kelvin probe force microscopy
(KPFM) and in situ XPS53,54. A scanning probe microscopy (SPM)
system with KPFM was employed to analyze the distribution and
transfer pathways of photogenerated electron-hole pairs in photo-
catalysts. The resulting AFM topography image, KPFM image, and the
corresponding contact potential difference (CPD) profiles of TiO2

and TiO2/MoSx-Au are shown in Fig. 6a, b, and Supplementary

Figs. 15 and 16. Obviously, the TiO2/MoSx-Au particles are observed,
and a line scan across the above sample pre- and post-light irradia-
tion is used to evaluate the CPD change. Upon light irradiation, the
CPD value of TiO2 shows a slight increase from −14.7 to 8.6mV owing
to the spontaneous transfer of photogenerated holes onto the TiO2

surface (Supplementary Fig. 16)55. After the loading of MoSx-Au, the
TiO2/MoSx-Au exhibits an obvious CPD value increase of about
185.4mV (from −51.3 to 134.1mV) during light irradiation, accom-
panied by a color change from blue to red owing to enhanced hole
accumulation on the TiO2 surface (Fig. 6a, b), strongly indicating that
the photogenerated electrons are efficiently transferred fromTiO2 to
MoSx-Au cocatalyst56. To further validate the above transfer of pho-
togenerated electrons and their enrichment on the Au active sites of

The photogenerated electron transfer from TiO2 to MoSx-Au cocatalyst
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TiO2/MoSx-Au, in situ XPS was performed (Fig. 6c). The peaks of Au
4f7/2 and Au 4f5/2 in the TiO2/MoSx-Au are remarkably shift toward
lower binding energies (from 83.6 eV to 83.5 eV, Δ = 0.1 eV) upon
light irradiation, suggesting that the photogenerated electrons are
directionally transferred from TiO2 to MoSx-Au and mainly enriched
on the electron-deficient Auδ+ sites, thereby promoting the photo-
catalytic H2O2-production kinetics57.

For a comprehensive understanding of electron-transfer dynam-
ics in the TiO2/MoSx-Au, femtosecond transient absorption spectro-
scopy (fs-TAS) was carefully performed58. As shown in Fig. 6d, e and
Supplementary Fig. 17a, a typical photobleaching peak (~380 nm) is
displayed in the pseudocolor plots of TiO2, TiO2/Au, and TiO2/MoSx-
Au. These signals are assigned to the ground-state bleaching (GSB),
which reflects the excited state relaxation59. Further monitoring of the
GSB signal (380 nm)within 20ps reveals stronger intensity in the TiO2/
Au (Supplementary Fig. 17b) and TiO2/MoSx-Au (Fig. 6g) compared to
TiO2 (Fig. 6f), indicating enhanced electron enrichment in both TiO2/
Au and TiO2/MoSx-Au

39. Further analysis of the interfacial electron
transfer involved fitting decay kinetics within 25 ps at 380 nm using
biexponential equations, with fitting results of normalized curves
shown in Supplementary Fig. 18 and Table S3. The short-lived τ1 cor-
responds to the electron trapping by electron trapping state (e-TS),
while the long-lived τ2 is related to the interfacial electron transfer
from TiO2 to cocatalyst. Meanwhile, A1 and A2 represent the decay
proportion of photogenerated electrons during the electron trapping
and transfer, respectively. Obviously, the TiO2 primarily undergoes a
short-lived process within 25 ps under irradiation, and the corre-
sponding τ1 is 1.63 ps, which is primarily attributed to electron trapping
in the e-TS (Fig. 6h). Interestingly, the τ1 value in the TiO2/Au and TiO2/
MoSx-Au significantly decreases to 0.36 and 0.92 ps, respectively,
suggesting rapid transfer of a portion of photogenerated electrons
from TiO2 to Au (τ2 = 5.88 ps) and MoSx-Au (τ2 = 7.10 ps) cocatalysts
(Fig. 6i). Noticeably, the TiO2/MoSx-Au exhibits a larger A2 value
(A2 = 39.6%) compared to the TiO2/Au (A2 = 32.3%), indicating more
effective transfer of photogenerated electrons from TiO2 to Au facili-
tated by theMoSxmediator60. The improved electron transfer on TiO2/
MoSx-Au is well consistent with the results of photoelectrochemical
and transient-state photoluminescence (TRPL) (Supplementary
Fig. 19). These above results provide concertedly evidence that the
MoSx-Au cocatalyst serves as an efficient platform for rapid transfer of
photogenerated electrons to engage in the subsequent H2O2-produc-
tion reaction at the electron-deficient Auδ+ sites (Fig. 6i), thus achieving
high photocatalytic H2O2 yields.

Overall, a strategy of electronic structure modification for the
Au cocatalyst has been proposed to effectively reinforce the Au-Oads

bonding at electron-deficient Auδ+ sites within the MoSx-Au cocata-
lyst, which can achieve an enhanced O2 adsorption for fast H2O2-
production kinetics. As a result, an exceptional H2O2-production rate
of 30.44mmol g−1 h−1 has been achieved in the resulting TiO2/MoSx-
Au, which is 25.4 and 1.3 times higher than that of TiO2 and TiO2/Au,
respectively. Theoretical simulations and experimental results con-
sistently support the notion that the introduction of MoSx mediator
induces the formation of electron-deficient Auδ+ active sites in the
MoSx-Au cocatalyst by free-electron transfer from the Au cocatalyst
to MoSx, which decreases the antibonding-orbital occupancy of the
Au-Oads, thereby enhancing the O2-adsorption ability to realize effi-
cient H2O2-production performance. In addition, the MoSx-Au coca-
talyst can also provide an efficient platform for the rapid transfer and
enrichment of photogenerated electrons from TiO2, leading to a
distinct improvement of photocatalytic H2O2-production activity for
the TiO2/MoSx-Au. This work emphasizes a feasible strategy for
optimizing the O2-adsorption strength to efficiently accelerate H2O2-
production kinetics, offering a very promising approach for the
rational design of electronic structure for efficient artificial
photosynthesis.

Methods
Preparation of TiO2/MoSx photocatalyst
TiO2 photocatalyst (P25) was calcined at 550 °C for 2 h in a muffle
furnace before being used. The TiO2/MoSx sample was synthesized by
one-step lactic acid-induced method, as schematically demonstrated
in Supplementary Fig. 1. First, 624μL (NH4)2MoS4 (0.02mol/L) solu-
tion was dropped into 160mL lactic acid solution (10 vol%) under
stirring. In this case, the H+ was released from lactic acid and would
induce the transformation ofMoS4

2- intoMoSx colloidal nanoparticles.
Subsequently, the as-prepared TiO2 nanoparticles (0.1 g) were dis-
persed into the above solution. After stirring for 2 h, a brown product
was collected by centrifugation and washing with deionized water and
ethanol. Finally, the obtained product was dried at 80 °C for 12 h. The
resulting brown powder was denoted as TiO2/MoSx. In addition, the
pure MoSx product was also obtained by a similar synthesis route of
the above TiO2/MoSx in the absence of TiO2.

Preparation of TiO2/MoSx-Au photocatalyst
The MoSx-Au modified TiO2 photocatalyst (TiO2/MoSx-Au) was syn-
thesized by a two-step route, including the initial deposition of MoSx
on the TiO2 surface and the subsequently selective photodeposition of
Au onto theMoSx surface. First, 0.1 g of theMoSx/TiO2 wasmixed with
80mL ethanol aqueous solution (20 vol%) in a 100mL three-necked
flask. Then, a known amount of chloroauric acid (0.1mol/L,
HAuCl4·4H2O) was added. After the above system was evacuated with
N2 for 20min and then irradiatedwith a 300WXenon lamp for 1 h, the
resultant suspension was collected by centrifugated, rinsed, and dried
at 80 °C for 12 h to obtain the final TiO2/MoSx-Au. To investigate the
effect of Au amount on the structure and photocatalytic performance,
the amount of Au in the TiO2/MoSxwas controlled to be 1, 1.5, 2, 3, and
5wt%, respectively, and the resultant sample was referred to be TiO2/
MoSx-Au-X% (X is the amount of Au).

Preparation of TiO2/Au photocatalyst
Au nanoparticle-loaded TiO2 (TiO2/Au) was prepared by a photo-
depositionmethod. First, 0.1 g of the TiO2 was dispersed into a 100mL
of ethanol aqueous solution (20 vol%). Subsequently, a known amount
of chloroauric acid (0.1mol/L, HAuCl4·4H2O) was added dropwise to
the above mixture solution. Before irradiation, the above system was
bubbled with N2 for 20min and then irradiated for 1 h. Finally, a light-
purple product was collected by centrifugated, rinsed, and dried at
60 °C for 12 h. The resulting powder was denoted as TiO2/Au.

Characterization
The microstructure of the samples was characterized by transmission
electron microscopy (TEM; Thermal Fisher Talos F200X). X-ray pho-
toelectron spectroscopy (XPS) was performed on a Thermo Scientific
ESCALA 210 XPS spectrometer system (USA) with 300W Al Kα radia-
tion to survey the elemental composition and valence states of these
photocatalysts. The X-ray diffraction (XRD) patterns of the samples
were obtained on an X-ray diffractometer (Shimadzu XRD-6100) with
Cu Kα radiation. The elemental content was performed by inductively
coupled plasma optical emission spectrometry (ICP-OES). The
ultraviolet-visible spectra (UV-vis DRS) were obtained on a UV-vis
spectrophotometer (UV-2600i, Shimadzu, Japan). Time-resolved
photoluminescence (TRPL) spectra were acquired on a fluorescence
lifetime spectrophotometer (FLS 1000, Edinburgh, UK). The photo-
irradiated Kelvin probe force microscopy (KPFM) (SPM-9700, Shi-
madzu, Japan) was carried out to test the contact potential difference
of the samples.

Photocatalytic H2O2 production test
Photocatalytic H2O2-production activity was examined in an O2-satu-
rated aqueous solution with ethanol as a hole scavenger, and a 300W
Xenon arc lamp was selected as the light source. First, 10mg of
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as-prepared photocatalyst and 100mL of ethanol solution (10 vol%)
were mixed in a 100mL three-necked flask reactor. Before irradiation,
the system was purged with oxygen for 30min to obtain an O2-satu-
rated solution. During the photocatalytic H2O2-production test, 1mL
of solution was sampled from the reactor. Finally, the H2O2 con-
centration was examined via an iodometry method by using a UV-
visible spectrophotometer (UV-1240, Japan). The concentration of
H2O2 was calculated by the equation (y =0:00771x +0:0218), and the
reaction mechanism was shown in Eq. (1). The absorbance of I3

- at
350nm can be recorded by UV-vis spectroscopy.

H2O2 + 3I
� +2H+ ! I�3 + 2H2O ð1Þ

Photoelectrochemical measurements
The photoelectrochemical (PEC) properties were assessed using an
electrochemical workstation (CHI 760E, China) within a three-
electrode system. The working electrode was prepared by applying
the photocatalyst onto a 1.0 cm2 FTOglass substrate. The Ag/AgCl (in a
saturated KCl solution) and Pt foil were designated as the reference
and counter electrodes, respectively. The PEC assessments were car-
ried out in a 0.5M Na2SO4 solution using a 300W Xenon arc lamp for
illumination.

Average decay time (τaverage) calculation
The decay curves of as-prepared samples from the TRPL can be
effectively fitted using the following biexponential Eq. (2), and the
fluorescent lifetime (τa) is calculated by Eq. (3).

AðtÞ =Að0Þ +A1 expð�t=τ1Þ+A2 expð�t=τ2Þ ð2Þ

τa = ðA1τ1
2 +A2τ2

2Þ=ðA1τ1 +A2τ2Þ ð3Þ

where A1 and A2 represent the weight factors, while τ1 and τ2 are the
short and long fluorescent lifetimes, respectively.

Apparent quantum yield (AQY) calculation
The AQY measurement was conducted in an O2-saturated aqueous
solution with ethanol as a hole scavenger by utilizing a 300W Xenon
arc lamp as the light source. In detail, the as-prepared photocatalyst
(10mg) and ethanol solution (100mL, 10 vol%)weremixed in a 100mL
three-necked flask reactor, which was oxygenated for 30min to obtain
the O2-saturated solution.

The apparent quantum yields for H2O2 were calculated from the
following Eq. (4):

η=
Ne

Np
× 100%=

2×M ×NA ×h × c
S×P × t × λ

× 100% ð4Þ

whereM represents the amount of producedH2O2molecules (mol),NA

is the Avogadro constant (6.022 × 1023/mol), h is the Planck constant
(6.626 × 10 −34 J s), c is the speed of light (3 × 108m/s), S is the irradiation
area (15.83 cm2), P is the average intensity of irradiation (365 nm,
13.35mW/cm2), t is the irradiation time (s), and λ is the wavelength of
the incident monochromatic light (nm).

Ultrafast transient absorption (TA) tests
Femtosecond transient absorption spectra of the as-prepared photo-
catalysts were obtained on a pump-probe system (Helios, Ultrafast
System) with amaximum time delay of ~8 ns using amotorized optical
delay line under ambient conditions. The 330 nm-pump pulses (600
μW average at tested samples) were generated by the 1 kHz regen-
erative amplifier (Coherent Libra, 800nm, 35 fs, 5 mJ) in an optical
parametric amplifier (OPerA Solo), seeded with a mode-locked Ti:

sapphire oscillator (Coherent Vitara, 800nm, 80MHz) and pumped
with an LBO laser (Coherent Evolution-50C, 1 kHz system). To generate
the white light from 320 to 750nm, the 800 nm-femtosecond pluses
were pumped by a constantly rotating sapphire crystal.

Computational details
The density functional theory (DFT) calculations were performed
using the Vienna Ab initio Simulation Package (VASP) with the gen-
eralized gradient approximation (GGA) employing the revised
Perdew–Burke–Ernzerhof (PBE) functional for the exchange-
correlation interaction. The convergence threshold for total energy
converged within 10−4 eV/atom, and the average force was 0.01 eV/Å.
Grid integration utilized a cutoff energy of 450 eV, and projector-
augmented wave (PAW) potentials characterized the ion cores. To
rationalize the calculation, unsaturated sulfur (S) atoms were
obtained on the edge of MoSx model by creating a vacuum layer in
the y-axis direction, which displayed a similar local coordination
structure as amorphous MoSx cocatalyst. Moreover, (3 × 3 × 1)
Monkhorst-Pack grids and (2 × 2) surface cells were used for oxygen
adsorption. The adsorption energy Eads was defined as
Eads = Etotal � Esurface � EO2, where Etotal, Esurface, and EO2 represent the
energy of adsorption configurations, the energy of metallic surfaces,
and the energy of molecular O2, respectively. In addition, the ΔG of
HOO∗ intermediate on the surface was calculated by the equation
G= E + ZPE � TS, where E is the total energy, ZPE is the zero-point
energy, T is the temperature (298.15 K), and S is the entropy. Several
configurations of the adsorbed models were considered in the
simulation, and the most favorable ones are presented based on the
adsorption energy.

Data availability
Data is available from the authors on request. All data generated in this
study are provided in the Source data file. Source data are provided
with this paper.
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