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An esophagus cell atlas reveals dynamic
rewiring during active eosinophilic
esophagitis and remission

Jiarui Ding 1,2,9, John J. Garber 3,4,9 , Amiko Uchida3, Ariel Lefkovith1,
Grace T. Carter 1, Praveen Vimalathas3,4, Lauren Canha3, Michael Dougan3,
Kyle Staller3, Joseph Yarze3, Toni M. Delorey 1, Orit Rozenblatt-Rosen 1,8,
Orr Ashenberg1, Daniel B. Graham 1,4,5,6, Jacques Deguine 1,
Aviv Regev 1,7,8 & Ramnik J. Xavier 1,4,5,6

Coordinated cell interactionswithin the esophagusmaintain homeostasis, and
disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory
disease with poorly understood pathogenesis. We profile 421,312 individual
cells from the esophageal mucosa of 7 healthy and 15 EoE participants,
revealing 60 cell subsets and functional alterations in cell states, compositions,
and interactions that highlight previously unclear features of EoE. Active dis-
ease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells
expressing the EoE risk gene ATP10A, and cyclingmast cells, with concomitant
reduction of TH17 cells. Ligand–receptor expression uncovers eosinophil
recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-
4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution
of inflammation-associated signatures includes mast and CD4+ TRM cell con-
traction and cell type-specific downregulation of eosinophil chemoattractant,
growth, and survival factors. These cellular alterations in EoE and remission
advance our understanding of eosinophilic inflammation and opportunities
for therapeutic intervention.

As one of the earliest points of contact between the gastrointestinal
tract and a variety of environmental and dietary factors, the esophagus
relies on highly coordinated interactions between multiple cell types
to maintain homeostasis, and disruption of these interactions can
underlie disease. In particular, eosinophilic esophagitis (EoE) arises in
the setting of type 2 cytokine-driven inflammation and is associated
with dysphagia and fibrostenotic complications1. EoE incidence and
prevalence have risen rapidly over the last two decades2, mostly in the

Western world. One of the earliest andmost consistent findings in EoE
is increased epithelial permeability and dilated intercellular space3–5.
Impaired mucosal integrity is thought to increase exposure to dietary
and environmental allergens, further compounding the EoE inflam-
matory cycle. Persistent inflammation in turn leads to the develop-
ment of subepithelial fibrosis, due to fibroblast activation and
stimulation of collagen production via eosinophil- and mast cell-
derived TGF-β6,7. Ultimately, the combination of structural changes
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induced by subepithelial fibrosis and the direct effects of eosinophils
and mast cells on the smooth muscle in the esophagus leads to dys-
motility and food impaction8. Although the histologic hallmark of EoE
is intraepithelial eosinophils9, mechanisms of eosinophil recruitment
and activation and their precise roles in the broader type 2 inflam-
matory cascade remain poorly understood, including the nature of
coordinated interactions betweenmultiple immune10–13, epithelial, and
stromal cells14.

Despite the frequent co-occurrence of EoE with other allergic
diseases and the ability of dietary antigen removal to resolve
inflammation15, immunoglobulin E (IgE) appeared dispensable in an
animal model of TSLP-dependent EoE12, and anti-IgE therapy (oma-
lizumab) failed to improve symptoms or decrease esophageal eosi-
nophilia in a human trial16. Conversely, patients in the controlled trial
of omalizumab had markedly increased tissue levels of IgG4, and a
subsequent study showed a broad increase in esophageal immu-
noglobulins of all isotypes except IgE in active EoE17. Tissue levels of
IgG4 correlated with esophageal eosinophil density, histologic
severity scores, and expression of type 2 cytokines, including IL-4
and IL-13.

Recent studies investigated EoE using single-cell RNA-seq (scRNA-
seq), but at a relatively modest scale. One study profiled 14,242
immune and non-immune esophageal cells, identifying 8 major cell
types and 6 T cell subsets, and showed that esophageal (vs. duodenal)
eosinophils upregulated proinflammatory pathway genes18. Cells from
a pathogenic effector T helper 2 (peTH2) subset were enriched for
expression of arachidonic acidmetabolism and eicosanoid production
genes (e.g., PLA2G16, PTGS2, HPGDS, and ALOX5AP), expressed the T
cell gastrointestinal and skin homing factor GPR1519,20, and displayed
evidence of clonal expansion in three of the four patients with active
EoE in whom multiple TCR sequences were recovered. However,
because esophageal epithelial cells were under-sampled, this work
could not comprehensively dissect networks of epithelial-immune
crosstalk. A smaller study profiling 1088 esophageal T cells from EoE
patients showed similar results, including the presence of GATA+

TH2-like effector T cells, which produced high levels of IL-5 and IL-1313,
but did not detect IL-9-expressing T cells nor eosinophils,mast cells, or
type 2 innate lymphoid cells (ILC2s). More recent studies, which pro-
filed 40,297 cells from 10 individual patients21,22 also focused on
abundant cell types, such as mast and epithelial cells, each explored
separately.

Here, we generate a comprehensive esophageal cell atlas of
421,312 scRNA-seq profiles from esophageal biopsies from 15 EoE
patients (8 active, 7 remission) and7 healthy participantswith a normal
pathology report from their esophageal biopsies. We identify 60 dis-
tinct cell subsets,with striking compositional and cell intrinsic changes
in many cell types in EoE, highlighting underappreciated roles for
multiple cell types beyond eosinophils in EoE pathogenesis along with
therapeutic opportunities beyond eosinophil depletion. These include
increased proportions of ALOX15+ macrophages (induced by IL-4),
plasma cells, and PRDM16+ dendritic cells (DCs); induction of IL13R2+

inflammatory fibroblasts that correlate with disease activity and
abundance of IgG+ plasma cells; a diminished TH17 cell population
producing fewer cytokines; and upregulation of multiple
prostaglandin-related genes in rare, tissue-resident ILC2s expressing
IL-5 and IL-13. Patients with active EoE, but not those in remission, have
increased proportions of IgG+ and IgM+ plasma B cells compared to
healthy participants. Cell interactions inferred from ligand–receptor
expression that are specific to active EoE highlight mast cell–IL-9+ TH2
cell interactions and expression of SELP on activated endothelial cells,
which can facilitate the recruitment of eosinophils. Finally, we identify
cell type-specific expression of EoE risk genes, including NOVA123,
expressed in esophageal fibroblasts, and ATP10A, expressed in
PRDM16+ DCs, which are enriched in active disease. Taken together,
our work shows multiple cell types, states, and interaction networks

that promote the development or associate with the resolution of
eosinophilic inflammation.

Results
A human esophagus cell atlas
To understand cellular alterations during EoE, we analyzed 37 eso-
phageal biopsies from 22 human donors (8 active EoE patients, 7
remission EoE patients, and 7 healthy participants on which an endo-
scopy was performed because of general dyspepsia, but where no
pathological findingswere reported), with equal numbersofmales and
females (Fig. 1a, b, Supplementary Fig. 1a, Supplementary Data 1,
Methods). For 15 of the donors, we obtained and separately analyzed
biopsies from both proximal and distal regions of the esophagus
(Fig. 1a, b, Supplementary Fig. 1a). Each biopsy was processed indivi-
dually with a rapid digestion protocol optimized for simultaneous
recovery of epithelial, stromal, and immune cells (Methods).

We assigned 421,312 single-cell profiles to 60 prevalent subsets,
spanning 93.5% of cells (393,763/421,312) and annotated by expres-
sion of distinct marker genes (Fig. 1c, d, Supplementary Fig. 1b an-
d 2a, b, Methods), as well as another 12 rare cell subsets (1,215 cells,
Supplementary Note 1). The 60 prevalent subsets comprised 4 epi-
thelial cell subsets, 10 stromal and glial (Schwann) cell subsets, 17
myeloid (monocyte, macrophage, DC) subsets, 5 B cell subsets, 20 T/
natural killer (NK) lymphocyte subsets, an erythroid cell subset, an
eosinophil cell subset (expressing Charcot-Leyden Crystal (CLC) and
CCR3), and two mast cell subsets (expressing tryptase α/β1 (TPSAB1)
and CPA3) (Fig. 1c, d). A portion (21.6%) of mast cells also expressed
chymase (CMA1, Supplementary Fig. 2c), suggesting that both
tryptase+chymase+ mast cell (MCTC) and tryptase+chymase- mast cell
(MCT) subtypes exist in the esophageal mucosa22. Cells from each of
the 60 subsets were observed in multiple donors from each of the
three groups (Supplementary Fig. 1b). Cells from another 12 rare
subsets were detected in only a few patient biopsies (95.5% from 2
healthy individuals) but were readily annotated, including foveolar,
parietal, mucous neck, Paneth, chief, duct, enterochromaffin-like,
and ghrelin- or gastrin-expressing cell subsets (Supplementary
Fig. 2d). We did not observe neutrophils, which are not a feature of
uncomplicated EoE24, or basophils. Our endoscopic biopsies cap-
tured epithelia and lamina propria but were not deep enough to
obtain submucosal neurons, which we previously reported in the
healthy esophagus by single-nucleus RNA-seq of the esophagus
muscularis25.

Eleven of the 60 prevalent subsets consisted of proliferating cells,
including cycling basal zone epithelial cells, fibroblasts, blood vascular
endothelial cells (BECs), pericytes, mast cells, macrophages, DCs,
plasma B cells, CD4+ and CD8+ T cells, and NK cells (Fig. 1d). Cell
profiles from 10 cycling cell subsets (excluding cycling basal cells)
formed a clear circular pattern when embedded by UMAP26 using only
cell cycle-specific genes27 (Supplementary Fig. 2e) and had a higher
number of detected expressed genes per cell compared to their non-
cycling counterparts (Supplementary Fig. 1b, except for epithelial
cells), as previously reported28,29. In addition to professional antigen-
presenting cells (APCs), a subset of CD8+ T cells, BECs (especially
venous endothelial cells), and glial (Schwann) cells expressed major
histocompatibility complex class II (MHC-II) genes (Fig. 1d), albeit at
lower levels than macrophages and DCs. Because the transcripts were
observed even after stringent removal of ambient RNA30 (Supple-
mentary Fig. 2f), these cells may represent non-conventional APCs in
this setting. In the B cell compartment, onlymemory B cells expressed
high levels of MHC-II genes.

The epithelial compartment included four subsets: quiescent
basal cells expressing TSLP (an EoE risk gene), CXCL14, IL1R2, and
KRT14/15; apical cells expressing KRT78 and CRNN; cycling basal cells;
and suprabasal cells expressing a mix of basal, apical, and cell type-
specific genes, such as SERPINB3/4 and DSC2 (Fig. 1d, Supplementary
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Data 2). Our annotations of the esophageal epithelial compartment
were consistent with recent studies21,31–33, with a matching expression
of marker genes (e.g., COL17A1 in quiescent basal cells, KRT4 in dif-
ferentiated suprabasal but not basal cells, and CRNN mostly in apical
cells32) (Supplementary Fig. 2g). Suprabasal cells expressed the highest
level of the EoE risk gene CCL26 (Supplementary Fig. 2h), encoding
eotaxin-3, a chemotactic factor for eosinophils induced by IL-13.
Cycling basal cells were partitioned into two subsets, whichwe termed
‘differentiation’ and ‘renewal’ (Supplementary Fig. 2i,j), by their
expression of suprabasal and basal cell marker genes, respectively. A

force-directed layout embedding of a diffusionmap analysis predicted
that cycling ‘renewal’ basal cells differentiate into quiescent basal cells,
while cycling ‘differentiation’ basal cells differentiate into suprabasal
cells, which subsequently differentiate into apical cells (Supplemen-
tary Fig. 2k). In active EoE, there was reduced differentiation of
suprabasal cells to apical cells, consistent with recent reports21 (Sup-
plementary Fig. 2k). Together, our dataset forms the most compre-
hensive cell atlas of the esophageal mucosa to date and allows cell
subsets to be distinguished at high resolution, particularly within the
lymphoid and myeloid compartments.
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axis, left) or location (x-axis, right). The number of samples in each condition from
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marker genes. Source data are provided as a Source Data file.
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Cell compositions shift in active EoE and largely restore in
remission
To understand how treatments may broadly impact cellular compo-
sition within or across groups in the context of our study, we per-
formed permutational analysis of ANOVA (PERMANOVA, Methods),
withdisease, age, treatment (steroids and food elimination), anduseof
proton pump inhibitors (PPIs) as the independent variables. Disease
had a highly significant (p =0.00017) impact on cell composition and
steroid use was marginally significant (p =0.04680). Food elimination
was marginally insignificant (p =0.10844). Both PPI and age were not
significant (p >0.3).Wedid anextra analysis by addingpatient sex, and
the results were almost unchanged, with only disease (p = 0.00007)
and steroid (p = 0.03829) being significant and all the other variables,
including sex, being insignificant (p >0.05).

We next quantified cellular compositional changes in different
disease conditions using a negative binomial regression model
(Methods). Compared to both remission and health, active EoE had
distinct proportions ofmultiple cell types beyond eosinophils, often in
a manner that correlated with disease activity. Both eosinophils and
mast cells increased in frequency as expected in patients with active
EoE compared to remission or healthy participants (Fig. 2a, Supple-
mentary Fig. 3a,b, Methods). Additionally, in active EoE the propor-
tions of PLAC8+ macrophages, ALOX15+ macrophages, PRDM16+ DCs,
and plasmacytoid DCs (pDCs) increased, while the proportions of
FOLR2+ macrophages and apical cells decreased (Fig. 2a), highlighting
additional findings in EoE. TH2 cells, a major source of IL-4 and IL-13, as
well as cycling CD4+ T cells and plasma B cells also increased in pro-
portions in active EoE (Fig. 2a). Shifts in rarer cell states that were not
observed in healthy participants (e.g., cycling plasma cells) could not
be formally assigned statistical significance (Methods). Eosinophils,
mast cells, other myeloid cells, and lymphocytes were among the top
cell types whose abundances highly correlated with disease activity
(absolute Spearman ρ >0.48, FDR <0.1), as measured by clinical
annotation of the number of eosinophils per high-power field (HPF) in
histopathology samples (Fig. 2b, c). These followed a typical gradient
of cell proportions fromhealth to remission to active EoE, although the
proximal biopsies of two active EoE patients showed very few eosi-
nophils per HPF (Fig. 2c). For patients in remission, high #eosinophils/
HPF did not correlate with symptoms in our small cohort (e.g., the
patient with 10 eosinophils/HPF did not have any remaining symp-
toms) (Supplementary Data 1). Most cells whose abundances were
correlated to #eosinophils/HPF were also highly correlated with
endoscopic reference scores (EREFS) of EoE (Supplementary
Fig. 3c, d). Thus, increases in multiple cell types in addition to eosi-
nophils characterize compositional changes in active EoE. Con-
sistently, cell composition profiles distinguished active EoE from
health and remission by the first principal component (PC) in a prin-
cipal component analysis (PCA) based on cell proportions (Fig. 2d,
Methods), with cells enriched in active EoE (eosinophils, cycling mast
cells, and cycling plasma cells) highly positively correlated with PC1.
Although one patient (E1054) had discordant #eosinophils/HPF in
distal vs. proximal regions, neither the proximal nor the distal profile
showedactive EoE signatures. For the eight patients (excluding the two
patients in active EoE but with discordant eosinophil counts in the
distal and proximal regions) where both proximal and distal biopsies
were separately profiled, based on a negative binomial model, we did
not detect significant cellular compositional changes after correcting
for multiple comparisons (FDRs ≥ 0.095).

While cellular composition was mostly restored in remission
to proportions similar to those of healthy samples, there were
some notable differences, where remission either retained fea-
tures of active EoE or was uniquely distinctive. In particular,
the significant contraction of CD4+ resident memory T (TRM)
cells in active EoE compared to health was not restored in
remission (Fig. 2a, Supplementary Fig. 3b, Methods). T cell

subsets, including TH17 cells, CD4+ resident memory T cells, and
regulatory T cells (Tregs), were among the very few cell types
whose proportions differed significantly between remission and
healthy participants (Fig. 2a, Methods), highlighting select fea-
tures that are not simply restored in remission. These results were
statistically robust. Specifically, a linear regression model to
quantify cellular compositional shifts after quantile normalization
of each cell type’s proportion yielded largely consistent results,
although with slightly lower power, (Supplementary Fig. 3c) and
identified significant changes in rare cell types, such as cycling
plasma cells in active EoE (Supplementary Fig. 3e). Overall, our
analyses show a broad remodeling of cell composition during
active disease that is largely, but not fully, resolved in remission,
and includes concomitant changes in the lymphoid and myeloid
compartments, which we further investigated below.

ALOX15+ macrophages and PRDM16+ DCs associate with
active EoE
Macrophages spanned multiple subsets with either tissue-resident or
monocyte-derived features, including an ALOX15+ subset that was
associated with disease. Overall, macrophages (Fig. 3a–d, Supple-
mentary Data 3a–c) showed a predominantly M2 phenotype34–36

(expressing STAB1, CD163/209, F13A1, VSIG4, and TREM2) and expres-
sed complement component 1q genes (e.g.,C1QA),CD14/81, andMAFB.
Most macrophages expressed SEPP1 (SELENOP) and spanned different
states, with one upregulating FOLR2, CXCL12, and LILRB5, and another
upregulating IL1B and CXCL2/837,38. Additionally, a subset of lipid-
associated SPP1+ macrophages25 showed lower levels of C1QA and
higher expression of CD14+ monocyte genes S100A8/A9 and C5AR1,
potentially originating frommonocytes in the esophagus39. A subset of
PLAC8+ macrophages expressed marker genes CCR2, LGALS2, and
LILRB1, which were also expressed in monocytes and may represent
recent monocyte-derived macrophages in a transient state37. Macro-
phages expressing the IL-4 polarization gene ALOX15+ increased in
proportion in active disease (Fig. 2a) andhada similar profile to PLAC8+

and SEPP1+ macrophages, but also expressed MMP9/12 and TREM2.
Accordingly, cell-intrinsic expression of ALOX15 was upregulated in
cells from patients with active EoE (Fig. 3c,d). The ALOX15+ macro-
phages were characterized by an expression program identified by
unsupervised non-negative matrix factorization of the macrophage
subsets, including MMP12, MMP9, and ALOX15 as the top three
genes (Fig. 3e).

Esophageal DC subsets included conventional type 1 dendritic
cells (cDC1s), cDC2Bs and IL22RA2+CLEC10A− cDC2As recently dis-
covered in the spleen40, and a subset of PRDM16+ cDC2Cs expressing
the EoE risk gene ATP10A that were rare in healthy tissue and enriched
in active EoE. Differential expression analysis between cDC2As and
cDC2Bs recovered known cDC2A marker genes (Fig. 3f, Supplemen-
taryData 3d). cDC2s expressingPRDM16,RORC, andPIGR (Fig. 3g)were
enriched in active EoE (Fig. 2a). These cells did not expressDC4marker
genes41 (FCGR3A and SERPINA1) nor AS DCmarkers (AXL and SIGLEC6).
Re-analyzing several published scRNA-seq datasets showed that cells
with similar profiles are present in other tissues, including glio-
blastoma tumors37 (Fig. 3h), spleen, parotid glands, lymph nodes,
inguinal lymph nodes (Fig. 3i, from the cross-tissue cell atlas Tabula
Sapiens42), mesenteric lymph nodes, lung-draining lymph nodes, lung
(Fig. 3j, from cross-tissue immune cells43), and colon44 (Fig. 3k).
PRDM16+ cDC2Cs highly expressed PTPRC, MHC-II genes, CD52, AIF1,
LST1, CLEC4A, and TYROBP, but not CD68, MAFB, and C1q genes, con-
firming them as bone fideDCs. Both PRDM16+ cDC2Cs and cDC2As did
not express CLEC10A. PRDM16+ cDC2C profiles were more similar to
those of cDC2As than cDC2Bs (Fig. 3a,b, based on the top four PCs),
with both cDC2Cs and cDC2As expressing ATP10A. Some of the
PRDM16+ cDC2Cs were in a distinct state expressing cell cycle marker
genes such as KIAA0101 and TYMS (Fig. 3a,b). Thus, PRDM16+ cDC2Cs
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Fig. 2 | Shifts in cellular composition during remission and active EoE.
a Changes in cell composition between conditions. Distributions of cell type pro-
portions (y-axis) in active disease (red, n = 14), remission (blue, n = 11), or healthy
(green, n = 12) biopsies (points). Boxplots: medians and interquartile ranges (IQR).
Whiskers: lowest datum within 1.5 IQR of the lower quartile and highest datum
within 1.5 IQR of the upper quartile. ***BH FDR<0.001, **FDR <0.01, *FDR<0.05,
two-tailed Wald test. b, c Cell proportion association with eosinophil infiltration.
b FDR (y-axis, two-tailed one-sample Student’s t test) of Spearman rank correlation
coefficients (x-axis) between number of eosinophils per high power field (HPF) and

the number of cells of each subset in each patient (n = 22). Cell types with FDR <0.1
are shown. c Percent cells of specific types (y-axis) and number of eosinophils per
HPF (x-axis) in each donor (dot). Linear regression lines are shown. FDRswere from
two-tailed one-sample Student’s t tests. d Distinctive cellular composition profiles
for each condition. Each sample (left) and cell type (right) by the first two principal
components (PCs, x- and y-axis) of the sample (biopsy)-cell type count profile
matrix after centered log-ratio transformation. Source data are provided as a
Source Data file.
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are a rare DC subset, increase in EoE, and express the EoE risk gene
ATP10A.

Rare resident ILC2s produce IL-13, IL-5, and prostaglandins
We identified rare ILC2s (Fig. 4a, Supplementary Fig. 2b, Supplemen-
tary Data 4) that were significantly increased in proportion in active
EoE compared to health (Fig. 2a, Supplementary Fig. 3e). ILC2 are likely
tissue-resident, based on expression of CD69 and ITGAE but not the
circulation marker FAM65B45 (Fig. 4b). Consistent with tissue resi-
dency, esophageal ILC2s had higher expression of markers that are
highly expressed in lung and colon ILC2s but low in blood and tonsil

ILC2s46 (Fig. 4c). Both ILC2s and TH2 cells expressed IL-13 and IL-5, but
ILC2s also upregulated prostaglandin-related genes PTGDR2, PTGS2,
and HPGD (Fig. 4d). Interestingly, ILC2s and TH2 cells expressed
phospholamban (PLN), which is induced by TGFβ1 in human esopha-
geal smooth muscle cells and EoE myofibroblasts47, but ILC2s in the
esophagus expressed amphiregulin (AREG) at higher levels, suggesting
that they may function in tissue repair during EoE48.

TH17 cells decrease in active EoE and downregulate cytokines
While CD8+ T cells and NK cells accounted for ~65% of the detected T
andNK cells, they did not change in proportions in patients with active
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EoE, whereas CD4+ TH cells showed changes, including in additionally
characterized subsets (Fig. 2a, Supplementary Fig. 3e). Except for TH2
cells, other CD4+ TH cells have not been extensively characterized in
EoE, and a recent scRNA-seq study of 1088 T cells in EoE reported only
TH2 cells and Tregs

13. We identified these and five additional CD4+ T cell
subsets with distinct markers, including TCM cells expressing naive
markers (SELL and LEF1) and KLRB1; TRM cells expressing CCL5, ITGA1,
and TNF; TH1 cells expressing IFNG, CXCR3, and CCL4; TH17 cells
expressing IL17A, IL22 andCCR6; and cycling T cells (Fig. 1d). Reanalysis
of the 1088 profiles13 with our signatures confirmed the presence of
small numbers of TCM and TH17 cells in that dataset (Fig. 4e).

Compared to those in healthy participants, TH17 cells were
depleted in patients with active EoE in both the public data (FDR <
0.001, Fisher’s exact test; Fig. 4e) and our data (Fig. 2a) and down-
regulated IL17A/F, IL22, and IL26 (FDR <0.001, likelihood-ratio test,
Fig. 4f). This is consistent with IL-17 depletion in peripheral blood
mononuclear cells (PBMCs) from pediatric EoE patients49. Within
T cells, TH2 proportions were increased and TH17 proportions were
decreased in active EoE compared to healthy participants (FDR <
0.001, Wald test; Fig. 4g). Thus, EoE impacts the TH cell compartment,
while the composition of cytotoxic cell subsets is broadly unaffected.

IFNG+ T cells and interferon response signatures correlate
across cell types
Previous reports noted a dominant type 1 (IFN-γ) vs. type 2 (IL-4/5/13)
cytokine production in esophageal T cells, and elevated interferon-α/γ
response signatures in esophageal tissues13,50. Consistently, CD8+

T cells, CD4+ TH1 cells, and FCERG3+ NK cells all expressed interferon-γ
(IFNG), and most of the 60 cell subsets had elevated interferon-α and/
or interferon-γ response gene signatures (>0, Supplementary Fig. 4a,
Methods). A few cell subsets, including epithelial cells, eosinophils,
mast cells, and plasma B cells, did not show a high interferon-α/γ
response signature.

Interestingly, for many subsets, the proportion of IFNG+ CD8+

T cells (out of all CD8+ T cells) was correlated across samples with the
average interferon-γ response gene signature score of that subset
(Supplementary Fig. 4b). This was especially notable for Tregs, CD4

+

central memory T cells, CD8+ effector T cells, and MHC II CD8+ T cells
(Supplementary Fig. 4b,c). Conversely, the expressionof this signature
in cycling pericytes was negatively correlated with IFNG+ CD8+ T cell
proportions across samples. This analysis indicates that the presence
of IFNG+ CD8+ T cells may dynamically alter gene expression across
other T cell subsets.

Diverse plasma B cells and IgE+ B cells increase in active EoE
An increase in plasma B cell proportions was a salient feature of active
EoE (rising from a median of 0.021% of all cells in non-active EoE,
including both healthy and remission, to 0.535% in active EoE),

especially for IgG+ (from a median of 0 to 0.044% across patients,
FDR <0.05, Wald test), IgM+ (from a median of 0 to 0.0019% across
patients, FDR <0.05), and cycling (frommedian of 0 to 0.024% across
patients, FDR <0.05) plasma cells, which represent only a handful
(0–22) of cells detected in non-active EoE (Fig. 2a, b, d, Supplementary
Fig. 3e, Supplementary Fig. 5a, b). Within the B cell compartment,
cycling plasma B cell proportions increased from amedian of 0.00% in
non-active EoE to 3.60% in active EoE (FDR <0.001, Wald test; Sup-
plementary Fig. 5c). Notably, IgG+ plasma B cells expressed different
subsets of IgG genes (Supplementary Fig. 5d, e), either solely IGHG4,
co-expression of IGHG2 and IGHG1 (Spearman ρ =0.53), or co-
expression of IGHG1 and IGHG3 (minimum Spearman ρ =0.70).

Both healthy and EoE samples contained a subset of memory B
cells that expressed high levels of MHC-II genes and CD4051 along with
low levels of different immunoglobulin class genes, including IGHE
(Supplementary Fig. 5a, f). IgE+memory B cells are rare52,53 andmay not
have been previously described in vivo in EoE. IgE-expressing memory
and plasma B cells were absent in healthy participants (FDR <0.001,
Fisher’s exact test; Supplementary Fig. 5g).

Shared and cell type-specific gene program changes in
active EoE
We next focused on cell-intrinsic changes in EoE by examining genes
that were differentially expressed in cells of the same type between
healthy, active EoE, and remission samples (Fig. 5a, Supplementary
Fig. 6a–c). Across the 60 prevalent subsets, hundreds of genes in total
were differentially expressed in specific cell types between active EoE
and health (mostly from epithelial, stromal, or mast cells, with 133
differentially expressed genes detected from apical cells) or between
active EoE and remission (Supplementary Fig. 6a, c). Fewer genes were
differentially expressed in those cells between remission and health,
indicating some renormalization of gene programs in remission.

Specifically, of the genes differentially expressed in cells between
active EoE and healthy samples, 26.7% were also similarly differentially
expressed (in the same cell type) between active and remission sam-
ples (Fig. 5a, top, Pearson R = 0.69, Supplementary Fig. 6b, c), con-
sistent with normalization, and 22.3% were differentially expressed
between remission and healthy samples, consistent with lingering
differences (Fig. 5a, center, Pearson R =0.77, Supplementary
Fig. 6b, c). This suggests that while many changes normalize in
remission, others do not, or do so only partly. Indeed, many of the
genes differentially expressed in specific cell types between remission
and health followed similar expression trends in active EoE (Fig. 5a,
bottom, Pearson R = 0.61, Supplementary Fig. 6b, c). Genes with cell
type-specific expression changes in active EoE that normalized in
remission were enriched for immune functions and regulators of
immune system processes, exocytosis, and peptidase activity, includ-
ing multiple genes in fibroblasts, macrophages, and cDC2Bs (Fig. 5b,

Fig. 3 | Disease-associated ALOX15+ macrophages and PRDM16+ DCs in the EoE
myeloid compartment. a, b Myeloid compartment of the esophageal cell atlas.
a Two-dimensional spherical latent representation of 6515 monocytes, macro-
phages, and DC profiles (dots) from all donors (n = 22), colored by cell type, as
learned by scPhere82, taking 10x Chromium library version as the batch factor.
b Scores (color) on each of the top 5 PCs (columns) for each myeloid cell subset
(rows) hierarchically clustered based on Euclidean distance (dendrogram on left)
with complete linkage. c–e ALOX15A+ macrophages in active EoE. c Significance (y-
axis (-log10(p-value), two-tailed likelihood-ratio tests of logistic regression coeffi-
cients, Bonferroni corrected) of differential expression (fold change, x-axis) for
each gene (dot) between ALOX15+ macrophages and other macrophages. Red: >1.5-
fold change, adjusted p <0.001. d Distribution of expression (y-axis,
log10(TP10K + 1)) of ALOX15 in ALOX15+ macrophages from each condition (x-axis).
e Distribution of ALOX15 NMF program scores (y-axis) in different macrophage
subsets (x-axis). FDR (BH): two-tailed Mann–Whitney U test. f DC2s subsets. Sig-
nificance (y-axis (−log10(p-value), two-tailed likelihood-ratio tests of logistic

regression coefficients, Bonferroni corrected) of differential expression (fold
change, x-axis) for each gene (dot) between cDC2A and cDC2B (classic CD1C+

cDC2). Red: >1.5-fold change, adjusted p <0.001. g–k PRDM16+ cDC2Cs.
g Significance (y-axis (−log10(p-value), two-tailed likelihood-ratio tests of logistic
regression coefficients, Bonferroni corrected) of differential expression (fold
change, x-axis) for each gene (dot) between PRDM16+ cDC2Cs and other DCs. Red:
>1.5-fold change, adjusted p <0.001. h Distribution of expression (y-axis,
log10(TP10K+ 1)) of cDC2Cmarker genes (x-axis) in cDC2Cs in our dataset (left) and
from re-analyzing a publicly available brain dataset (right)37. i–k Top: UMAP
Embedding of cell profiles from the multiple-organ Tabular Sapiens (i42), cross-
tissue immune cells (j43), and colon (k44), colored by cluster. Bottom:Distribution of
expression level (y-axis, log10(TP10K+ 1)) of PRDM16+ cDC2Csmarker genes in each
cluster (x-axis). Violin plots: width based on Gaussian kernel density estimation of
data with default parameters, scaled to amaximumof 1; White horizontal segment:
median. Source data are provided as a Source Data file.
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Supplementary Fig. 6a, Supplementary Data 5, Methods). Conversely,
genes with expression changes that were sustained in remission were
enriched for cornification, skin development, regulation of epithelial
cell proliferation, response to lipid, and regulation of cell motility
functions, and were mostly expressed in apical cells and pericytes
(Supplementary Fig. 6d, Supplementary Data 5).

In particular, fibroblast genes dysregulated in active EoE and
normalized fully or partly in remission were highly enriched for posi-
tive immune regulators (Fig. 5b), including IL13RA2, IGF2, C3, CFD,
IGFBP2,GAS6, andC1S (Fig. 5c). IL13RA2, encoding a decoy receptor for
IL-13 and a signature gene for inflammatory fibroblasts enriched in
ulcerative colitis54, was expressed in fibroblasts almost exclusively in

Fig. 4 | Characterizations of ILC2s and T cells in EoE. a T, NK and ILC cell com-
partment. Pseudobulk cell profiles of each cell subset (dots) in the space of the first
two PCs of a PCA applied to the pseudobulk cell profiles. b–d Esophageal ILC2s
express prostaglandin-related genes. b Distribution of expression (y-axis,
log10(TP10K + 1)) of tissue-resident (CD69, ITGAE, ITGA1) and circulating (FAM65B)
marker gene across the subsets in the T/ILC/NK compartment (x-axis).
c Distribution of scores (y-axis) of an esophageal ILC2 signature in ILC2s from
different tissues (x-axis). d Significance (y-axis (−log10(p-value), two-tailed like-
lihood-ratio tests of logistic regression coefficients, Bonferroni corrected) of dif-
ferential expression (fold change,x-axis) for each gene (dot) between ILC2s andTH2
cells. Red: >1.5-fold change, adjusted p <0.001. e–g Expansion of TH2 cells, con-
tractionof TH17 cells, and reduction in TH17 signature cytokines in EoE. e Left:Mean
expression (dot color) andproportion of expressing cells (dot size) ofmarker genes
(columns) of different TH cell subsets (rows) in re-analysis of 1089 publicly available

T cell profiles from EoE patients13. Right: Proportion of cells (y-axis) of each T cell
subset (x-axis) detected in each condition (bar color). ***FDR <0.001, **FDR <0.01,
two-tailed Fisher’s exact test. f Distribution of expression (y-axis, log10(TP10K+ 1))
of key cytokine genes in TH17 cells from each condition (x-axis). FDRs of differential
expression analysis (two-tailed likelihood-ratio tests of logistic regression coeffi-
cients) indicated on top. g Distribution of cell type proportions (y-axis) of each T/
NK/ILC cell subset (x-axis) in each biopsy (dot) in each condition (color) (healthy:
n = 12; remission: n = 11; active: n = 14). ***BH FDR <0.001, **FDR<0.01, *FDR<0.05,
two-tailed Wald test. Boxplots: medians and interquartile ranges (IQR). Whiskers:
lowest datum within 1.5 IQR of the lower quartile and highest datum within 1.5 IQR
of the upper quartile. Two-tailed Wald test FDRs are indicated on top. Violin plots:
width based onGaussian kernel density estimation of datawith default parameters,
scaled to a maximum of 1; White horizontal segment: median. Source data are
provided as a Source Data file.
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Fig. 5 | Gene programs changes in active EoE and normalization in remission.
a, b Gene changes in cell-intrinsic programs in EoE. a Genes (dots) with significant
differential expression (log2(fold changes), x- and y-axis) between different con-
ditions (axis labels). Pearson correlation coefficients and linear regression lines
shown in upper left corners. The p-values are based on two-tailed one-sample
Student’s t tests. b Enrichment (-log10(FDR), one-tailed hypergeometric test) of
Gene Ontology biological process terms (rows) in genes differentially expressed
(numbers) between active EoE and both health and remission samples, in each cell
type (columns). c–e Shift to IL13RA2+ inflammatory fibroblasts in active EoE.
c Distribution of expression (y-axis, log10(TP10K + 1)) in fibroblasts from the three
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The black line is a fitted linear regression line. The p-values are based on two-tailed
one-sample Student’s t test. Source data are provided as a Source Data file.
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active EoE (Fig. 5c). The proportion of IL13RA2+ fibroblasts out of all
fibroblasts correlated with PC1 (Fig. 5d), which reflected disease state
in a PCA of cell type proportions (Fig. 2d). This was driven by both low
proportions of these cells in healthy participants and remission
patients (Fig. 5d, left and middle, with one outlier) and by a strong
positive correlation with PC1 in active EoE patients (Fig. 5d, right;
Spearman ρ =0.72). The proportion of IL13RA2+ fibroblasts was higher
in distal biopsies and lower in matched proximal biopsies E1036 and
E1839, suggesting a location-specific association (Fig. 5d). Lasso linear
regression further associated the percentages of IL13RA2+ fibroblasts
with IgG+ plasma cells and SEPP1+ macrophages (Fig. 5e, Methods).
Broadly, these results demonstrate that EoE is alsomarkedby cell type-
specific intrinsic expression responses, including the expression of
IL13RA2 in fibroblasts as an important correlate of disease activity and
changes in the esophageal mucosa.

Multicellular interactions recruit immune cells in active EoE
We next focused on changes in inferred cell–cell interactions between
conditions by connecting cells expressing ligands to those expressing
cognate receptors in health, remission, and active EoE separately
(Fig. 6a, Supplementary Fig. 7a, Methods). We also assessed if putative
interacting cells co-varied in their cell proportions.

In active EoE, cells with the most interactions with eosinophils
included fibroblasts, venous endothelial cells, TH2 cells, suprabasal
cells, and pericytes (Supplementary Fig. 7b); fibroblasts, venous
endothelial cells, and pericytes also co-varied in their cell proportion
(Fig. 6b,Methods). Previous studies showed that in patients with active
EoE, fully mature eosinophils in the bone marrow are recruited to
inflammatory sites through IL-5, IL-13, and eotaxins produced by
immune, stromal, and epithelial cells55–57. In our atlas, activated BECs
expressed adhesion molecules, including intercellular adhesion
molecules (ICAM1/2), P-selectin (SELP), and MADCAM1 (mucosal vas-
cular addressing cell adhesion molecule 1) (Fig. 6c, Supplementary
Fig. 7b), which bind to integrin α4β7 and L-selectin expressed on
eosinophils upon stimulation by selective chemoattractants, such as
eotaxins and CCL558. Eosinophils expressed CCR3, the C-C chemokine
receptor for eotaxin-1, and CCL26 (eotaxin-3) (Fig. 6c, Supplementary
Fig. 7b). CCL26 was also expressed in pericytes and suprabasal cells,
whereas CCL11 (eotaxin-1) was mostly expressed in fibroblasts (Fig. 6c,
Supplementary Fig. 7b). IL-5, the growth, activation, and survival factor
for eosinophils, was expressed in ILC2s and TH2 cells (Fig. 6c). These
genes were highly expressed in active EoE compared to remission or
health (Fig. 6d).

As expected, expanding mast cells in active EoE had increased
interactions with several cell subsets, including mast cells themselves,
endothelial cells, TH2 cells, and fibroblasts (Supplementary Fig. 7a).
Conversely, diminished TH17 cells in active EoE decreased their inter-
actions with epithelial cells (especially cycling basal cells, Supple-
mentary Fig. 7a). Fibroblasts, which did not expand in active EoE
compared to health or remission (Fig. 2a) had increased interactions
with many cell states (Fig. 6a, Supplementary Fig. 7a), including
fibroblasts themselves and venous endothelial cells (which did not
expand in active EoE compared to health or remission, Fig. 2a). The top
interactions between fibroblasts and other cell subsets weremediated
by IL13–IL13RA2 (TH2 cells), C3–C3AR1 (mast cells), CCL11–ACKR1
(venous endothelial cells), PDGFC–PDGFRA and FN1–ITGAV (fibro-
blasts), and VCAN–CD44 (cycling basal cells) (Supplementary
Fig. 8a, b).

TH2 cells expressing IL-5, IL-4, IL-13, and IL-9 had many putative
interactions with mast cells expressing the cognate receptors (Fig. 6a,
including the IL-9 receptor genes IL9R and IL2RG) and co-varied in cell
proportions (Fig. 6b). IL9 expression was only detected in active EoE
(Supplementary Fig. 8c), and the IL-9–IL-9R ligand–receptor pair was
among the top interactions between TH2 cells and mast cells. IL-9 is a
mast cell growth and survival factor, and eosinophils are a source of IL-

9 in the esophagealmucosa59.Mast cells also putatively interactedwith
BECs (Supplementary Fig. 7a) through IL-33–ST2, LIF–LIFR/LI6ST, and
histamine receptorHRH1 (Fig. 6e). BECs are also involved in eosinophil
recruitment (Fig. 6a, c, d, Supplementary Fig. 7b) and expressed the
S1P receptor gene S1PR1. As BECsmay interactwith bothmast cells and
eosinophils, S1PR1 may be a therapeutic target for EoE.

Apical cells both highly interacted and co-varied in proportions
with quiescent basal cells (Fig. 6b, Supplementary Fig. 7a), and these
interactions were higher in active EoE and remission compared to
health. The top ligand–receptor pairs included IL1RN–IL1R2,
EGFR–TGFA, and IL-36A–IL1RL2/IL1RAP (Supplementary Fig. 8d).
Remarkably, apical cells expressed each of the 11 IL-1 family cytokine
genes except for IL1B (expressed in myeloid cells), IL33 (expressed in
BECs andquiescent basal cells), and IL37 (nearly undetectable) (Fig. 6f).
Apical cells expressed the receptor antagonist IL-1RN that blocks IL-1
signaling (Fig. 6f, Supplementary Fig. 8d). Quiescent basal cells highly
expressed IL1R2 (Supplementary Fig. 8d), encoding a non-signaling
receptor for IL-1A, IL-1B, and IL-1RN. Expression of the receptor
antagonist and decoy receptor suggests that IL-1 signaling is tightly
controlled in the esophageal epithelium. Taken together, our interac-
tion analysis provides direct insights intopotential cell–cell interaction
networks underlying the compositional differences observed during
disease and highlights potential therapeutic avenues for EoE, espe-
cially as many of these pathways have been targeted in other disease
contexts.

Using the esophageal cell atlas as a reference
Our esophageal cell atlas provides a detailed census to help interpret
data from smaller, more focused studies. For example, we classified
the 14,392 cells frompediatric EoEpatients18 basedonour atlas’ refined
annotations (Supplementary Fig. 9a, b). Our atlas’ larger size yielded
richer annotations of rarer cell subsets within broader categories, and
those in turn allowed us to identify cell profiles that were too scarce to
be distinguished as a cluster and annotated as a subset in the original
study. These included ALOX15+ macrophages, PRDM16+ DCs, ILC2s,
FCN1+ monocytes (originally assigned to a granulocyte subset), and
MS4A1+ memory B cells (originally included in a myeloid subset)
(Supplementary Fig. 9a, b).

We also used the atlas as a reference to refine the source cells of
key genes. The pediatric EoE study highlighted the expression of the
GPR15 ligand gene C10ORF99 in epithelial cells18, and our finer map-
ping identified suprabasal cells as the major source cell in both data-
sets (Supplementary Fig. 9b, c). This demonstrates the utility of a large-
scale atlas in providing cellular context and annotations to anchor
existing or future studies of the esophageal mucosa.

EoE risk gene expression highlights an apical cell-
specific module
Finally, we analyzed the cell type-specific expression of 52 genes
associated with EoE risk by genome-wide association studies
(GWAS)60,61, candidate gene association studies62, expression quanti-
tative trait loci (eQTL) analysis63, or exon sequencing64 and in Men-
delian diseases associated with EoE (hyper-IgE syndrome, Ehlers-
Danlos syndrome, PTEN hamartoma tumor syndrome, ERBIN defi-
ciency, Loeys-Dietz syndrome, SAM syndrome, and Netherton’s
syndrome)65 (Methods).

Of the nine causal genes of Mendelian diseases associated with
EoE, four (STAT3, PTEN, ERBB2IP, and TGFBR2) were expressed in
stromal cells and myeloid cells, two (DOCK8 and TGFBR1) were also
frequently expressed in myeloid cells, two (DSP and SPINK5) were
mostly expressed in epithelial cells, and one (DSG1) was weakly
expressed (Supplementary Fig. 10a, Methods).

Of the other putative EoE risk genes, 56.8% were expressed in one
or more cell subsets. Epithelial cells, especially apical cells, expressed
CAPN5/14, FLG, and SHROOM3. CAPN5/14 and SHROOM3 expression
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also correlated across apical cells (minimum Spearman ρ =0.52, Sup-
plementary Fig. 10b), indicating a potential apical cell-specific con-
tribution to EoE pathophysiology. Other putative EoE risk genes were
specifically expressed in quiescent basal cells (TSLP), fibroblasts (FBN1
and NOVA1), BECs (SEMA6A and LRRC32), pericytes (CCL26), mast cells
(IL1RL1), ILC2s and TH2 cells (GATA3 and KIF3A), and cDC2As and
cDC2Cs (ATP10A). While certain cycling cell subsets (e.g., fibroblasts,

BECs, plasma cells, and NK cells) expressed more risk genes than the
corresponding non-cycling subsets, this may be due to higher RNA
content and scRNA-seq complexity (Supplementary Fig. 10a).

The Mendelian and putative EoE risk genes formed modules
based on their cell type-specific associations (Supplementary Fig. 10c)
and co-expression (Supplementary Fig. 10d), some capturing both
Mendelian and common risk (GWAS) genes in the same module. We
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identified modules of apical cell-specific genes (GWAS genes
SHROOM3, CAPN5, CAPN14, and FLG and Mendelian genes DSP and
SPINK5), of TH2- and ILC2-specific genes (GWAS genes GATA3 and
KIF3A), of cycling BEC-specific genes (GWAS genes LRRC32 and
WDR36), and a module associated with multiple immune cells (Men-
delian genes TGFBR1 and PTEN and GWAS genes STAT6 and SLC25A24)
(Supplementary Fig. 10c, d).

Discussion
Limited knowledge about the human esophagus has hindered efforts
to understand the underlying nature of highly tissue- and organ-
specific diseases such as EoE.We applied single-cell profiling of human
esophageal biopsies to comprehensively describe the cellular land-
scape of the esophagus in health and inflammation. Partitioning single-
cell profiles into 60 prevalent subsets with distinct marker genes
highlighted the cellular diversity and immunologic complexity of the
esophagus, including 11 cycling cell subsets, generally expanded in
active EoE, and several unconventional MHC-II-expressing cell types.

Our data suggest an important role for mast cells in EoE patho-
genesis. In addition to the expected increase in eosinophils, which
were almost exclusively recovered from biopsies collected from
patients with active EoE, cycling mast cells were also specific to active
EoE in our data. Our cell–cell interaction analysis suggests that mast
cellsmay act through direct interactionswith BECs, which is consistent
with observations of decreased mucosal impedance associated with
active EoE66. Notably, mast cells highly expressed the EoE risk gene
IL1RL1, also expressed in the rare ILC2s (Supplementary Fig. 10a).
Moreover, we identified TH2 cells as an additional source of the mast
cell growth factor IL-9 in active EoE. Sustained mast cell-mediated
inflammation may explain why earlier trials of IL-5 blockers mepoli-
zumab and reslizumab reduced eosinophil counts in the esophagus,
but did not induce histologic remission or significant improvement in
symptoms, and would also be consistent with reports of EoE-like dis-
ease without tissue eosinophilia, but with mast cell infiltration67, and
with the description of a subset of EoE patients who have epithelium-
restricted mast cell infiltration, despite resolution of epithelial
eosinophilia68. In contrast to IL-5 blockade, dupilumab, which targets
the IL-4 receptor alpha subunit required for both IL-4 and IL-13 sig-
naling, is a promising therapeutic approach for a subset of individuals
with EoE69, potentially due to its broader effects on non-eosinophil
cells involved in type 2 inflammatory diseases, including suppressive
effects on both TH2 cell differentiation as well as inhibition of inflam-
mation mediated by TH2- and ILC2-derived IL-13.

Our atlas allowed us to study macrophages and DCs, which are
relatively rare (1.63% of all detected cells) and have not been widely
studied in the human esophagus but express multiple EoE risk genes.
ALOX15+ macrophages and PRDM16+ cDC2Cs increased in frequency in
active EoE. ALOX15 encodes a 15-lipoxygenase whose metabolites
promote polarization of macrophages to an M2 phenotype34; higher
esophageal expression of ALOX15 has been described in refractory or
relapsing patients70, whereas downregulation of ALOX15 expression
characterizes mild EoE with a normal-appearing esophagus71. Because

ALOX15 expression depends on IL-4 and IL-13, it has been suggested
that dupilumab may counter type 2 inflammation in chronic rhinosi-
nusitis in part by suppressing an IL-4/IL-13/ALOX15 M2 macrophage
signaling axis72,73. Our data thus suggest an underappreciated role for
esophageal macrophages in EoE pathogenesis. To our knowledge,
PRDM16+ cDC2Cs have not been characterized before. These cells had
expression profiles similar to TBX21+RORC- cDC2A cells recently iden-
tified in the spleen40 and may be cDC2 progenitor cells74, but further
work is required to map their fate commitments. Both cDC2As and
cDC2Cs specifically expressedATP10A, suggesting a potential cell-type
specific role for this EoE risk gene in these DC subsets. Further studies
delineating the function of the additionally annotated cDC2Cs and the
role of ATP10A in this subset will be of high interest.

High-resolution scRNA-seq also elucidated a relationship between
IgG4-expressing plasma cells and a relatively recently described subset
of inflammatory fibroblasts54. The role of IgG4 in EoE is incompletely
understood, but previous studies demonstrated that tissue IgG4 levels
correlate closely with esophageal eosinophil counts, histologic sever-
ity, and levels of esophageal IL-4 and IL-1317. Additional studies have
described abundant IgG4-containing plasma cells16 and elevated food-
specific IgG4 levels in the blood. IL13RA2+ inflammatory fibroblasts,
which also increase in inflammatory bowel disease54, were almost
undetectable in healthy participants but expanded in some active EoE
patients. In active EoE, the percentage of IL13RA2+ inflammatory
fibroblasts relative to all fibroblasts correlated with the proportions of
IgG+ plasma B cells and SEPP1+ macrophages. This association between
IgG4+ plasma cells and IL13RA2+ inflammatory fibroblasts in EoE further
supports IgG4 as a potential mediator of disease, and suggests a fur-
ther role for plasma cells, in concert with inflammatory fibroblasts, in
promoting inflammation and histologic injury in EoE.

ILC2s, which are very rare in the human esophagus10, highly
expressed genes related to the production of prostaglandins, which
are lipidmediators thatparticipate in diversehomeostatic processes in
many tissue types. Prostaglandin D2 (PGD2) and E2 (PGE2) play an
important role in the function ofmultiple cell types involved in allergic
immune responses, including epithelial barrier cells, DCs, macro-
phages, mast cells, and eosinophils, where PGD2 generally enhances
eosinopoiesis, chemotaxis, integrin expression, degranulation, and
survival75. Little is known about the role in EoE of prostaglandin-
endoperoxide synthase 2 (PTGS2), which is upstream of
PGD2 synthesis. One study examining only epithelial tissue showed
reduced levels of PTGS2 in EoE patients compared to healthy partici-
pants or patients with reflux esophagitis76. We detected ILCs in the
lamina propria54,77 and described the specific upregulation in EoE of
prostaglandin-related gene expression in this rare immune cell
population.

TH17 cells and apical epithelial cells were reduced in proportions
in active EoE, with TH17 cells also expressing lower levels of IL17A/F and
IL22 transcripts, potentially due to suppression of TH17 cell differ-
entiation and cytokine production by eosinophils78. In our cell–cell
interaction analysis, TH17 cells putatively interacted with epithelial
cells in healthy participants, which may promote barrier integrity

Fig. 6 | Cells communicate to maintain tissue homeostasis and coordinate to
recruit immune cells in EoE. a Putative ligand–receptor interactions.
Ligand–receptor interaction weights (color, row Z-scores) for the top 3 interaction
partners (columns) for each cell type (rows). Top row: number of interactions
across all types.bCorrelated cell types. Pearson’s correlation coefficient (color bar)
between the proportion of each pair of cell types (rows, columns) across samples
(n = 37) clustered by hierarchical clustering with the Mcquitty linkage method.
c Eosinophil recruitment genes are expressed by activated venous endothelial cells,
pericytes/suprabasal cells/fibroblasts, ILC2s and TH2 cells and induced in EoE.
Distribution of expression (y-axis, log10(TP10K+ 1)) in each cell type (c, x-axis) or in
specific cell types across conditions (d), of genes encoding key eosinophil

recruitment factors. Width: Gaussian kernel density estimation of data with default
parameters, scaled to have a maximum of 1; White horizontal segment: median.
FDR of differential expression (two-tailed likelihood-ratio test) indicated on top.
e Mast and blood endothelial cell interactions. Mean expression (dot color) and
proportion of expressing cells (dot size) in mast and endothelial cell subsets (col-
umns) of genes encoding receptor (asterisk) and ligand pairs expressed by these
cells. f Apical cells from active EoE express most of the IL-1 family cytokine genes
and receptor antagonists. Mean expression (dot color) and proportion of expres-
sing cells (dot size) in epithelial cell subsets (columns) of genes encoding IL1 family
cytokines and receptor antagonists (rows). Source data are provided as a Source
Data file.
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under homeostatic conditions79. Interestingly, the loss of TH17 cell and
marker cytokine expression was sustained in patients in remission,
suggesting that these cells may not be recovered as type 2 inflamma-
tion subsides. This is reminiscent of the long-term loss of a subset of
intra-epithelial γδ T cells in celiac disease80, but needs to be sub-
stantiated in the case of EoE through extended follow-up.

Utilizing EoE as a robustmodel of type 2 cytokine-drivenmucosal
inflammation, our study provides a framework for applying scRNA-seq
to understand how type 2 immune responses mobilize multiple cell
types and signaling pathways. Moreover, our extensive and deeply
annotated cell atlas of the human esophagus in health and inflamma-
tion provides a valuable resource for rapidly identifying sequenced
cells from the esophageal mucosa for broader investigations of spe-
cific cell types and their interactions in this previously understudied
segment of the gastrointestinal tract, as well as for comparative ana-
lyses with different tissues and tissue diseases.

Methods
Patients and tissue samples
The study protocol complied with all relevant ethics regulations and
was approved by theMassGeneral Brigham Institutional Review Board
(study ID: 2015P000816). Human esophageal endoscopic biopsies
were obtained from 15 patients with eosinophilic esophagitis (EoE) and
7 healthy participants after informedwritten consent. Clinical data and
demographics (including patient sex, age range at sample collection,
disease status, number of eosinophils per high power field, and diet
and treatment information) are provided in Supplementary Data 1. We
recruited the same number of male (n = 11) and female (n = 11) parti-
cipants. Given the limited number of participants within each pheno-
type and that sex is convoluted with the 10x library preparation
method (see below), no sex-specific analysis results were reported in
this study.

Sample collection and single-cell dissociation
Biopsies were collected from 22 donors: 7 healthy participants,
8 patients with active disease, and 7 patients in remission. For 15
donors, biopsies were obtained from both the distal and the proximal
regions separately.

Biopsies were transported to the Broad Institute in Advanced
DMEM/F-12 (Gibco, cat. no. 12634028). To maintain cell quality, tissue
dissociation was initiated within 3 h of biopsy collection. Prior to
sample arrival, enzymatic digestion media was freshly prepared by
combining 50ml of cell isolation media (CO2 independent media
(Invitrogen, cat. no. 18045088) supplemented with 2% FBS, 1% non-
essential amino acids and 1% GlutaMax) with 100μl Collagenase
(100mg/ml, Roche, cat. no. 11249002001, reconstituted in sterile
HBSS), 100μl Dispase (100mg/ml, Gibco, cat. no. 17105041, recon-
stituted in sterile HBSS) and 100μl DNAse I (50mg/ml, Roche, cat. no.
10104159001, reconstituted in 20mM Tris HCl, 1mM MgCl2, 50%
glycerol in HBSS).

Enzymatic digestion media was kept at room temperature
throughout the experiment. Biopsies were washed using cold PBS and
transferred to a sterile 50ml conical tubes containing 5ml of enzy-
matic digestionmedia. Each tubewas vortexed for 30 s and placed in a
water bath at 37 °C for 5min. After 5min, tubeswere removed from the
water bath and vortexed again for 30 s each. This was repeated two
additional times for a total incubation time of 15min. Tissue was
allowed to settle to the bottom of the conical tube, supernatant was
carefully collected using a P1000 and moved into a sterile 50ml con-
ical tube on ice containing 15ml cold isolation media supplemented
with 5mM EDTA.

5ml enzymatic digestion media was added to each of the
remaining biopsies, and samples were vortexed and incubated for an
additional 10min, with vortexing at 5min. The supernatant was col-
lected from the digest and added to the previously collected

supernatant. 2ml enzymatic digestionmedia was added to each of the
remaining biopsies, mixed using a P1000. Samples were incubated in
the water bath for 3min, mixed forcefully, and returned to the water
bath for 2 additionalminutes. Supernatant was collected and added to
previously collected supernatants. If visible tissue remained, an addi-
tional 10–15min of digestion was performed in the water bath, vor-
texing for 30 s after each 5-minute period, and supernatant was
collected as described.

The supernatant andmediamixturewasfiltered through a 100μm
cell strainer (Falcon, cat. no. 352360) into a 50ml conical tube and
topped up to 50ml with cell isolationmedia. Cells were centrifuged at
300 g for 10min at 4 °C. Supernatant was removed and discarded,
leaving around 0.5-1ml of supernatant. Cells were resuspended and
transferred to a 1.7ml Eppendorf tube and pelleted using the short
spin centrifuge setting with centrifugal force ramping up to 11,000 g.
Supernatant was removed and cells were resuspended in 50–300μl of
PBS/0.01% BSA depending on pellet size. The supernatant was dis-
carded and cells were resuspended in 50–300μl of PBS/0.01% BSA,
depending on pellet size.

To count cells and assess viability, 5μl of cell suspension was
mixedwith 5μl Trypan Blue (ThermoFisher Scientific, cat. no. T10282)
and loaded onto an INCYTO C-Chip Disposable Hemocytometer,
Neubauer Improved (VWR, cat. no. 82030-468). Cells were counted
manually and, if necessary, diluted to a concentration of 200–2000
cells/μl.

Single-cell RNA-seq
For each sample, 4 channels (Chromium v3.1 dual-index chemistry
data) or 8 channels of 8000 cells eachwere loaded on a 10x Genomics
Single-Cell Chromium Controller.

For seven of the patients, 10x Chromium v2 chemistry was used
for library preparation and libraries were sequenced on an Illumina
HiSeqwith the following readconfiguration: R1 (cell barcode andUMI):
26 bp, i7 index: 8 bp, R2 (insert): 98 bp.

For 9 patients, NextGEM v3.1 single-index 3’ Chemistry was used
and libraries were sequenced on an Illumina HiSeq with the following
read configuration: R1 (cell barcode and UMI): 28 bp, i7 index: 8 bp, R2
(insert): 96 bp.

For the remaining 6 patients, NextGEM v3.1 dual-index 3’ Chem-
istry was used and libraries were sequenced on an Illumina HiSeq with
the following read configuration: R1 (cell barcode and UMI): 28 bp, i7
index: 10 bp, i5 index: 10 bp, R2 (insert): 90 bp.

Single-cell RNA-seq data pre-processing
CellRanger-2.1.1 (for 10x Chromium v2 chemistry data), CellRanger-
3.1.0 (for Chromium v3.1 single-index chemistry data), and CellRanger-
5.0.0 (for Chromium v3.1 dual-index chemistry data) were used for
read demultiplexing, alignment to the human GRCh38 genome (from
CellRanger refdata v1.2.0), and unique molecular identifier (UMI)
counting and collapsing. Cell profiles with more than 500 UMIs and
less than 25% UMIs from mitochondrial transcripts were retained for
downstream analysis for v2 chemistry data. For v3 chemistry data, a
higher threshold of 40% mitochondrial transcripts was used, as these
data are known to typically have higher proportions of mitochondrial
transcripts81.

Single-cell RNA-seq data integration, clustering, and annotation
scPhere v0.1.082, a deep learning-based method, was used to integrate
all cell profiles by taking patient origin of cells, disease status, and
spatial locations of biopsies as batch vectors (Supplementary Data 1).
Although the version of the 10x Genomics chemistry is a potential
confounding factor correlated with gene expression, this information
was not taken as a batch vector because (1) the version was convolved
in our study with biopsy spatial information, and (2) themore granular
patient information was already used as a batch vector
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(Supplementary Data 1). A latent space of 10 dimensions was used,
such that each cell was mapped to a 10-sphere and the latent repre-
sentation of cells was then clustered using the Louvain community
detection algorithm83,84 to produce 30 clusters. These clusters were
merged (assigned) to 23 putative cell types/groups using an automatic
cell type assignment approach, as previously described81, followed by
manual inspection.

To identify cell subtypes (e.g., different macrophage/DC sub-
types), we re-clustered the cells of interest, (e.g., macrophages/
DCs) using either scPhere embeddings or the R package Seurat
v4.1.1. (R version v4.2.0, all statistical tests were based on this ver-
sion of R if not specified). Cell clusters that expressed marker genes
of two cell types were labeled as ‘contaminants’ (e.g., pericyte
clusters that also expressed epithelial cell marker genes) and clus-
ters that had very small numbers of detected genes per cell and did
not express cell subtype-specific marker genes were labeled as ‘low
UMI’. The contaminants/doublets included a cluster of BEC/pericyte
doublets (with 3865 mean detected genes vs. 2056 and 1235 for
BECs and pericytes, respectively), which are likely biological
doublets of physically interacting pericytes wrapped tightly around
blood capillary endothelial85. Notably, the ratio between BEC/peri-
cyte doublet numbers and pericyte numbers was 77.60% (3737/
4817), much higher than the expected doublet rate (~5% for 10x
Chromium data). These contaminants/doublets and low UMI cells
were removed from further analysis. DensityCut v0.01 was used to
identify very rare cell states, combined with visualization86. Overall,
20T/natural killer/lymphoid cell subsets, 17 monocyte/macro-
phage/dendritic cell subsets, 10 stromal (endothelial, pericyte,
fibroblast, and glial) cell subsets, 5 B cell subsets, 4 epithelial cell
subsets, 3 granulocyte (mast and eosinophil) cell subsets, and 1 red
blood (erythroid) cell subset were retained for further analysis.

Visualizing the structure in high-dimensional scRNA-seq data
To visualize the high-dimensional scRNA-seq data, cells were embed-
ded on a sphere using scPhere v0.1.0, or in a 2-dimensional UMAP26.
For efficient exploratory data analysis, a pseudobulk profile was gen-
erated for cell profiles in each subset (see Pseudo-bulk analysis below),
followed by principal component analysis (PCA).

Permutational multivariate analysis of variance (PERMANOVA)
PERMANOVA was performed to show the effects of disease, diet
elimination, steroid, use of proton pump inhibitors (PPIs), and age on
cellular composition using the vegan package87. The PERMANOVA
procedure calculates an F-statistic from the original data and
F-statistics from multiple permuted data to calculate p-values. The
number ofpermutationswas set to 1million. ToperformPERMANOVA,
a distance matrix between samples (biopsies) was generated, where
each sample was represented by its cellular composition, quantile
normalized across samples, and the Euclidean distancewas used as the
distance between samples. We did an extra analysis by also adding
patient sex, and the results were almost unchanged. Of note, 6/7donor
samples used for 10xChromium v2 chemistry library preparation were
male, and 7/9 donor samples used for 10x v3 single-index library pre-
paration were female. As 10x library and sex were convoluted, we only
added 10x library version as a covariant for analysis anddidnot include
sex for differential expression analysis and cell compositional shift
analysis.

Statistical significance of shifts in cell composition
To assess the statistical significance of changes in cell composition, a
negative binomial regression model was used as previously
described77,88. First, disease (active EoE, remission EoE, or healthy),
version (10x version 2, version 3, or version 3 dual index), treatment
(steroid), and region (distal, proximal, or mixed) were used as covari-
ates, and the total number of analyzed cells from each biopsywas used

as an offset variable. The significance of disease (active EoE) on a cell
type was assessed using the Wald test on the regression coefficients,
followed by False Discovery Rate (FDR) estimate using the Benjamini-
Hochberg (BH) method. Because an increase in the proportion of one
cell type results in decreases in all other cell types in a sample, com-
positional analysis was performed to further explore cellular compo-
sitional variations in different disease conditions by transforming the
sample-cell type count matrix based on the centered log-ratio trans-
formation after imputing zero counts89. The transformed data were
used for PCA to visualize and help interpret cellular compositional
shifts in disease conditions (Fig. 2d).

In addition to modeling counts using negative binomial regres-
sion, cell type proportions were also calculated, which are bounded
between 0 and 1. Cell type proportion distributions across samples
(biopsies) can be different for different cell types (e.g., with higher
variance for rare cell types). Assuming that most cell types do not
change cellular composition in EoE, the cell type proportions were
quantile normalized before quantifying cellular compositional chan-
ges. After quantile normalization, for each cell state, linear regression
was used to model the ranks of cellular compositions, by taking dis-
ease, version, steroid, and region as predictors. Significant tests
of individual regression coefficients were obtained by one sample
t-tests.

Differential expression analysis
Logistic regressionwas used for differential expression analysis, taking
both the log2-transformed total number of detected genes in each cell,
treatment, region, and the 10x Chromium library version as covariates,
using the Seurat v4.1.1 implementation for differential expression
analysis90.

To filter out differentially expressed genes that were likely due to
ambient RNA, each gene gof a cell type cwas tested for upregulation in
eachof theM samples (e.g.,M = 14 active EoEbiopsieswhen comparing
active EoE to healthy samples). Ifgwas downregulated inmost of theM
samples, it was removed from further analysis. The STRINGdb91 Bio-
conductor package (using STRING v11) was used for Gene Ontology
enrichment analysis with the ‘get_enrichment’ function for enrichment
analysis, and all the genes in CellRanger refdata v1.2.0, after removing
mitochondrial genes and ribosomeprotein coding genes (i.e.,RPS* and
RPL* genes), used as the background gene list.

Lasso linear regression to predict IL13RA2+
fibroblast

percentages
To select cell composition features that predict the percentages of
IL13RA2+ fibroblasts (relative to all fibroblasts in a biopsy),
L1-regularized linear regression (Lasso) was used with features of ratio
of a cell type in a biopsy (60 features, 37 biopsies). Leave-one-out
cross-validation was performed to select the optimal penalty hyper-
parameter for Lasso regression, and the selected hyper-parameter was
used for feature selection and training a linear regression model.

Pseudo-bulk analysis
Pseudo-bulk data analysis was performed as previously described81. A
pseudo-bulk expression profile for a set of cells was computed by
taking the sum of the cells’ expression vectors (each a raw UMI count
vector) where the vectors were normalized by dividing the total
number ofUMIs from all cells, multiplying by 104, and finally taking the
natural log (adding one before the log transformation to make all the
elements of the bulk vector positive).

Gene signature analysis
ILC2 gene signatures were obtained from an scRNA-seq study of
ILC2s46 and gene signature scores were calculated as previously
described92, as implemented in the Seurat v4.1.1 package90. The
interferon-α and interferon-γ response gene signatures were
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downloaded from the Molecular Signature Database (MSigDB)93. Non-
negativematrix factorizationwas applied to allmacrophage profiles to
identify gene programs94 and their scores in each cell.

Cell–cell interaction analysis
A set of 585 manually curated ligand–receptor pairs was used to
identify putative cell-cell interactions, as previously described95.
Ligand–receptor pairs included multi-subunit complexes such as
ITGA4/ITGB7. Currentmethods for inferring cell–cell interactions from
scRNA-seq face several challenges. First, if a ligand or receptor is ubi-
quitously highly expressed, cell types with the cognate receptor or
ligand can bedesignated ashubs. Second, somemethods ignoremulti-
subunit complexes. Third, noise in scRNA-seq can lead to spurious
putative interactions, and those can lead to erroneous overall signal
given the large number of ligand–receptor pairs used in ranking the
interaction strength between two cell types.

To address some of the challenges, a k-nearest neighbor
approach was used to estimate the interaction strength between
cell types. Specifically, the score of a gene g in a cell subset sg is
defined as the total number of detected UMIs of gene g in that cell
subset divided by the total number of UMIs of gene g across all cell
subsets. If g is a member of a multi-subunit complex with m sub-
units, the weight for that complex is defined as the geometric mean
of scores of all members. Then the final interaction score of a
ligand–receptor pair between two cell subsets is the product of the
weights of the two interaction complexes in the two cell subsets. For
any two cell types i and j, the interaction score is calculated for each
ligand–receptor pair. Finally, the interaction strength between two
cell types is the sum of the top k interaction scores. These inter-
action strength scores are used to rank the interaction partners of a
cell type. Here, k = 10 was used to decrease the influence of the
background interaction noise. When using k = 5 or 15, the top
interactions partners for each cell type were largely unchanged,
indicating the robustness of the results to this parameter choice96.
We analyzed the biopsies from healthy, remission EoE, and active
EoE participants separately.

Annotation of public scRNA-seq data with the esophageal
cell atlas
To map the 14,392 cells from the esophageal mucosa of pediatric EoE
patients18 with the esophageal cell atlas in our study, despite batch
effects between and within studies, neighborhood component
analysis97 was used to map the reference to a 50-dimensional latent
space, and then the learned neighborhood component analysis map-
ping function was used to project the public data to the same 50-
dimensional latent space. Next a k-nearest neighbor classifier (k = 11)
trained on our data was used to predict cell identities of the test data
(all in the 50-dimensional latent space).

EoE risk gene analysis
A set of 52 EoE risk genes was compiled from recent reviews60,98,
including those from candidate gene or GWAS23,62,99, eQTL analysis63,
and whole-exome sequencing64, as well as genes for Mendelian dis-
eases with EoE-like phenotypes65.

Genes were considered for further analysis if they were expressed
in at least 25% of cells of a subset (Supplementary Fig. 10a,c). Pseudo-
bulk analysis was used for detecting modules from EoE risk genes. In
contrast to other pseudo-bulk procedures, we used mean instead of
sum in aggregating the counts of a gene across cells of a state. We
further did hierarchical clustering with the ‘Ward.D2’ lineage function
on the square root of the pseudo-bulk to detect modules.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw FASTQ files of the scRNA-seq data generated in this study are
available in the database for Genotypes and Phenotypes (dbGAP) under
accession code phs003574.v1.p1 (http://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs003574.v1.p1). These data
are available under restricted access to prevent misuse of patient
genetic information. Access can be obtained by submitting an online
Data Access Request (DAR) through the dbGAPAuthorized Access page
(https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login). The pro-
cessed gene count matrices and embeddings of the scRNA-seq data
generated in this study are available at https://singlecell.broadinstitute.
org/single_cell/study/SCP1242/eoe-eosinophilic-esophagitis. The 1088T
cell dataset used in this study is available in GEO under accession
GSE126250. The pediatric EoE dataset used in this study is available in
GEO under accession GSE175930. The glioblastoma dataset used in this
study is available from the Brain Immune Atlas (https://www.
brainimmuneatlas.org/download.php). The colon dataset used in this
study is available at https://www.gutcellatlas.org. The cross-tissue
immune cell dataset used in this study is available at https://www.
tissueimmunecellatlas.org. The Tabula Sapiens dataset used in this
study is available at https://tabula-sapiens-portal.ds.czbiohub.org. The
GRCh38human reference 1.2.0 used in this studywas downloaded from
10x Genomics (https://www.10xgenomics.com/support/software/cell-
ranger/downloads) and can be regenerated according to the instruc-
tions at https://www.10xgenomics.com/support/software/cell-ranger/
downloads/cr-ref-build-steps. All other data are available in the article
and its Supplementary files or from the corresponding author upon
request. Source data are provided with this paper.

Code availability
The code for this project is available in GitHub at https://github.com/
Ding-Group/eoe.
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