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Prediction error processing and sharpening
of expected information across the face-
processing hierarchy

Annika Garlichs 1 & Helen Blank 1

The perception and neural processing of sensory information are strongly
influenced by prior expectations. The integration of prior and sensory infor-
mation can manifest through distinct underlying mechanisms: focusing on
unexpected input, denoted as prediction error (PE) processing, or amplifying
anticipated information via sharpened representation. In this study, we
employed computational modeling using deep neural networks combined
with representational similarity analyses of fMRI data to investigate these two
processes during face perception. Participants were cued to see face images,
some generated by morphing two faces, leading to ambiguity in face identity.
We show that expected faces were identified faster and perception of
ambiguous faces was shifted towards priors. Multivariate analyses uncovered
evidence for PE processing across and beyond the face-processing hierarchy
from the occipital face area (OFA), via the fusiform face area, to the anterior
temporal lobe, and suggest sharpened representations in the OFA. Our find-
ings support the proposition that the brain represents faces grounded in prior
expectations.

It is widely accepted that perception is a process of active inference in
which incoming sensory information is combinedwith priors thatwere
either learned or derived from the current context1–3. Expectations can
enhance our ability to recognise familiar stimuli more quickly and
accurately. For instance, recognising a colleague’s face in the office is
easier than spotting themat the beach. However, expectations can also
introduce a bias in our perceptionwhen facedwith ambiguous sensory
information. For instance, from a distance, we might mistakenly
categorise a distant individual as a friend due to their attire, even if
they are, in fact, a stranger. The neuralmechanismof howexpectations
influence representations of sensory information is still unclear. Here,
we combined multivariate functional magnetic resonance imaging
(fMRI) with neural network models to test whether face representa-
tions mainly rely on the processing of deviances from expectations
(i.e., Prediction Errors) or sharpening of expected information4–7.

Context effects on face perception have been studied extensively
showing assimilative8–16 as well as contrastive17–19 behavioural effects.

In the brain, an expectation suppression effect, i.e., reduced neural
activation for expected compared to unexpected face information, has
been reported across a variety of different designs and brainmeasures
(electroencephalography (EEG)20, magnetoencephalography (MEG)21,
and fMRI22–27). However, it is still unclear how prior and incoming
sensory information are combined. Different computational mechan-
isms could underlie reduced activation for expected faces: According
to the hierarchical framework of predictive coding, higher-level
‘representational units’ generate backward predictions concerning
anticipated sensory information, which are then compared with the
actual sensory input in lower-level ‘error units’ to compute the pre-
diction error (PE)2,5,6. These PEs may play a crucial role in updating
prior expectations about incoming sensory information, thereby
improving predictive accuracy2,7,28,29. Consequently, the phenomenon
of expectation suppression may be explained by a diminished PE for
expected faces relative to unexpected ones. Alternatively, this expec-
tation effect could also be attributed to a computational mechanism
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focusing on the sharpening of expected information4,7,30–33. Under the
Sharpening account, neurons encoding the expected features become
more active, whereas neurons encoding unexpected features are
suppressed. At the population level, this would result in a more
selective response for expected stimuli with lower overall amplitude.
Consequently, weaker univariate activity might reflect a “sharper”
neural population response for expected sensory events and sup-
pression of unexpected noise rather than a suppression of the
expected signals32–35. Since both computational processes lead to
decreased activation for expected stimuli compared to unexpected
ones and are indistinguishable at the univariate analysis level, our
study was designed to differentiate between them using multivariate
analyses4,30,36,37.

To do this, we investigated face representations in the well-
established face-processing hierarchy along the ventral stream of the
temporal lobe38–44. Previous studies have demonstrated that there is a
progression of higher-level feature analysis in the processing of facial
information, moving from lower to higher face-processing
regions9,42,45. Specifically, the occipital face area (OFA) has shown
sensitivity to low-level image properties such as the eyes, nose, and
mouth9,46,47. The fusiform face area (FFA) processes a combination of
low-level properties48,49, as well as higher-level face properties,
including traits, gender47, and identity9,50,51. Finally, the face-sensitive
anterior temporal lobe (aTL) specifically encodes identity
information9,51, which remains consistent across different images45,52,53.
The influence of face priors has been observed in the form of expec-
tation suppression effects in OFA24 and FFA23–26,54. Increased activity to
unexpected faces in the FFAhas been taken as evidence for PEs, i.e., the
difference between expected and presented faces23,26,55. In the maca-
que brain, which exhibits a face-processing hierarchy similar to
humans, signals recorded at the lowest level ML (comparable to the
human OFA) displayed identity-specific information derived from
higher levels. This finding was considered as evidence for predictions
transmitted from higher to lower levels, where incoming face infor-
mation is represented as deviating information56. However, others did
not observe any neural indication of repetition probability for faces

within face-responsive patches of the macaque IT57,58. In contrast,
recent studies have provided evidence for the sharpening of prior
information along the ventral processing stream. Our research
demonstrated that the strength of face prior representations can be
quantified through multivoxel fMRI patterns in the high-level face-
sensitive aTL39. In addition, we identified multivariate representations
of presented faces that increased with expectedness in the OFA, indi-
cating a potential sharpening of expected low-level facial features. This
finding is corroborated by a study that demonstrated the enhance-
ment of prior information across the ventral stream in sensory-
degraded Mooney face images, from early visual areas and extending
throughout the lateral occipital cortex and the fusiform gyrus31.
However, there is a lack of research that directly compares and tests
alternative explanations and computational mechanisms against each
other to determine how face images are represented based on prior
information.

In this study, we tested how the representation of identical face
images is changed by different prior expectations by investigating
multivariate fMRI response patterns from a paradigm involving
ambiguous face images that were created by morphing an expected
and an unexpected face image (Fig. 1a–c). In a preceding training,
participants learned to associate scene images with subsequently
presented face images (Fig. 1a). During the following fMRI session,
participants viewed the scene cues followed by expected, unexpected,
ormorphed ambiguous face images (Fig. 1b). Our design allowed us to
differentiate whether the neural representations for the same face
morph differed depending on the expectation and was better
explained by a computational model based on PE processing or based
on sharpened representations of expected face information (Fig. 1c).
Deep convolutional neural networks (DCNN) can be viewed as
advanced computational models for biological face recognition that
process information hierarchically, closely resembling the neural face-
recognition system found in humans and nonhuman primates59–62.
Combining computational modelling with neural network activations
based on the face-recognition DCNN VGG-Face60,63 (Fig. 2a) allowed us
to optimise our hypothesis models for the representational similarity
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Fig. 1 | Procedure, design, and conditions of the fMRI experiment. a Procedure:
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face and, in case of a question mark, to indicate which face was anticipated based
on the scene. After the neutral scene, the taskwas to indicatewith the left hand ‘any’
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upcoming face, and one neutral scene. After the four scenes, a clear face that
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predicted face appeared.We aimedatdifferentiatingwhether the representationof
facemorphs depends onPredictionErrors (PE) or the Sharpeningof expected facial
features. The scene image shown is in the public domain and available at [https://
commons.wikimedia.org], but not part of the original stimulus set due to copy-
right; the exact stimulus set is available at [https://osf.io/765jx/]. The face images
were created using FaceGen Modeller Core 3.22.
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analysis (RSA)64,65 (Fig. 2b). We derived face activations from the final
two max pooling steps of this network, namely pool4 and pool5, to
construct our hypothesised representational dissimilarity matrices
(RDM). This choice was informed by a recent intracranial electro-
encephalography study associating these layers with our brain regions
of interest — specifically, pool4 was linked to lower-level inferior
occipital gyrus, while pool5 was associated with higher-level face
processing in the fusiform gyrus60. In addition, we tested two more
DCNNs (i.e., VGG-1666 and ResNet5067) to explore whether face repre-
sentations in the brain also correlate with face representations from
DCNNs that were not specifically trained on face images. All three
networks have previously been linked to brain activations in studies
using different methods, such as MEG59 and fMRI61, for a review see
ref. 62. Furthermore, to take into account that individualsmay differ in
their usage of prior information during ambiguous face identification,
we included individual prior weights by contrasting prior-confirming
with prior-discarding responses for a face morph in the RSA30,68,69. We
show that PE representations dominate along and beyond the face-
processing hierarchy, while there was also evidence for the co-
existence of sharpened expected face information in early face areas.
These PE and sharpened representations indicate a predictive

mechanism through which the brain integrates prior knowledge with
sensory input.

Results
Assimilation and facilitation in perception of expected faces
We recorded fMRI data from 43 participants while they viewed and
identified face images that were preceded by scene images. The
scene prior shifted the perception of ambiguous face morphs
towards the expected face identity (assimilation effect). Specifi-
cally, in partial trials, in which images of morphed faces contained
expected and unexpected face information, participants identified
the expected face identity more frequently than the unexpected
identity (Z = 5.65, p < 0.001, 95% CI [63.54, 69.01], Wilcoxon’s
r = 0.86; Fig. 3a).

In addition, reaction times (RT) showed a facilitation effect due to
expectancy (main effect of condition (match, partial, mismatch, neu-
tral): χ²(3) = 110.08, p < 0.001, Kendall’s W =0.85; Fig. 3b, Supplemen-
tary Results). RTs for expected faces were faster compared to
unexpected faces (match: M = 591.08ms, SD = 47.06ms; mismatch:
M = 727.56, SD = 47.82; p <0.001, LB/UB [−2.41, −0.98]) and ambiguous
faces (partial:M = 716.06, SD = 50.28; p < .001, [−2.30, −0.87]). The RTs
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between unexpected and morphed faces did not differ (mismatch vs.
partial: p =0.98, [−0.60, 0.83]).

Furthermore, there was a facilitation effect for face morphs
depending on whether participants answered to have perceived the
expected or the unexpected face identity. Partial trials were split into
trials with prior-confirming responses (assimilation effect) and with
responses favouring the unexpected identity contained in a morph
(contrastive effect). RTs for trials with prior-confirming responses
were faster (M = 670.13ms, SD = 55.96ms) than for trials with con-
trastive responses (M = 783.83, SD = 48.67, Z = −5.71, p <0.001, 95% CI
[−128.58, −96.72], Wilcoxon’s r =0.87, Fig. 3c), but still slower com-
pared to responses in the match condition without face morphs
(Z = −5.64, p <0.001, [67.80, 93.07], Wilcoxon’s r =0.86).

Further control measures substantiated that participants effec-
tively acquired knowledge of the associations and attentively con-
sidered both scene priors and face images (see Supplementary
Results).

Expectations reduce evoked fMRI activations
To test which brain regions are overall differently activated by
expected and unexpected faces, we conducted a univariate whole-
brain analysis for unexpected vs. expected face images (contrast
‘mismatch >match’) that yielded a significant cluster along the ven-
tral face-processing hierarchy in the left inferior and middle tem-
poral gyrus (ITG/MTG, p(FWE) = 0.005; Fig. 4, Supplementary
Table 1). Within the face-sensitive regions that were localisedwith the
independent localiser (Fig. 4a), only the left posterior FFA (pFFA)
showed an increased response to unexpected face images
(p(FWEsvc(small-volume corrected)) = 0.042). Additionally, this analysis
revealed cluster activations in the bilateral anterior insula, superior
parietal lobule (SPL) including the supramarginal gyrus and pre-
cuneus, left thalamus, and right caudate (Fig. 4b, Supplementary
Table 1). Parts of this network are involved in surprise39,70 as well as
error processing71.

Next, we tested which brain regions were overall differently acti-
vated during the presentation of face morphs depending on whether
they were perceived as the expected or unexpected face. Therefore,
we split the partial trials into trials in which participants answered to
have perceived the expected and the unexpected part of the face
morph. A bilateral cluster along the ventral stream resembling
the ‘mismatch > match’ cluster was identified in the MTG (left:

p(FWE) = 0.004; right: p(FWE) = 0.031). In the ROIs along the ventral
face-processing hierarchy, the right pFFA as well as the right aTL
showed an increased response to morphed faces that were identified
as the unexpected face (p(FWEsvc) = 0.021 and p(FWEsvc) < 0.001,
respectively). Furthermore, the contrast ‘unexpected > expected’ yiel-
ded a similar activation network as the contrast ‘mismatch>match’,
bilaterally in the SPL, angular gyrus (AnG), superior frontal gyrus, and
right thalamus (all p(FWE) < 0.05 at the cluster level, Fig. 4b, Supple-
mentary Table 2). Additional activation was found in the left anterior
cingulate gyrus and bilaterally in the anterior orbital gyrus which are
typically involved in decision-making processes72,73.

Prediction error and sharpened representations of expected
face information in face-sensitive regions
We used RSA to investigate how the information of a face prior was
combined with the incoming face information64,65. Firstly, we com-
puted theoretical representational dissimilarity matrices (i.e.,
hypothesis RDMs) based on activations from the layers pool4 and
pool5 of the DCNN VGG-Face63 for three computational approaches of
how expected and presented face could be combined, i.e., PE, Shar-
pening, and a pure Sensory Input model without prior influence. The
computationalmodelswerebasedon the face-recognitionDCNNVGG-
Face because the similarity structure of face-image transformations
extracted from the layers pool4 and pool5 have been shown to cor-
relate with the neural similarity structure of single-cell recordings in
OFA and FFA, respectively60. Next, we compared the resulting
hypothesis RDMs with the dissimilarity structure of our neural data
(i.e., neural RDM). To obtain neural RDMs, we compared the multi-
voxel representations of morphed faces measured in partial trials with
the ‘pure’ face representations measured in the neutral trials.

By testing the correlation of hypothesis and neural RDMs, we
found evidence for PE processing at each stage of the face-processing
hierarchy (OFA: M =0.06, SEMws(within-subject) = 0.01, p =0.003; pFFA:
M =0.04, SEMws = 0.01, p = 0.0044), indicated in aTL by higher corre-
lations with the PE model compared to the Sharpening (PE: M = 0.03,
SEMws = 0.01; Sharpening: M = −0.02, SEMws = 0.02, p =0.046) and the
Sensory Input model (M = −0.01, SEMws = 0.01, p =0.0154; Fig. 4a, d–f,
Supplementary Tables 3 and 4). Additionally, there was evidence for
sharpened face representations in the OFA (M = 0.03, SEMws = 0.01,
p =0.0232). Furthermore, we investigated whether the reduced acti-
vation for expected faces observed in the univariate contrast

pr
io

r-c
on

fir
m

in
g 

re
sp

on
se

 (%
)

100

50 re
ac

tio
n 

tim
e 

(m
s)

laitrap hctamsimhctam

1,000

500

700

400

600

800

900

response in partial condition
expected unexpected

b ca

partial

40

60

70

80

90 *

30

1,000

500

700

400

600

800

900

Fig. 3 | Behavioural results of the fMRI experiment. a Assimilation effect: Parti-
cipants (N = 43) identified the expected face identity inmorphed images (two-sided
Wilcoxon signed rank test: Z = 5.65, p <0.001, 95% CI [63.54, 69.01], Wilcoxon’s
r =0.86). Dots represent single participants, the white dot the median, the grey
rectangle the interquartile range (Q1, Q3), and the lower and upper whiskers
Q1 − 1.5*IQR andQ3 + 1.5 * IQR, respectively. From (a) to (c), asterisks and black lines
indicate p <0.001. b Facilitation effect: Responses were faster for expected com-
pared to (partially) unexpected faces (N = 43; Friedman: χ²(3) = 110.08, p <0.001,
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p <0.001, LB/UB [−2.41, −0.98]; match vs. partial: p <0.001, [−2.30, −0.87]; mis-
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r =0.87). Source data are provided as a Source Data file.
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‘mismatch>match’ might be due to a reduced PE or Sharpening pro-
cessing and found more evidence for PE processing in the ITG/MTG
cluster compared to sharpened representations (PE: M = 0.04,
SEMws = 0.02; Sharpening: M = −0.01, SEMws = 0.01, p = 0.0366) and

pure sensory input processing (M =0.005, SEMws = 0.01, p =0.0366;
Fig. 4b, c, Supplementary Tables 3 and 4).

Secondly, we tested the correlations of the object-trained DCNNs
with theneural dissimilarity structure. VGG-16 revealed evidence for PE
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shown at p(unc.) < 0.001, overlaid on the average structural T1 image in Montreal
Neurological Institute (MNI) template space. c–f Representational similarity ana-
lysis (RSA) for both hemispheres: Hypothesis RDMs were based on representations
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networks (DCNN) (VGG-Face, blue; VGG-16, green). The correlations between the
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significance for each hypothesis model against zero (one-sided Wilcoxon
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VGG-16 (green). Dots represent means, error bars the within-subject SEM (N = 43
participants). Source data are provided as a Source Data file.
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processing along thewhole face-processing hierarchy in linewith VGG-
Face (OFA: M =0.06, SEMws = 0.02, p =0.0025; pFFA: M =0.10,
SEMws = 0.02, p = 0.002; aTL: M =0.10, SEMws = 0.02, p =0.001; MTG:
M =0.08, SEMws = 0.02, p =0.0038), with significantly higher correla-
tions in pFFA and aTL than VGG-Face (pFFA: Z = −2.40, p = 0.0212,
Wilcoxon’s r =0.37; aTL: Z = −2.58, p =0.0176, Wilcoxon’s r =0.39;
Fig. 4c–f, Supplementary Tables 5–7). ResNet50 showed consistent
evidence for PE in pFFA, aTL, and MTG (pFFA: M = 0.05, SEMws = 0.02,
p =0.0155; aTL: M = 0.05, SEMws = 0.02, p =0.0151; MTG: M =0.05,
SEMws = 0.02, p =0.0064), and a trend in OFA (M = 0.04, SEMws = 0.02,
p =0.10; Supplementary Fig. 1, Supplementary Tables 8 and 9). Con-
trary to VGG-Face, both networks did not reveal any correlations with
the hypothesis RDMs based on Sharpening in OFA (VGG-16:M = −0.01,
SEMws = 0.02, p = 0.70; ResNet50: M = −0.03, SEMws = 0.02, p =0.95),
nor in any of the other ROIs.

Additionally, we conducted multivariate ROI analyses split up by
hemisphere to explore lateralized representations (Fig. 4g–j, Supple-
mentary Fig. 1, Supplementary Results). As in the bilateral analyses, we
identified PE processing along the whole face-processing hierarchy for
all three DCNNs (VGG-Face, VGG-16, ResNet50), evident by stronger
correlations with the PE model compared to the Sensory Input and/or
Sharpening model in all ROIs (Supplementary Results, Supplementary
Tables 10–13). There was no main effect of hemisphere in any of the
networks.

Prediction error and sharpened representations of expected
face information in the whole brain
Furthermore, we conducted searchlight analyses to investigate how
expected faces are represented in the whole brain beyond the pre-
defined face-sensitive regions along the ventral stream (Fig. 5). All

searchlight analyses were conducted with hypothesis models for PE
and Sharpening both based on pool4 or pool5 VGG-Face63 activations
to test for lower-level as well as higher-level face image representa-
tions.With the lower-level hypothesismodel for PE based onpool4, we
identified correlations between the neural and hypothesised similarity
structure in occipital and temporal regions, as well as in the right
fusiform gyrus including the parahippocampal gyrus (p(FWE) < 0.05;
Fig. 5a, Supplementary Table 14). Further large clusters were found in
parietal and frontal regions. With the hypothesis model based on
pool5, testing for higher-level PE representations, we found a similar
pattern with additional correlations in the right insula (Fig. 5a, Sup-
plementary Table 15). In contrast to a sensory input searchlight based
on the second convolutional layer of VGG-Face59, there was additional
evidence for PE representations based on pool4 in the right hippo-
campus (p(FWE) < 0.05; Fig. 5a, Supplementary Tables 16 and 17). To
further investigate the spatial overlap between the ROIs and thewhole-
brain searchlight approach, we conducted small-volume corrected
analyses by applying our ROI masks. The ROIs overlapped with the PE
searchlight maps in the OFA (pool4), as well as in the pFFA, aTL, and
MTG(pool5), respectively (p(FWEsvc) < 0.001 in lOFAand rOFA; lpFFA:
p(FWEsvc) = 0.001; rpFFA: p(FWEsvc) = 0.015; laTL: p(FWEsvc) = 0.015;
raTL: p(FWEsvc) = 0.035; lMTG: p(FWEsvc) = 0.001; rMTG:
p(FWEsvc) = 0.009).

The searchlight analysis testing for Sharpening based on pool4
revealed further evidence for enhanced representations of expected
faces in the frontal lobe and postcentral gyrus (Fig. 5c, Supplementary
Table 18). In contrast to a sensory input searchlight, therewas evidence
for sharpened representations in the right hippocampus (p(FWE) =
0.017, [34 −6 −22], k = 64; Fig. 5c), which was located more anterior
than the hippocampal PE representations. There were no significant
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Fig. 5 | Whole-brain searchlight analyses for the hypothesis models Prediction
Error (PE) and Sharpening based onVGG-Face.Results for the comparison of the
neural and hypothesised dissimilarity structures based on pool4 and pool5 layers
from VGG-Face are displayed against zero and as difference maps against a sen-
sory input searchlight without prior influence based on the second convolutional
layer59, respectively.a Searchlight analyses results for PE:Clusterswere identified in
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anterior insula (aIns), posterior insula (pIns), and hippocampus (HC).bComparison
of the ‘PE > Sharpening’ searchlight results: Stronger correlations for PE than
Sharpening were evident in the right AnG, bilateral SMG, PrG, and MTG.
c Searchlight analysis results for Sharpening: Clusters were identified in the frontal
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correlations between the neural RDMs and the Sharpening hypothesis
RDMs based on pool5 activations. Additionally, the correlation maps
for Sharpening revealed overall concordance with our ROI analysis
results (lOFA: p(FWEsvc) = 0.039 and trend in rOFA: p(FWEsvc) =
0.058, and p(FWEsvc) > 0.1 for all other ROIs (pFFA, aTL, MTG), based
on pool4 for OFA and pool5 for all other ROIs). While the ROI and
searchlight results overlapped, the strongest effects in thewhole-brain
searchlight analyses were observed in the angular gyrus, insula, and
precentral gyrus for PE, and in the frontal pole for Sharpening (similar
to refs. 74–76).

Next, we compared the searchlight results based on PE and
Sharpening. There were higher correlations between the neural RDMs
and the hypothesis PEmodel than the Sharpeningmodel (pool4) in the
right AnG (p(FWE) = 0.01, [44 −46 22], k = 205), MFG (p(FWE) = 0.015,
[28 30 28], k = 142), and putamen (p(FWE) = 0.048, [30 −16 2], k = 2).
The difference correlation map based on pool5 revealed additional
evidence for PE representations in theMTG aswell as in frontal regions
and bilateral SMG (Fig. 5b, Supplementary Table 19). There were no
significant differences in correlations for the reverse contrasts ‘Shar-
pening > PE’ (pool4, pool5).

For comparison to the face-trained DCNN VGG-Face, we addi-
tionally investigated the searchlight results of the object-trained net-
works VGG-16 and ResNet50. Overall, searchlight analyses based on
these networks showed a comparable distributed representation of
PEs across the whole brain, mainly in parietal and frontal regions
(Supplementary Figs. 2, 3, Supplementary Tables 20–28). None of
these two networks revealed significant clusters for Sharpening.

Discussion
In this fMRI study, we provide evidence that prior context shapes the
neural representation of presented faces. By means of our paradigm,
in which participants learned to associate images of scenes with
images of four face identities, we controlled for stimulus-related
differences by presenting face morphs between two identities. On
the behavioural level, we observed a facilitation effect, i.e., expected
faces were identified faster compared to unexpected faces, and an
assimilation effect, i.e., facemorphs weremore often classified as the
expected identity. With univariate fMRI, we found reduced activation
for expected compared to unexpected faces in the posterior FFA as
well as in a more lateral cluster in the ITG/MTG. Crucially, multi-
variate fMRI RSA in combination with DCNNs revealed PE repre-
sentations of presented faces along the whole face-processing
hierarchy fromOFA, pFFA, to the face-sensitive aTL, as well as in ITG/
MTG.We found additional indications for sharpened representations
at an earlier stage of the hierarchy in the OFA. Our results provide
insights into the computational mechanisms underlying context-
dependent stimulus representations along the face-processing
hierarchy.

In our fMRI study, expectations for the upcoming faces were
induced by images of indoor scenes that participants learned to
associate. Faster identification of expected faces replicated and
extended previous research on face perception that showed a facil-
itation effect for other context cues, such as names8,13,16,77,78, identity
cues14, voice9, or face primes10–12,15,79. When presented face information
matches with prior expectations, judgements or identification is
accelerated independent of the specific cue modality.

In addition, participants showed an assimilation effect and iden-
tified the presented ambiguous face morph more often as the expec-
ted than the unexpected face. This finding is in linewith the facilitation
of expected unmorphed face images and consistent with previous
studies showing priming effects with non-face cues in the context of
priming and associative learning8,13,14,16,77,78, whereas contrastive
perception80 is typically observed in adaptation experiments that use
long exposure to faces17–19,81,82 (for review see refs. 83,84). Hence, the
observed assimilation effect in our study is based on the combination

of a short prior duration, a prior cue that is qualitatively different from
face images, and a short target duration85.

Through univariate fMRI, we observed reduced activation for
expected compared to unexpected faces in a network involving par-
ietal regions, midbrain regions, as well as bilateral anterior insula (for
the contrasts ‘mismatch >match’ and ‘unexpected > expected’,
respectively, see SupplementaryTables 1 and2). This network hasbeen
repeatedly shown to be involved in the processing of surprise and
error awareness39,70,71,86. In our study, in addition to surprise related to
the unexpected face, this activation is also likely related to attention
shifting andmotor inhibition87,88 as well as the internal verbalisation of
the names associated with the faces89. Response times for recognising
unexpected faces were notably longer than those for expected ones,
evident in both the comparisons involving clear faces in the ‘match vs.
mismatch’ and face morphs in the ‘unexpected vs. expected’ context.
These prolonged response times suggest that the processing involved
in identifying unexpected faces demands more time and effort. Con-
sequently, the observed differences in univariate fMRI activity for the
corresponding contrasts (as depicted in Fig. 4b) may be attributed to
variations in effort or task difficulty rather than discrepancies in PEs or
enhanced neural signals. Crucially, our multivariate analysis approach
remains unaffected by this potential confounding factor. This is
because we assessed expectation-dependent representations of faces
in the face identification task, where participants were required to
press one of four buttons with their right hand (corresponding to the
index, middle, ring, or pinky finger) to identify the faces, and com-
pared them with face representations from the neutral condition,
where participants simply pressed the thumb of their left hand after
viewing any face. This ensured that motor responses were controlled
and did not introduce confounding influences into the observed pat-
terns of similarity.

We specifically investigated the expectation-dependent univariate
effect along the ventral face-processing hierarchy (OFA, pFFA, aTL)
and observed reduced activation for expected faces in the pFFA,
replicating previous reports of expectation suppression in FFA23–26,
and in more lateral clusters in the ITG and MTG. We used multivariate
RSA to test whether these prior-dependent face activations along the
ventral face-processing hierarchy are computationally explained by PE
processing or sharpening of expected face information4,7,30–33. To do
this, we compared themultivariate similarity of facemorphs to neutral
face images with the corresponding hypothetical similarity derived
from PE and sharpened representations based on activations derived
fromDCNNs (Fig. 2a, Supplementary Fig. 4). We found evidence for PE
processing at every stage of the processinghierarchy (OFA, pFFA, aTL),
and in ITG/MTG (Fig. 4, Supplementary Fig. 1). The finding of PE
representations in pFFA may explain the univariate expectation sup-
pression effect in this area and rule out a predominant role of shar-
pened representations of the expected face. This extends previous
univariate studies showing evidence for PE processing in FFA that did,
however, not rule out Sharpening as an alternative model23,90,91.

Furthermore, the PE searchlight analyses revealed a distributed
network of occipital, parietal, temporal, and frontal brain regions
highly similar to the activation networks observed for the univariate
contrasts testing for increased signal for unexpected face information
which is involved in the processing of surprise39,70,71. PEs in the IFG69,92

and MFG are also in line with previous studies suggesting their invol-
vement in face recognition38,93 and the processing of facial features94,95.
PEs in the fusiform gyrus extending into the parahippocampal gyrus
may reflect the contextual association of linking the scene cues with
the associated faces and names96,97.

With the hypothesis model based on VGG-Face activations, we
found evidence for sharpened representations of expected face
information in OFA, an earlier stage of the face-processing hierarchy.
This is in line with our recent finding of enhanced face representations
for highly expected faces in OFA39, suggesting that scene priors
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sharpened the low-level facial features of associated faces in OFA, and
with a study showing sharpening of prior information in Mooney face
images along the whole ventral processing stream, already starting in
early visual areas31.

While in the ROI approach, we did not observe any evidence for
Sharpening based on pool5 in the higher face-processing regions
(pFFA, aTL), the searchlight analysis based on pool4 revealed further
evidence for enhanced face representations in frontal areas, extending
across the frontal pole, AC, and superior frontal gyrus. The sharpened
representations in these frontal areas are in agreement with previous
work showing top-down predictive face information in this region74,
but this searchlight cluster was not significantly stronger than a purely
input-driven face representation. In contrast to expectation-
independent sensory input, there were stronger sharpened face
representations in the right hippocampus. The involvement of the
hippocampus in expectation-dependent representations for both PEs
as well as for prior confirming inputs have also been repeatedly
observed during association learning98 and application of these pre-
dictive associations99,100.

Overall, the observed searchlight patterns were more extensive
and stronger for PE than Sharpening and do not predominantly reflect
the ventral face system, but extend to frontal and parietal regions. This
network of regions has also previously been observed in studies
investigating familiar face recognition38,75,76. Potentially, these dorsal
regions may play a crucial role in representing familiar faces. As par-
ticipants in our study acquired the association between face images
and semantically distinct scene images (e.g., a library or fitness court),
it is plausible that they attributed semantic meaning to these face
images beyond mere visual representations.

Interestingly, although overall participants more often identified
the presented face morph as the expected face, we observed more
evidence for PEs than sharpened representations of expected facial
features. This observation stands in contrast to the intuition that
sharpened representations likely occur when facial input aligns with
expectations, whereas PE becomes more prominent when facial input
deviates significantly from expectations. In our paradigm, participants
most likely noticed the deviation as indicated by slower RTs for
‘expected’ responses to face morphs than to clear faces in the match
condition. Future work may help to determine how universal the
dominance of PE over sharpened representations for partially expec-
ted faces is. For example, observations of PEs may be reduced in a
paradigm in which the presented ambiguous face deviates less from
the expected face.

Our initial computational models underlying the hypothesis
RDMs used for testing whether representations of facemorphs can be
explained by the reduction or enhancement of the expected infor-
mation were based on the DCNN VGG-Face63 since the convolutional
layers of this face-recognition network correspond to the hier-
archically organised regions of face processing in the human brain59,60

and also predicted face dissimilarity judgements101. We decided to use
pool5 to test face representations in the high-level aTL because these
layer activations correspond to the highest level of sensory face pro-
cessing in the VGG-Face network, in contrast to activations from the
highest connected layer (fc8) which activations rather reflect decision
about choosing one of the 2.622 identities that this network was
trained on. In addition,weused twoDCNNs, i.e., VGG-16 andResNet50,
thatwereoriginally trainedonobject recognition. Therefore, our study
contributes to the growing research investigating the correspondence
of neural network activations to neural activations in the human brain.
Additionally, as considering inter-individual differences in RSA ana-
lyses is crucial30,68,69, we used individually weighted hypothesis RDMs
by incorporating the behavioural responses. Specifically, by contrast-
ing prior-confirming with prior-discarding responses for a facemorph,
we were able to capture individual perceptual dominance of one
identity in a face morph that remained despite the individual face-

morph calibration on the first experimental day. By including these
individual prior weights, we took into account that individuals may
differ in their usage of prior information.

Our decision to leverage DCNNs as sophisticated hierarchical
computational models for studying expectation-dependent face
representations in the human brain was motivated by growing evi-
dence supporting their alignment with the neural face-recognition
systems observed in both humans and nonhuman primates59–62,102.
Specifically, a recent intracranial electroencephalography study suc-
cessfully related the layers pool4 and pool5 of VGG-Face to single
neuronal recordings from OFA and FFA, respectively60. While also
other methodological approaches, such as MEG59 and fMRI61, suc-
cessfully related DCNN layer activations to brain activations, further
research is needed to test whether the relationship between DCNNs
and brain representations is readily applicable to more coarse neuro-
nal representations such as the voxel-level resolution obtained with
fMRI. In addition, there are limits in correspondence and fundamental
differences in how the brain and DCNNs represent visual
information103. Biological face recognition is far more complex than
image labelling and involves objectives beyond physical properties
and, likely, DCNNs do not capture several functional properties of face
recognition (for a review see ref. 62). However, applying RSA based on
DCNNs revealed stronger evidence than a model-free classification
approach (Supplementary Fig. 5, Supplementary Methods, Supple-
mentary Results).

By comparing VGG-Face to VGG-16, a DCNN with the identical
architecture thatwas however trained on object recognition instead of
face images66, as well as to ResNet50, a more complex convolutional
neural net with deeper architecture and skip connections67, we
observed commonalities as well as differences between these net-
works. Across all networks, the correlations between voxel- and
network-based face representations were low, similar to other studies
reporting significant but small correlations between face-selective
brain areas and face-identification models based on their representa-
tional similarity47,62. Notably, PE was more dominant than sharpened
representations in both ROI as well as searchlight analyses across all
three DCNNs. Sharpened face representations in OFA were only
observed based on VGG-Face and not based on the object-trained
networks. However, consistent with prior findings that DCNN models
trained on ImageNet demonstrate comparable or superior perfor-
mance compared to models specifically trained for faces in predicting
human neural responses to facial stimuli (see supplementary material
of ref. 60 and the work of ref. 61), our study revealed higher correla-
tions between voxel-based similarity and PE similarity patterns when
using VGG-16 compared to VGG-Face. Thus, our results suggest that
the features extracted from VGG-16 can effectively form a repre-
sentational space suitable for capturing the static facial images
employed in our study. In sum, the incorporation of different DCNNs
substantiates the PE hypothesis across all face-sensitive regions, with
the superior performance of object-trained models, but raises uncer-
tainties regarding Sharpening that was only observed based on VGG-
Face. This incongruity across DCNNs underscores the critical impor-
tance of a careful model selection and comparison, as the choice of
DCNN can significantly impact the interpretation of underlying neural
representations in the human brain and may lead to different conclu-
sions. Further research is needed to establish whether the observed
pattern, wherein a face-trained DCNN also exhibits alignment with
neural representations of expected facial features,while object-trained
DCNNs alignmore strongly with neural representations of unexpected
facial features in the human brain, can be extrapolated to other
datasets.

Our additional ROI analyses based on VGG-Face investigating
potential hemispheric differences in face representations suggested
higher PE-based face representations in the left compared to the right
pFFA and aTL (see Fig. 4h, i; although no main effect of hemisphere;

Article https://doi.org/10.1038/s41467-024-47749-9

Nature Communications |         (2024) 15:3407 8



see Supplementary Results). This left lateralisation is in concordance
with a previous meta-analysis and study showing left hemispheric aTL
activation for familiar individuals, while right aTL was mainly involved
in novel faces104. However, other studies pointed towards face pro-
cessing as a predominantly right hemispheric process105,106. Indications
for left lateralisation in our study may be related to the computational
modelling based on the VGG-Face network that previously captured
dissimilarity representations only in left hemispheric OFA and FFA60.
However, in the respective paper, due to the smaller number of right
hemispheric intracranial electrodes, analyses were solely based on left
hemispheric electrodes. The left lateralisation was not prominently
evident in thewhole-brain searchlight analyses based onVGG-Face and
VGG-16 (Fig. 5, Supplementary Fig. 2). Also, our additional ROI analysis
based on VGG-16 did not show this left hemispheric dominance
(Fig. 4g–j), whereas the overall weaker results based on ResNet50
indicated stronger effects in the left hemisphere (Supplementary
Fig. 1). Therefore, we do not draw strong conclusions about any
hemispheric differences in expectation-dependent face representa-
tions. Future research is needed to investigate whether other layers of
VGG-Face or other neural network architectures would have a higher
correspondence to right hemispheric face representations.

Our study exhibits typical characteristics of multivariate fMRI
analyses focused on individual stimuli, including a relatively low noise
ceiling and modest effect sizes. The maximum possible correlation
values that could be observed in our fMRI data from the face-sensitive
ROIs are all considerably smaller than 1 (Fig. 4, Supplementary Fig. 1),
underscoring inherent constraints in our experimental data. These
constraints may arise from factors such as limited spatial resolution,
substantial measurement noise, or a shortage of data. In addition,
these small effect sizes could be attributed to the noise added to the
presented face images, potentially impeding clarity. Although this was
intended to encourage the use of the prior, itmight have inadvertently
reduced neural responses. However, it is important to note that these
limitations do not introduce differential effects among our experi-
mental conditions. Consequently, measurement noise and other
extraneous variables cannot account for theobserved similarity effects
within the multivariate analyses. For RSA, similar noise ceilings and
correlation values between fMRI-response-based and hypoth-
esis RDMs have been observed previously4,39,47,102. Analogously, low
classification accuracies are also common in decoding task events
using multivariate classification of fMRI data52,69,75,76,107. Despite these
inherent limitations, distinctions in the observed correlations, parti-
cularly variations in the degree of similarity between expected and
unexpected facial stimuli, provide evidence for the presence of
expectation-dependent multivoxel representations.

Our findings from both the ROI and the searchlight approach
point to the co-existence of representations of the unexpected as well
as the expected information contained in images of morphed faces
across the face-processing hierarchy, suggesting that different com-
putational mechanisms may be simultaneously applied to combine
priors with sensory input. Within the predictive coding framework1,2,6,
this could be interpreted as evidence for the co-existence of error units
as well as representational units containing the updated face prior.
Previous research has also suggested the co-existence of both unit
types by identifying voxels that showed prediction or error processing
consistently over time22,108. Future research using a higher spatial
resolution (e.g., 7 T) will enable us to differentiate whether the co-
existence of PE and Sharpening in OFA is linked to different types of
cortical layers109, with superficial layers containing bottom-up and
deeper layers top-down information110,111.

In conclusion, we used multivariate fMRI analysis combined with
computational modelling based on the activations of DCNNs to
investigate prior-dependent face representations along the ventral
face-processing hierarchy. These analyses revealed PE processing
throughout the entire face-processing hierarchy, as well as sharpened

representations of expected faces based on a face-trained network at
an early stage of processing. The observed PE and sharpened repre-
sentations provide evidence for predictive processing, through which
the brain combines prior knowledge with sensory input, thereby
influencing our perception of faces.

Methods
This study was preregistered at the Open Science Framework (OSF)
([https://osf.io/sd54e]).

Participants
We preregistered to schedule 50 participants for this fMRI study.
Seven participants were excluded from final data analyses: one due to
technical issues, one due to anatomical anomalies, one due to exten-
sive head movements, three did not take part in all study appoint-
ments, and one was identified as an outlier in the behavioural
experiment analysis (see SupplementaryMethods). In the final sample,
43 right-handed participants (22 females, self-reported gender) with a
mean age of 24.37 years (SD = 3.61) and no current or past neurological
or psychiatric disorders were included. Compensation for participa-
tionwas 55€. All experimentalprocedureswere approvedby theEthics
Committee of the Chamber of Physicians in Hamburg and participants
provided written informed consent.

Stimuli
In this study, we used images of faces and scenes.

Specifically, we used images of four male faces that were created
with FaceGen (FaceGen Modeller Core 3.22, Singular Inversion). The
four face identities were created so that they differed in the facial
features that are important for face discrimination112: shape, colour,
and positioning of the eyes, eyebrows, nose, and mouth. Images were
normalised for their general face shape so that they only differed in
their central facial features. To ensure that the four faces were equally
distinct and well-distinguishable, the activations of layer pool4 of the
DCNN VGG-Face were used to evaluate their dissimilarity structure
(Supplementary Fig. 6)60. All face images were normalised by inde-
pendently equalising the mean luminance and standard deviation of
the RGB channels. Noise was added to the face images to decrease the
clarity of the sensory input and hence increase the usage of the prior
information. The noise was added by applying Fourier transformation
and adding a random phase structure to its original phase spectrum.
After combining it with the original amplitude spectrum, an inverse
Fourier transformation was performed. For each face image pre-
sentation (e.g., for each repetition of the image of Ari), a new random
phase structure was applied, i.e., all presented face images had a
unique noise pattern.

We used nine scene images to provide prior context. For the
training and the main experiment, five indoor scenes were chosen as
context primes for the four face images: four images were taken from
the SUN database113 and the fifth scene from the indoor scene
database114. For the functional localiser, four additional indoor scenes
were selected113. Scene images were converted to grey-scale and
luminance-matched using the SHINE toolbox’ histMatch-function115.
We used grey-scaled scene images to avoid any colour confounds on
the perception of the following face image. For further image specifi-
cations, please refer to the Supplementary Methods.

Experimental procedure
Participants came to the lab on two consecutive days. On the first
day, they completed the individual face-morph calibration to identify
each individual’s personal morphs that equalled their 50/50 per-
ceptual threshold so that both identities were equally likely to be
seen in a morph (Supplementary Fig. 7, Supplementary Methods).
Afterwards, participants took part in a training session in which they
learned to associate each face with a scene. For a complete
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experimental protocol of the training sessions, please refer to the
Supplementary Methods.

On the second day, participants completed the fMRI experiment
which was divided into four blocks. Each block was conceptually
identical to the last part of the association training session and con-
sisted of 107 experimental trials (16 match, 48 partial, 12 mismatch, 12
catch, 16 neutral, 3 neutral catch) and 36 null events. In match trials,
the presented facewas preceded by the associated scene. Inmismatch
trials, the presented face differed from the expected face. In partial
trials, face morphs of two identities were presented. These face
morphs always contained the expected face identity (thatmatched the
preceding scene) as well as an unexpected face identity. The task was
to indicate the face identity (Ari, Bob, Cid, Dan) by pressing one of four
buttons with the right hand (index,middle, ring, pinky finger). In catch
trials (question mark instead of face), participants were required to
indicate which face they expected based on the preceding scene. In
neutral trials (indicated by a fifth scene), therewas an equal probability
for each of the four face identities to occur. If a face appeared after the
neutral scene, participants had to press a button with their left thumb
for any face. In neutral catch trials (question mark instead of face),
participants had to press a button with their left index finger to indi-
cate that they had anticipated all faces with equal probabilities. An
exemplary trial canbe seen in Fig. 1b. Innull event trials, afixation cross
was presented for the duration of a whole trial (5300ms). The ratio of
trials per condition (match, partial, mismatch, catch, neutral, neutral
catch, null events) was identical in all four blocks and identical to the
last part of the training sessions. The order of the trials was pseudo-
randomised such that the same face or face morph was allowed to
consecutively appear four times at maximum. This randomisation
limitation was selected so that participants could not easily foresee
which face was likely (or not likely) to appear next. Only two null event
trials could appear consecutively after each other to avoid too long
periods of fixation crosses. After each block (~12min), short verbal
feedbackwas given to keep themotivational and attentional level high
for the whole duration of the experiment (~53min, more details in
Supplementary Methods).

Functional localiser
A functional localiser experiment was run to identify individual
ROIs along the ventral face-processing hierarchy, i.e., theOFA, the FFA,
and the higher-level face-sensitive region in the aTL40–42,44. The design
was similar to established localiser paradigms9,116,117. Alternating blocks
of face and scene images and neutral blocks with a fixation cross were
shown. In the face blocks, the images of the known four faces (Ari, Bob,
Cid, Dan) were presented. In the scene blocks, four unknown scenes
were displayed. New scenes were chosen because participants had
learned to associate each scene with one of the four faces. Therefore,
the presentation of these scene images could have automatically
triggered unwanted activation due to the recall of the associated faces.
In each block, 44 images each with a duration of 500ms were pre-
sented. There was no ISI between the images. Each block had a dura-
tion of 22 s. The task was to look at the fixation cross in the centre of
the screen, no buttons had to be pressed. The order of the images
within a blockwaspseudo-randomised such that the same image could
not appear twice after each other. Due to the missing ISI, multiple
consecutive presentations of the same image would have led to see-
mingly prolonged presentation durations. The starting block (faces or
scenes) was counterbalanced across participants.

Behavioural data analysis
Analyses were performed as preregistered and additional analyses are
described below. Since values of perceived face identity in face
morphs, RTs, as well as accuracies were not normally distributed
(Kolmogorov–Smirnov tests, all p <0.001), non-parametric tests were
used for the analyses instead of the preregistered parametric tests.

Our first variable of interest was the perceived face identity. In
partial trials, participants answered which person they mostly recog-
nised in a face morph. To investigate whether participants identified
facemorphs more often as the expected or the unexpected identity, a
difference scorewas calculated for each face pair to indicate how likely
the participant answered in favour of the prior. The mean of the dif-
ference scores of all scene andmorph combinations was calculated to
obtain an individual index for an assimilation and/or contrastive effect.
Values above 50% indicated that a participant respondedmore often in
favour of the expected face identity in a face morph (assimilation
effect). Values below 50% were indicative of a contrastive effect. We
tested whether the participants’ scores significantly differed from 50%
(no prior effect) using a two-sided Wilcoxon signed rank test and cal-
culating Wilcoxon’s r as a measure of effect size.

RTs were measured for the time point of a button press after face
onset. Additionally to the preregistered conditions mismatch, match,
and neutral, we included the partial condition because we were also
interested in how fast participants processed face morphs. We calcu-
lated a non-parametric Friedman test and Kendall’s W as effect size.
Post-hoc paired tests between the average ranks of the different con-
ditions were performed using Tukey’s honestly significant difference
(HSD) test for multiple comparisons. In an exploratory analysis, we
investigated whether the RTs to the morphed faces in partial trials
depended on the response given by the participants. Therefore, partial
trials were split into trials with prior-confirming responses (assimila-
tion effect) and trials with responses favouring the other identity
contained in a morph (contrastive effect) and tested with a two-sided
paired Wilcoxon signed rank test. Wilcoxon’s r was calculated as a
measure of effect size. Lastly, we tested whether RTs in trials with
prior-confirming responses differed from RTs in the match condition
using a two-sided paired Wilcoxon signed rank test, calculating Wil-
coxon’s r as a measurement of effect size.

fMRI data acquisition and preprocessing
All imaging data were acquired on a Siemens 3T scanner at the Uni-
versityMedical Center Hamburg-Eppendorf (Hamburg, Germany)with
a 64-channel head coil. Functional data were obtained using a multi-
band echo-planar imaging sequence (repetition time (TR) = 0.961 s,
echo time (TE) = 30ms, flip angle = 55°, field of view (FoV) = 224mm,
multi-band mode, number of bands: 3). Each volume of the experi-
mental data contained 45 slices (voxel size 2 × 2 × 2mm plus 0.5mm
gap) and were obtained in descending order.

The parameters for the functional data were chosen to maximise
the signal strength in the aTL. Due to its location near the sphenoidal
sinuses (i.e., near air/tissue and bone/tissue interfaces), susceptibility
artefacts can lead to a poor signal-to-noise ratio (SNR)118,119. We fol-
lowed the proposed guidelines119 to maximise our SNR in the aTL by
choosing a short TR (<1000ms), a voxel size of 2 × 2 × 2mm, and
covering additional ‘no-brain’ space below the temporal lobe with our
FoV (so that the aTL was not at the edge of the FoV).

An additional structural image (magnetisation prepared rapid
acquisition gradient echo (MPRAGE)) was acquired for functional
preprocessing and anatomical overlay (TR = 7.1ms, TE = 2.98ms, flip
angle = 9°, FoV = 256mm, 240 slices, voxel size 1 × 1 × 1mm, ascend-
ing order).

A fieldmap was acquired for field inhomogeneity corrections
(TR= 495ms, TE1 = 5.51ms, TE2 = 7.97ms, flip angle = 40°, FoV = 224
mm, 45 slices (voxel size 3 ×3 × 2mm plus 0.5mm gap)). The slices
were obtained in an interleaved order. The protocols with scanning
parameters are available here: [https://osf.io/765jx/].

Structural and functional data were analysed using SPM12 and
custom scripts inMATLAB. First, the functional images of all functional
runs were realigned to the mean functional image. We then applied
field mapping distortion correction to the functional volumes to cor-
rect for geometric distortions in EPI caused by magnetic field
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inhomogeneity (with the FieldMap toolbox). The individual structural
T1 image was co-registered to the mean, distortion-corrected func-
tional image. The functional images were spatially normalised to MNI
space. For the univariate analysis, the functional images were addi-
tionally smoothed with an 8-mm full-width at half maximum isotropic
Gaussian kernel.

Univariate fMRI analysis
Data from the four functional runs were analysed using the general
linear model (GLM) with a 128 s high pass filter. We applied SPM’s
alternative pre-whitening method to account for autocorrelation,
FAST, which has been suggested to perform better than SPM’s
default120. Raw motion parameters (three translations and three rota-
tions) were included as regressors of nuisance. This approach was also
used for the multivariate analyses (see below).

For the four runs of themain experiment, onsets of ten eventswere
modelled as separate regressors in the GLM, each convolved with the
canonical SPM haemodynamic response. The first regressor was for the
scenes thatwere presented at the start of each trial.We further specified
six face regressors for the different conditions: neutral, match, mis-
match, and partial. While neutral, match, and mismatch had one
regressor each, the partial face onsets were divided into three regres-
sors: in the first partial regressor, we included trials inwhich participants
answered to have perceived the expected face identity (expected), in
the second regressor we included trials in which they answered to have
perceived the unexpected face identity within themorph (unexpected),
and the third regressor consisted of onsets of partial trials in which
participant either answered to have perceived an identity which was not
within amorph or answered too slowly. We included three regressors of
no interest, one for catch trials, one for button responses, and one for
feedback. If a participant did not receive any feedback and/or never
incorrectly identified a partial trial as an identity not contained in a
morph or answered it too slowly, dummy onsets were defined. At the
end of each run, we presented a fixation cross for 10 s to capture the
haemodynamic response function of the last trial.

On the second level, we computed the ‘mismatch >match’ and the
‘unexpected > expected’ contrasts. For the whole-brain analyses, we
report cluster activations (p(FWE) <0.05, with cluster-inducing thresh-
old of p<0.001). For the small-volume corrected analyses of our ROIs
(OFA, pFFA, aTL), we report peak activations (p(FWEsvc <0.05)).

A functional localiser was run at the end of the experiment to
define ROIs along the face-processing hierarchy. The GLM included
two event types, each convolved with the canonical hemodynamic
response function. The event types were the onsets of the face and the
scene blocks. For the first-level analyses of the main experiment and
the functional localiser, individual whole-brain masks were used (see
Supplementary Methods). On the second level, we computed the
contrast ‘faces > scenes’ to obtain the ROIs (see below for further
details).

Regions of interest (ROI) extraction
We defined ROIs along the ventral face-processing stream (OFA, FFA,
and aTL). As previous studies on face perception and/or face identifi-
cation in humans and macaques revealed a contribution of right
hemispheric105,106,121,122 as well as bilateral51,56,123 brain areas, we defined
bilateral ROIs. We extracted the ROIs from SPM12 using MarsBaR124.
The functional localiser, using the contrast ‘faces > scenes’, yielded
bilateral activation clusters spanning from the inferior occipital gyrus
(IOG) to the fusiform gyrus (Supplementary Table 29). Since a clear
separation of these clusters into OFA and FFA was not possible, we
overlaid our activation clusters with the OFA and pFFA clusters from
an atlas map125. We obtained OFA ROIs in the right (k = 892, peak at
[54 −70 −4]) and left hemisphere (k = 483, peak at [−50 −76 −8]) as well
as pFFA ROIs in the right (k = 848, peak at [44 −46 −18]) and left
hemisphere (k = 477, peak at [−44 −52 −20]). Previous literature

suggested a differentiation into a posterior and anterior part of the
FFA41,126,127. When comparing our activation cluster with pFFA and aFFA
clusters125, we only found an overlay with the posterior part. The peak
activations of our pFFA clusters are also comparable to the area
FFA-2126.

We obtained face-sensitive ROIs in the aTL from the functional
localiser ‘faces > scenes’ in the right (k = 192, peak at [34 −8 −38]) and
left hemisphere (k = 153, peak at [−40 −20 −38]) at p(unc.) < 0.01, as the
clusters at p <0.001 were too small with k = 54 and k = 5, respectively.
These peak activations are close to previously reported face-selective
regions in the temporal pole39,43,126,128.

In addition to our main ROIs (OFA, pFFA, aTL), we extracted ROIs
along the ventral face-processing hierarchy from our univariate con-
trast ‘mismatch >match’ to investigate with our multivariate analyses
whether this expectation suppression effect might be due to PE pro-
cessing or sharpened representations. The contrast revealed a lateral
cluster in the left ITG and MTG (k = 312, peak at [−56 −42 −18]; at
p(FWE) < 0.05 (cluster-corrected), based on a cluster-inducing
threshold p(unc.) < 0.001; Supplementary Table 1) and in the right
MTG with a comparable size to the left hemisphere (k = 332, peak at
[58 −34 −16]; at p(unc.) < 0.01). These clusters identified based on the
contrast ‘mismatch > match’ are independent of the RSA which is
based on neutral and partial trials.

All bilateral ROIs (OFA, pFFA, aTL, and ITG/MTG) were trans-
formed from MNI space into individual native spaces using the inver-
sion matrices from SPM12’s normalise-function.

Face-trained deep neural network
The DCNN VGG-Face, available at [www.robots.ox.ac.uk/~vgg/
software/vgg_face/]63, was pre-trained to recognise 2.622 different
face identities using adatabase containing 2.6million face images. This
model achieved a state-of-the-art performance level while using less
data compared to other advanced models like DeepFace and FaceNet.
This network performs best compared to numerous other neural
networks in predicting humans’ face dissimilarity judgements101. The
network architecture of VGG-Face includes a total of 16 layers, con-
sisting of 13 convolutional layers and 3 fully connected layers. A rec-
tification linear unit follows each of these 16 layers. The 13
convolutional layers are organised into five blocks, with the first two
blocks containing two consecutive convolutional layers followed by
max pooling. The latter three blocks consist of three consecutive lay-
ers followed by max pooling. In DCNNs like VGG-Face, layers closer to
the input layer capture lower-level facial features such as edges, tex-
tures, and local facial details, while higher layers in the network learn
more complex and informative facial representations such as gender,
age, and identity information59. We extracted face activations from the
last two max pooling steps, i.e., pool4 and pool5, to design our
hypothesis RDMs (see more detail below). These layers can be
described as intermediate to higher layers in VGG-Face (see Fig. 2a for
hierarchical model architecture), with pool5 located directly before
the final three fully connected layers that lead to a classification of the
input image as one of the face identities it was trained on63. The
representational space of pool4 and pool5 activations is robust against
low-level manipulations such as luminance and colour and has been
previously related to our brain regions of interest, i.e., pool4 to lower-
level inferior occipital gyrus and pool5 to higher-level face processing
in fusiform gyrus60.

Object-trained deep neural networks
Previous literature has shown that even though DCNNs like VGG-Face
show correspondences to the single-cell and voxel-level representa-
tional space of face processing60,61, DCNNs trained on object recogni-
tion can perform similarly (SupplementaryMaterial of ref. 60) or even
outperform them in the context of face processing61. Therefore, in
addition toour preregistered approach to employVGG-Face,we tested
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two object-trained DCNNs for comparison with VGG-Face: firstly, we
chose VGG-1666, a convolutional network with the identical archi-
tecture as VGG-Face, i.e., consisting of 16 layers, but pre-trained on the
ImageNet dataset129. From VGG-16, in agreement with our approach
based on VGG-Face, we chose activations of layer pool4 for the
hypothesis RDMs forOFA and layer pool5 for all higherROIs. Secondly,
we selected the DCNN ResNet5067 because this network performed
best across a large variety of tested networks in predicting neural
responses to faces in a recent fMRI study61. For our hypothesis RDMs to
test representations in all our ROIs (OFA, pFFA, aTL, MTG), we
extracted face activations from the convolutional layer
res5b_branch2b (MATLAB) because this layer best predicted neural
responses in FFA61.

Representational similarity analysis: computational modelling
based on VGG-Face activations
To investigate whether PE or Sharpening mechanisms underlie the
integration of expected and presented face information, we used
RSA64,65.

RSA involves defining theoretical dissimilarity matrices (i.e.,
hypothesis RDMs) between experimental conditions and comparing
them to neural dissimilarity matrices (i.e., neural RDMs) based on the
measured brain activation. By defining different theoretical models
and comparing their correlation values with the neural data, we can
test which of the hypothetical models fits the data best. The multi-
variate analyses were performed on realigned data in the individual’s
native space. A first-level analysis using a whole-brain mask was per-
formed for each participant. Onsets of 25 events were modelled as
separate regressors in the GLM, each convolved with the canonical
SPM haemodynamic response. Four regressors were for the neutral
trials differing by which face was presented after the neutral scene
(neutralA, neutralB, neutralC, neutralD). Four regressors were for the
match trials in which the presented face matched the expected face
(matchA, matchB, matchC, matchD). Twelve regressors were for the
partial trials, each for one combination of prior and presented face
morph (e.g., ApriorABinput, ApriorACinput, ApriorADinput, …,
DpriorCDinput). Five regressors of no interest were for scenes,mismatch
trials, catch trials, button responses, and presented feedback. In case
no feedback was given in a run, a dummy onset was defined. For the
multivariate analyses, we used T-images instead of beta estimates as in
our previous studies4,39 because due to the additional division of the
beta values by the standard error estimates the influence of noisy
single voxels can be reduced130.

In this study, we defined three hypothesis RDMs to test how
presented faces are represented depending on prior context. The two
main hypothesis models were a (1) PE and a (2) Sharpening model
(Fig. 2b). These models differ in how the prior and the input are
mathematically combined. The third hypothesismodel testedwas a (3)
pure Sensory Input model that only takes the visual properties of the
face image into account without considering any influence of the
prior (Fig. 2b).

To test our main research question about how the information of
the prior is combined with the incoming face information, we used the
partial trials in which the presented face contained the expected as
well as an unexpected face part. By comparing the activation patterns
of the partial trialswith the ‘pure’ face representationsmeasured in the
neutral trials, we aimed at differentiating whether the representation
observed for a face morph was more similar to the unexpected face
part (i.e., PE processing) ormore similar to the expected face part (i.e.,
Sharpening). We designed and chose the neutral trials to extract the
pure face representations insteadof thematch trials for two important
reasons: firstly, the neutral scene was not predictive of the upcoming
face, therefore, the measured activation for the face was independent
of prior information while in match trials the face expectation was
confirmed. Secondly, the motor response required in neutral and

partial trials was different and therefore did not confound the RSA.
While in partial trials participants were required to indicate which
person they mostly recognised in a face by pressing one of four but-
tons with the right index, middle, ring, and pinky finger, their task in
neutral trials indicated by the fifth scenewas to press a buttonwith the
left thumb for whichever face appeared.

All three hypothesis RDMs, i.e., the PE, Sharpening, and Sensory
Input hypothesis model, were based on the neural network activations
of theDCNNVGG-Face63 for both the expected aswell as the presented
faces. The dissimilarity structure of activations of the network’s layers
pool4 and pool5 for different face images significantly correlates with
the representational dissimilarity structure of neural activations mea-
sured from electrodes in the human OFA and FFA, respectively60. To
measure neural representations in the face-processing hierarchy (OFA,
pFFA, aTL), we created the hypothesis RDMs based on the network
activation extracted from lower-level layer pool4 for bilateral OFA and
from higher-layer pool5 for all higher face-sensitive areas (pFFA, aTL,
ITG/MTG clusters of ‘mismatch > match’). Searchlight analyses were
performed with both pool4 and pool5 activations.

The neural network activations were read out for the RDM crea-
tion as follows: in the main experiment, each participant saw each of
the four faces (i.e., Ari, Bob, Cid, Dan) in the neutral condition. These
four images were fed into the VGG-Face network to extract their acti-
vation vectors from layers pool4 and pool5. For the 12 partial condi-
tions, we combined the network activations for the priors and the face
morphs. For the prior activations, we used the corresponding four
unmorphed face images weighted with the individual behaviour to
account for the prior usage during the perceptual decision about
which face was identified in a face morph (see below for further
explanation). These weighted face images were fed into the VGG-Face
network and read out at layers pool4 and pool5 to obtain the prior
activation vectors. To obtain the morph activations, the six 50/50%
morph images (AB, AC, AD, BC, BD, CD) were fed into the network and
their activations were extracted at layers pool4 and pool5. This pro-
cedure resulted in prior activation vectors (pool4, pool5) and
facemorph activation vectors (pool4, pool5) which were differentially
combined for the PE and Sharpening hypothesis RDMs (descri-
bed below).

Prediction error model. For the calculation of the PE model, the
individually weighted prior representation (i.e., precision) was sub-
tracted from the input representation7:

PE=morph� ðprior:*precisionpriorf ormorphÞ ð1Þ

For example, in trials in which the scene predictive for Ari pre-
ceded a face morph between Ari and Bob, this equation would trans-
late into:

PEðApriorABinputÞ=ABinput � ðAprior:*precisionpriorf orABÞ ð2Þ

The precision of the prior was used to account for the individual
prior usage during the perceptual decision which face participants
identified in a facemorph. The prior precision was calculated as follows:

precisionpriorf ormorph = ðnprior � notherpartÞ=n ð3Þ
In detail, nprior refers to the number of responses in favour of the

expected face, while notherpart refers to the number of responses in
favour of the unexpected face in a face morph. N refers to the total
number of trials in which the participant answered to have perceived
the expected or the unexpected part in a facemorph (nprior + notherpart),
i.e., we did not include trials in which participants identified a face that
was not contained in a morph or were too slow. This calculation can
result in precision values in the range of [−1 1]. If a participant always
answered to have perceived the expected face in the morph AB
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(irrespective of whether the prior was A or B), this would translate into
a value of 1, therefore, giving a high weight to the prior. If a participant
always answered to have perceived the unexpected face in the morph
AB, this would translate into a value of −1, therefore, giving a highly
negative weight to the prior that could lead to contrastive effects. The
distance of all of the experimental conditions (neutral, partial) for the
hypothesis RDM was calculated using ‘1 - Pearson Correlation’64,65. The
RDM was rescaled to dissimilarity values between 0 and 1 while con-
sidering shared ranks (equal ranks stayed equal) (Fig. 2b). The same
correlation metric and ranking were used for the Sharpening and
Sensory Input RDMs.

Sharpening model. An alternative approach for how the Bayesian
brain may combine priors/expectations with incoming sensory infor-
mation is the multiplication of predictions and inputs4,7. We translated
this sharpening of expected information into the following equation:

Sharpening = logðmorph:*ð1+prior:*precisionpriorf ormorphÞÞ ð4Þ

For example, in trials in which the scene predictive of Ari pre-
ceded a face morph between Ari and Bob, this would translate into:

SharpeningðApriorABinputÞ= logðAB:*ð1+Aprior:
*precisionpriorf orABÞÞ

ð5Þ
Furthermore, ‘1+’ was added to the prior to account for the case in

which the prior had no effect on the perception of a morph, so that the
face morph is treated as the sole basis of the measured information.
Since DCNNs can have positive or negative activations, we extend the
traditional Sharpening model to deal with cases of negative priors or
inputs: when the layer activations of both input and prior have the
identical sign, i.e., both are positive or both are negative, the sign of the
input activations is preserved after sharpening, i.e., expected positive
activations are sharpened to be “more positive” and negative activations
are sharpened to be “more negative”. On the other hand, when the
activations of input and prior have opposite signs (i.e., one is positive
and the other is negative), the input activations are dampened rather
than sharpened while keeping the sign of the input activation. Dam-
pening is achieved by multiplying the input activation with a number
between 0 and 1. Specifically, the input activation is multiplied with (1 -
abs(prior.* precisionpriorformorph)) for these cases where the prior is
rescaled to be in the range −1 to 1 (which is necessary so that 1 - prior
does not get negative). Finally, we applied a log transformation on the
combined prior and morph activation to account for extraordinarily
high values inherent to the multiplication of large activation numbers.

Sensory input model. We created pure Sensory Input hypothesis
models to test whether a model without the combination of prior and
input information would perform better than the PE or Sharpening
model (Fig. 2b). For the neutral trials, the pool4 and pool5 activation
vectors were created as for the other hypothesis models. For the
partial trials, the activation vectors for the face morph images were
taken without combining them with the prior. For instance, the acti-
vation of the morph image between Ari and Bob was extracted from
the network, irrespective of the preceding scene.

The RDMs for our hypothesis models (PE, Sharpening, Sensory
Input) for the object-trained DCNNs (VGG-16, ResNet50) can be found
in the Supplementary Fig. 4.

Representational similarity analysis: ROI analyses
The multivariate ROI analyses were performed using the RSAtoolbox65

in Python 3.9.12. Individual grey matter masks in native space with a
threshold of zero were applied. We calculated the neural RDM for each
ROI and averaged their right and left hemispheric neural RDMs to get an
estimate of themean neural representational space across hemispheres.

For each ROI, we obtained one Kendall’s Tau A correlation coefficient
for each participant and hypothesis RDM. We chose Kendall’s Tau A as
the appropriate correlation measurement for tied ranks65. Since corre-
lation values for the different models (PE, Sharpening, Sensory Input)
and ROIs were not normally distributed (Kolmogorov–Smirnov tests,
p<0.001), we used non-parametric tests to test for significance. For
each model, we tested against zero using a one-sided Wilcoxon
signed rank test, Bonferroni-corrected for the number of tests per ROI
(for VGG-Face vs. VGG-16: N=6 (3 models × 2 DCNNs), see Fig. 4; for
ResNet50: N =3, see Supplementary Fig. 1). For model comparisons, we
used two-sided paired Wilcoxon signed rank tests, FDR-corrected131 for
the model comparisons per ROI (all model comparisons within each
DCNN and within model comparisons across the DCNNs). We addi-
tionally calculated the lower and upper boundary of the noise ceiling for
each ROI with the RSAtoolbox62 to obtain an estimate of how well any
model could perform given the noise in the data. For the calculation of
the noise ceiling, we made sure to only consider the relevant dissim-
ilarities in the neural RDMs corresponding to the hypothesis models
(4 neutral conditions × 12 partial conditions). Additional analyses for the
left and right hemispheres can be found in the Supplementary Results
(Fig. 4g–j, Supplementary Fig. 1, Supplementary Tables 3–13).

Representational similarity analysis: searchlight analyses
To explore the representations beyond the prespecified ROIs, a mul-
tivariate searchlight was applied within the whole brain and the same
analyses as in the ROI approach were computed. The searchlight ana-
lyses were performed in native space using a grey matter mask and a
spherewith a radius of 6mm, containing amaximumof 90 voxels and a
minimum of 10% valid voxels. The resulting correlation maps were
Fisher’s z-transformed, normalised, and smoothed with an 8-mm full-
width at half maximum isotropic Gaussian kernel. These maps were
tested in a one-sample t-test on the second-level and significant results
are reported at p(FWE) <0.05, except for the ResNet50 searchlight
results which are reported at p(FWE) < 0.05 (cluster-corrected), with a
cluster-inducing threshold of p(unc.) < 0.001. Additionally, to compare
the results of the searchlight analyses for the hypothesis PE and the
Sharpening models, we calculated difference correlation maps on the
individual participant level and conducted second-level one-sample t-
tests across the participants65.

Lastly, to specifically investigate expectation-dependent face
information and potentially control for the representation of low-level
visual information, we computed difference correlationmaps between
the PE and Sharpening searchlight maps and sensory input searchlight
maps. For VGG-Face and VGG-16, the sensory input searchlight maps
were based on the second convolutional layer (conv1_2)59 of the
respective network. For ResNet50, the sensory input map was based
on the same layer activations as the PE and Sharpening RDMs
(res5b_branch2b). The resulting searchlight maps may be indicative of
expectation-dependent face information, extending beyond mere
visual representations.

Multivariate classification analysis
In addition to the preregistered RSA, we conducted a simpler multi-
variate classification approach without model-based hypothesis RDMs
(Supplementary Fig. 5, Supplementary Methods, Supplementary
Results).

Statistics and reproducibility
Behavioural and fMRI data of 43 subjects were analysed with non-
parametric tests.

Dataofperceived face identity in facemorphswere tested against a
chance level of 50%, i.e., that the prior had no influence on the per-
ception of the facemorph, using a two-sidedWilcoxon signed rank test.
RTs of the different conditions (match, mismatch, neutral, partial) were
compared using a Friedman test and post-hoc tests (Tukey–Kramer).
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For the RT analysis of the partial trials split up into trials in which par-
ticipants had answered to have either perceived the expected or the
unexpected identity, we used a two-sided paired Wilcoxon signed rank
test. Similarly, for comparing the RTs of trials with prior-confirming
responses to the match condition, we calculated a two-sided paired
Wilcoxon signed rank test. Accuracy data were analysed using a Fried-
man test and post-hoc tests with Tukey–Kramer’s critical value.

For the univariate whole-brain analyses of unexpected compared
to expected faces (‘mismatch>match’ and ‘unexpected > expected’),
we report cluster activations (p(FWE) < 0.05) with a cluster-inducing
threshold of p <0.001. For the small-volume corrected ROI analyses
(OFA, pFFA, aTL), we report peak activations (p(FWEsvc <0.05)).

Using RSA64,65, we calculated Kendall’s Tau A correlations between
the hypothesised and the neural dissimilarity structures. In our multi-
variate ROI analyses, the correlations for each hypothesis model (PE,
Sharpening, Sensory Input) were tested against zero using one-sided
Wilcoxon signed rank tests. Significance was evaluated by Bonferroni-
correcting for the number of tests per ROI. For themodel comparisons,
we used two-sided paired Wilcoxon signed rank tests. Significance was
inferred by FDR-correcting131 the p-values for all model comparisons
per ROI. For comparing left to right hemispheric correlations, we per-
formed analyses of variances using ARTool132. For main effects and
interactions, significance was evaluated by p(unc.) < 0.05, for post-hoc
pairwise comparisons by p <0.05, Tukey-corrected133. Furthermore, we
report whole-brain searchlight analysis results for our different
hypothesis models based on individual Fisher’s z-transformed corre-
lationmaps using one-sample t-tests (p(FWE) <0.05). Finally, we report
exploratory classification ROI analyses of the face morphs as the
expected or unexpected face identity at p(unc.) < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The face stimuli used in this studywere createdwith FaceGenModeller
Core 3.22 (Singular Inversion; [https://facegen.com]) and are available
at the OSF ([https://osf.io/765jx/]). The scene images used in this study
were taken from the SUN database113 ([https://groups.csail.mit.edu/
vision/SUN/hierarchy.html]) and the indoor scene database114 ([https://
web.mit.edu/torralba/www/indoor.html]) and are available at [https://
osf.io/765jx/]. The exemplary scene image in Fig. 1 is in public domain
and available at [https://commons.wikimedia.org]. The VGG-Face
model63 used in this study is available at [www.robots.ox.ac.uk/~vgg/
software/vgg_face/]. The VGG-1666 and ResNet5067 models used in this
study, pre-trained on the ImageNet dataset, are available via MATLAB
([https://de.mathworks.com/help/deeplearning/ref/vgg16.html];
[https://de.mathworks.com/help/deeplearning/ref/resnet50.html]).
The raw behavioural and fMRI data generated in this study are avail-
able from the authors upon reasonable request. Source data are pro-
vided with this paper.

Code availability
Custom code for behavioural (MATLAB, R) and multivariate analyses
(MATLAB, Python) is available at the OSF ([https://osf.io/765jx/]). We
programmed our experiments using MATLAB R2020b ([https://de.
mathworks.com]) and Psychtoolbox (v3.0.18; [www.psychtoolbox.
org]). For stimulus presentation and data collection, we used differ-
ent MATLAB and Psychtoolbox versions (MATLAB: R2016b, R2020b;
Psychtoolbox: v3.014, v3.0.17, v3.0.18). For our behavioural data ana-
lyses,weusedMATLABR2020bandR/RStudio (Rv4.2.0, [https://www.
r-project.org]; Rstudio v2022.02.2; [https://posit.co]). For our uni-
variate fMRI data analyses, we used SPM12 ([https://www.fil.ion.ucl.ac.
uk/spm/software/spm12]). For our multivariate RSA, we used the
RSAtoolbox65 (v0.0.4; [https://github.com/rsagroup/rsatoolbox]) in

Python 3.9.12. For neuroanatomical labelling, we used the Neuro-
morphmetrics atlas (Neuromorphometrics, Inc.) implemented in
SPM12 as well as the Harvard-Oxford Cortical Structural Atlas and the
Harvard-Oxford Subcortical Structural Atlas in FSLeyes (v0.24.3). For
visualisation, we used MRIcroGL (v1.2.20220720; [https://www.nitrc.
org/projects/mricrogl]). For our non-parametric analysis of variance
for the RSA split up by hemisphere, we used the ARTool-package132,133

(v0.11.1; [https://cran.r-project.org/web/packages/ARTool/index.
html]) in RStudio. For our multivariate classification analyses, we
used The Decoding Toolbox134 (v3.999F; [https://sites.google.com/
site/tdtdecodingtoolbox/]) in MATLAB R2020b.
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