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Diverse and asymmetric patterns of
single-neuron projectome in regulating
interhemispheric connectivity

Yao Fei1,2,6, Qihang Wu2,3,6, Shijie Zhao 1,4 , Kun Song 2,3,
Junwei Han 1,4 & Cirong Liu 2,3,5

The corpus callosum, historically considered primarily for homotopic con-
nections, supports many heterotopic connections, indicating complex inter-
hemispheric connectivity. Understanding this complexity is crucial yet
challenging due to diverse cell-specific wiring patterns. Here, we utilized
public AAV bulk tracing and single-neuron tracing data to delineate the ana-
tomical connection patterns of mouse brains and conducted wide-field cal-
cium imaging to assess functional connectivity across various brain states in
male mice. The single-neuron data uncovered complex and dense inter-
connected patterns, particularly for interhemispheric-heterotopic connec-
tions. We proposed ametric “heterogeneity” to quantify the complexity of the
connection patterns. Computational modeling of these patterns suggested
that the heterogeneity of upstream projections impacted downstream
homotopic functional connectivity. Furthermore, higher heterogeneity
observed in interhemispheric-heterotopic projections would cause lower
strength but higher stability in functional connectivity than their intrahemi-
spheric counterparts. These findings were corroborated by our wide-field
functional imaging data, underscoring the important role of heterotopic-
projection heterogeneity in interhemispheric communication.

The white matter pathways provide fundamental structural support for
communication among distant brain regions, resulting in elaborate
configurationsof functional connectivity (FC) networks1–5. As the largest
whitematter tract in placentalmammals, the corpus callosum connects
cortical regions of both hemispheres and is essential for interhemi-
spheric communication. The coordination of neural activity between
the two hemispheres is vital for normal brain function and behavior,
disruption of which has been associated with a variety of brain
dysfunctions6–10. Therefore, unraveling the organization of interhemi-
spheric connections and their structure-function relationship is essen-
tial for understanding normal brain function and various diseases.

Interhemispheric connections can be either homotopic or het-
erotopic.Homotopic connections have been extensively characterized
anatomically and functionally11,12. Despite its well-established role in
supportinghomotopic connections, the corpus callosumhasalso been
found to convey a large number of interhemispheric-heterotopic
cortical connections13–15. These interhemispheric-heterotopic connec-
tions, coupled with intrahemispheric (ipsilateral) connections from
shared upstream regions, convey different types of information and
may diversely regulate interhemispheric communication. However,
due to the insufficient resolution of traditional connectivity data, it has
been challenging to describe the area-, layer-, and cell-specific wiring
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patterns of the neocortex16,17, which is crucial for understanding how
interhemispheric communication may be regulated.

In this study,we sought to elucidate the anatomical and functional
organization of interhemispheric connections, drawing on recent
advances in mesoscale neuronal tracing and large-scale functional
imaging. To examine the organization of these connections, we used
public tracing data from cre-line transgenic mice and sparse single-
neuron labeling to map the layer-specific and cell-specific patterns of
interhemispheric connections16–18. We found a denser, more diverse,
and more asymmetrical pattern of interhemispheric connections than
previously recognized, highlighting the extensiveness and diversity of
heterotopic projections. Subsequently, we then proposed a quantita-
tive metric to measure the heterogeneity of these projections and
conducted computational simulations to investigate how varying
levels of heterogeneity might influence the FC dynamics in brain net-
works. The models predicted that increased projection heterogeneity
could result in weaker, yet more stable, FC among connected regions.
These theoretical predictions were corroborated by analyzing the
strength and stability of inter-regional FC using wide-field calcium
imaging data across the entire dorsal cortex of mice in different brain
states. This study presents a multi-modal map of the anatomical and
functional layout of interhemispheric connections, highlighting the
pivotal role of heterotopic projections in supporting interhemispheric
communication.

Results
Single-neuron projectome reveals highly heterogeneous and
asymmetric connection patterns
To elucidate the anatomical organization of interhemispheric con-
nectivity, we performed a comparative study using two unique
neuronal-tracing datasets frommouse brains. The first dataset, adeno-
associated virus (AAV) bulk tracing data from the Allen Mouse Brain
Connectivity Atlas (Allen population), labeled projections from mul-
tiple neurons in a localized area of virus injection, offering insights into
structural connectivity at a population level16,18. We utilized 127 injec-
tions across 43 cortical regions in wild-type mice and 787 injections in
various Cre-line transgenic mice to label projections from specific
cortical layers (See Supplementary Data 1, 2 for detailed strain and
experimental information) (Fig. 1A, middle). Conversely, the ION
single-neuron data, provided by our institute (Institute of Neu-
roscience, ION), mapped projection patterns at a single-cell level using
AAV anterograde sparse neuron labeling approach17. This dataset
charted the projections of 6357 neurons in the prefrontal cortex (PFC),
among which 3762 intratelencephalic (IT) neurons were selected for
further analysis.

We concentrated on three types of connections: homotopic
connections, intrahemispheric-heterotopic connections (or ipsilateral
connections), and interhemispheric-heterotopic connections (or con-
tralateral connections) (Fig. 1B). Analyzing the Allen population data,
we constructedmatrices to delineate these connection patterns across
regions at a population level (Fig. 1C and Supplementary Fig. 1B). In the
wild-type mice (Fig. 1C), we identified 1263 intrahemispheric-
heterotopic projections among 1806 (43 × 42) region pairs, yielding a
connection density of 69.93%. For interhemispheric projections, 637
were observed, contributing to a 34.45% density, which comprised 595
heterotopic and 42 homotopic projections, except for PREI lacking a
homotopic projection. Most projections (97%) displayed stronger
intrahemispheric (mean strength =0.38) than interhemispheric
strengths (mean strength =0.16), and only 9 interhemispheric-
heterotopic connections lacked the corresponding intrahemispheric
projections. Connectivity patterns in Emx1-Cre mice (excitatory neu-
rons) paralleled those in wild-type mice (Supplementary Fig. 1C, E).
However, connectivity densities varied by layer, revealed by layer-
specific Cre mice (Supplementary Data 1; Supplementary Fig. 1A). The
intrahemispheric to interhemispheric ratio was lowest in layer 5

(2.04:1), followed by layer 4 (2.24:1) and layer 2/3 (3.3:1). Given that
most layer 6 neurons are corticothalamic (CT), this layer exhibited the
least cortico-cortical connections (32.12% intrahemispheric) and fewer
interhemispheric projections, resulting in the highest ratio of 9.8:1.
Overall, our analysis indicates a predominant density and strength in
intrahemispheric-heterotopic projections over interhemispheric-
heterotopic projections across all layers in population-level tra-
cing data.

We then constructed a connectivity matrix of the PFC projections
from the ION single-neuron dataset. For comparison, a similar matrix
was derived from the Allen population data, focusing on PFC-
originating projections (Fig. 1D). While the aggregated ION single-
neuron data broadly mirrored the organizational principles observed
in the Allen population data, the connections at the single-neuron level
appeared denser. Specifically, the densities of intrahemispheric and
interhemispheric connections in the single-neuron dataset were
94.59% and 77.80%, respectively, as compared to 72.51% and 38.27% in
the Allen population data. This pattern of increased connectivity in the
single-neuron data was consistently observed across different layers
(Supplementary Fig. 1D, intrahemisphere: p = 0.02, interhemisphere:
p =0.01). Such findings suggest a significant underestimation of con-
nection density in population-level tracing, particularly in the context
of interhemispheric connections.

In addition to connectivity density, we found that projection
patterns from individual regions orneurons exhibited greater diversity
and asymmetry than previously expected. To categorize these pat-
terns, we classified the projections based on their targets from a spe-
cific region or neuron. A region (or neuron) that projects
symmetrically to bilateral homotopic regions is classified as forming
“B” projections. In contrast, asymmetric projections are classified as
either “I” (ipsilateral-specific) or “C” (contralateral-specific) (Fig. 1E).
Based on this classification, a neuron (or region) projecting to bilateral
hemispheres can be categorized into five types: (1) “IB” neurons pro-
jecting to asymmetric-ipsilateral (I) and symmetric-bilateral (B) targets;
(2) “BC”neuronsprojecting to symmetric-bilateral (B) and asymmetric-
contralateral (C) targets; (3) “B” neurons, only symmetrically project-
ing to bilateral targets (B); (4) “IC” neurons projecting to asymmetric-
ipsilateral (I) and asymmetric-contralateral (C) targets; and (5) “IBC”
neurons, projecting to asymmetric-ipsilateral (I), asymmetric-
contralateral (C), and symmetric-bilateral (B) targets.

In the Allen population dataset, the connectivity matrix was
characterized by only two regional types, “IB” and “IBC”, with “IBC”
regions constituting a minor proportion of 13.9% (Fig. 1F). However,
analysis of single-neuron data revealed a substantially more diverse
range of types. Among the 3692 intratelencephalic (IT) neurons
examined, a limited 18.6% were identified as forming unilateral pro-
jections, classified either as “I” or “C” type. Conversely, bilateral pro-
jectors constituted a substantial majority at 81.4% (3004 out of 3692
neurons). The 3004 bilaterally-projecting neurons exhibited strong
asymmetry, with IBC neurons making up 46.8%, IB neurons 26.4%, BC
neurons 20.0%, and IC neurons 2.9%. Only a small fraction, 3.9%, were
symmetrically projecting “B” types. This composition underscored an
asymmetric bilateral pattern, indicating a higher diversity and com-
plexity in single-neuron projections than observed at the
population level.

These complexities were further corroborated by morpholo-
gical analyses that revealed distinct axonal and dendritic char-
acteristics among different neuronal types (Supplementary Fig. 2).
Notably, “IBC” type neurons were distinguished by their longest
projection lengths and the highest branch numbers, significantly
differentiating them from other types (p < 0.005). This pattern of
asymmetry and complexity was consistent across various layers and
regions (Fig. 1G, H), with the “IBC” neurons emerging as the most
abundant type, except for layer 1 and ACAv, where the IB subtype
was abundant. Additionally, we conducted an in-depth analysis of
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neurons exhibiting both symmetric and asymmetric projections
(specifically “IB”, “BC”, and “IBC” types), quantifying the proportion
of asymmetric projections (“I” and “C” projections) relative to total
projections. Our findings revealed that asymmetric projections
constituted significant proportions: 56.0% in “IB” neurons, 46.8% for
“BC” neurons, and 52.9% for “IBC” neurons. This data showed that, at
the single-neuron level, most neurons predominantly projected to

distinct ipsilateral or contralateral downstream targets, deviating
from symmetrical projection patterns.

Quantification of projection heterogeneity
Our single-neuron analysis revealed a dense, diverse, and pre-
dominantly asymmetric projecting pattern within the brain. Here,
we introduced a quantitative metric, “heterogeneity”, to measure
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the patterns of the projections from a specific upstream region (U)
to two or more downstream regions (D). This metric was defined by
the degree of non-overlap of projecting neurons from U to D, with
higher values indicating greater projection specificity and larger
heterogeneity (See Methods, Computational modeling part, Hetero-
geneity of projections to pairs of homotopic regions). We first exam-
ined the case when the downstream was a pair of homotopic
regions, exemplified here by ipsilateral Di and contralateral Dc

(Fig. 2A). In their upstream region U, a subset of neurons (denoted
as ui) projected to region Di and another neuron subset (denoted as
uc) projected to Dc, while a subset formed projections to both

regions, as indicated by the overlap of ui and uc. Heterogeneity was
quantified based on the ratio of non-overlap between ui and uc. Less
overlap implied that neurons in U had more distinct projections to
Di and Dc, resulting in a higher heterogeneity value. We then eval-
uated the heterogeneity of projections from 11 PFC regions to 43
homotopic downstreampairs using the single-neuron data (Fig. 2B).
The analysis revealed varying levels of heterogeneity for different
upstream and downstream. Interestingly, the projections targeting
downstream PFC regions showed lower heterogeneity than the
projections targeting non-PFC regions, except for MOp and RSP
(agl/d/v). For each homotopic downstream pair, we also combined

Fig. 1 | Diverse patterns of interhemispheric connections. A Two dorsal-view
cortical flatmaps from the CCFv3, showing 43 cortical regions and injection sites in
various mouse strains from the Allen Mouse Connectivity Atlas (Allen
population)16,18. Refer to Supplementary Data 1, and 2 for strain and experimental
details, and Supplementary Data 3 for full brain region names. The third panel
depicts the injection sites of ION single-neuron data17,38. B Illustrations of the con-
nection types, including intrahemispheric-heterotopic, interhemispheric-hetero-
topic, and homotopic connections.C Connectivitymatrices of wild-typemice from
Allen population data, with layer-specific Cre mice data presented in

Supplementary Fig. 1C and E, F. Aud.: auditory cortex.DWeighted (upper two rows)
and binary (lower two rows) connectivity matrices of the PFC projectome based on
ION single-neuron data and Allen population data, respectively. E Projection types
(left) and their derived seven neuron/region types. The corresponding neuron IDs
of neuron-type illustration areprovided in SupplementaryData 4.FComposition of
regional types in the Allen population data (top) and neuronal types in the ION
single-neuron data (bottom). G Laminar distribution of neuronal types from ION
single-neuron data.H Regional compositions of different neuronal types from ION
single-neuron data. Source data of (C, D) are provided as a Source Data file.
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Fig. 2 | Quantification of projection heterogeneity using single-neuron data.
A Schematic representation of the heterogeneity for the projections to a pair of
homotopic downstream regions. From an upstream region U, one subset of neu-
rons, ui (red), extends projections to the intrahemispheric downstream target Di,
while a different subset, uc (blue), projects to the contralateral downstream Dc. The
degree of overlap between ui and uc, indicated by shared neurons (magenta), is
calculated as the proportion of intersecting neurons relative to the lesser of the two
subsets. Projection heterogeneity is then quantified by subtracting this propor-
tional overlap from one. B Projection heterogeneity among various upstream-
downstream region pairings, including 11 PFC regions as upstream and 43 cortical
regions as downstream, calculated from the single-neuron data. C Overall hetero-
geneity for projections to each of the 43 homotopic downstream pairs.
D Schematic representation of the heterogeneity for the projections to multiple

downstream regions that are mutually heterotopic. The top schema delineates an
upstream region projecting to four downstreamregions via neuron subsets (red-u1,
yellow-u2, green-u3, and blue-u4). The bottom distribution function represents
P(N = i), the percentage of neurons projecting to N = i number of downstream
regions. The values of P across varying values of N indicate the degree of hetero-
geneity: a greater proportion of neurons targeting fewer downstream regions
(higher P at smaller i) and a smaller proportion targeting more regions (lower P at
larger i) reflects larger heterogeneity. E Comparative heterogeneity profile of
ipsilateral versus contralateral projections, calculated from single-neuron dataset
across all upstream regions. F Heterogeneity for ipsilateral and contralateral pro-
jections from four example upstream regions: ACAv, ACAd, MOs, ORBvl. More
examples are presented in Supplementary Fig. 3. Source data of (B–E, F) are pro-
vided as a Source Data file.
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projections from all 11 upstream to calculate the overall hetero-
geneity (Fig. 2C).

In a more complex scenario where the upstream region U could
project tomultiple non-homotopic regions, a singularmetric couldnot
capture the full complexity of the projection patterns (Fig. 2D). To
address this, we assessed heterogeneity through a probability dis-
tribution function P(N), representing the distribution of the number of
targeted downstream regions (N) of each projecting neuron (See
Methods, Computational modeling part, Heterogeneity of projections to
mutually heterotopic regions). For instance, if U projected to four dis-
tinct downstream regions, it comprised four neuron subsets (u1, u2, u3,
and u4), each dedicated to one of the four downstream. Complete
overlap among the four neuron subsets wouldmean that every neuron
fromU targeted all four regions, leading to P(N = 4) being equal to one,
signifying minimal heterogeneity (Fig. 2D). In contrast, if each neuron
subset exclusively targeted a unique downstream region, P(N = 1)
would be equal to one, representing themaximal heterogeneity. Thus,
a shift of the mass of the distribution P(N) towards lower values of N
was associated with increased heterogeneity, and vice versa. Analysis
of the single-neuron data revealed that contralateral projections
exhibited higher overall heterogeneity than ipsilateral projections
(Fig. 2E). This difference was consistent across projections originating
from various upstream regions, such as ACAv, ACAd, MOs, and ORBvl
(Fig. 2F, Supplementary Fig. 3).

Computationally modeling the impact of projection hetero-
geneity on neural dynamics
We then investigated how projection heterogeneity affected neural
dynamics via model simulation. We employed a widely-used neuronal
network model with sparse and balanced excitatory and inhibitory
connections19, which received slowly varying noisy input that
mimicked the electrical andphysiological perturbations on the cortical
neurons20.

Wefirst explored how the heterogeneity of projections to a pair of
homotopic regions affected the correlation between their neural
dynamics. Our model consisted of multiple pairs of homotopic
regions, each containing hundreds of neurons. These regions were
interconnected via three types of neuronal projections: self-projec-
tions, homotopic projections, and heterotopic projections (Fig. 3A).
We calculated the activity of each region by averaging the activity of all
neurons within it. To tune heterogeneity in themodel, we adjusted the
overlap ratio of heterotopic projections as outlined in Fig. 2A (Fig. 3B,
leftmost). For simplicity, each simulation maintained a consistent het-
erogeneity value across all upstream-downstream pairings. We hypo-
thesized that heterogeneity would influence homotopic correlation,
with lower heterogeneity implying increased overlap of projecting
neurons and, consequently, stronger common regulation from
upstream areas. Thus, we anticipated greater synchronization in the
dynamics of homotopic downstream pairs as the heterogeneity of
projections targeting themdecreased. In addition to heterogeneity, we
considered two additional structural factors that might impact
homotopic correlation: (1) the strength of homotopic projections
(homotopic strength), represented by the probability of neurons in a
region projecting to its homotopic counterpart; (2) the overlap
between neurons forming self-projections and neurons forming
homotopic projections (self-homotopic overlap) (Fig. 3B, middle &
rightmost). Changes in homotopic strength and self-homotopic over-
lap affected the direct structural connections between homotopic
regions, which were traditionally viewed as key determinants of
homotopic correlation21–23. Consequently, our study aimed to identify
which of these three structural features exerted the most significant
influence.

Through network modeling, we found that the homotopic cor-
relations were negatively correlated with heterogeneity and positively
correlated with self-homotopic overlap and homotopic strength

(Fig. 3C–E). Interestingly, the range of variation in correlation values
attributed to heterogeneity exceeded those due to homotopic
strength and self-homotopic overlap (Fig. 3C–E). This might be a
consequence of the larger number of heterotopic projections com-
pared to homotopic ones; specifically, in a networkwithN = 10 regions
(Fig. 3C–E, upper), each region received (N−1) × 2 = 18 heterotopic
projections versus a single homotopic projection. To further probe
this phenomenon, we analyzed aminimal networkmodel with just two
pairs of homotopic regions (N = 2), where the number of homotopic
projections mostly approximated that of heterotopic projections. In
this minimal model, the variation range caused by self-homotopic
overlap and homotopic strength was comparable to that caused by
heterogeneity (Fig. 3C–E, lower). Furthermore, the differences
between the variation range caused by heterogeneity and homotopic
strength or self-homotopic overlap, denoted as Δ(variation range),
kept expanding as the number of regions N in the model increased
(Fig. 3F, G). This suggested that the impact of heterogeneity became
more pronounced with the increase in the number of brain regions in
the network. Considering that the mouse cortex comprised numerous
interconnected brain regions (N was large), our results indicated that
the heterogeneity of upstream projections was a dominant factor in
influencing homotopic correlation, outweighing the effects of direct
connections between homotopic regions.

We then examined the influence of heterogeneity on the corre-
lation among heterotopic downstreamregions. The newmodel variant
in this part was characterized by the absence of homotopic projec-
tions, with each region being heterotopic relative to every other,
thereby featuring only self-projections and heterotopic projections
(Fig. 4A). In this model, we tuned heterogeneity by manipulating the
degree of overlap among neuron subsets. Specifically, consider a
scenario involving N downstream regions, each receiving projections
from a subset of n neurons. If these neuron subsets had a higher
degree of overlap, sharingmore neurons, the total count of projecting
neurons in the upstream (denoted asm) would be smaller. Conversely,
less overlap resulted in a largerm. Therefore,m served as an indicator
of the degree of overlap among neuron subsets (Fig. 4B). To facilitate
parameter tuning, we normalized m to a parameter h, which ranged
from 0 to 1 (See Fig. 4B andMethods, Tune the structural features of the
network). This transformation allowed for the direct manipulation of
heterogeneity within the network using the parameter h, where a
higher value of h corresponded to greater heterogeneity (Fig. 4C).

When projections were non-heterogeneous (h = 0), the network
alternated between asynchronous states (mean inter-regional corre-
lation <0.95) and highly synchronous states (mean inter-regional cor-
relation >0.95), indicating low dynamical stability. With an increase in
the heterogeneity parameter h, there was a notable decline in the
length of the synchronous states, leading to a decrease in state alter-
nation frequency. At maximal heterogeneity (h = 1), the network con-
sistently maintained an asynchronous state without shifting to
synchrony, indicative of increased stability (Fig. 4D, E). This pattern
was observed across various thresholds for defining synchronous and
asynchronous states (Supplementary Figs. 4 and 5).

Considering the asynchronous nature of the real neural activity,
we evaluated the strength and variability of inter-regional correlations
during asynchronous states by analyzing the mean and standard
deviation of correlations over time under different levels of noise
input. With increasing heterogeneity, the correlation strength
decreased, indicatingmore non-synchronized activity (Fig. 4F). On the
other hand, the correlation variability initially exhibited a slight
increase at low levels of heterogeneity, but it rapidly declined with
increasing heterogeneity, ultimately reaching its lowest value at max-
imal heterogeneity (Fig. 4G). In summary, ourmodeling suggested that
higher heterogeneity was linked with lower strengths but enhanced
stability (reduced variability) in correlations among neuronal activities
of heterotopic regions.
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Fig. 3 | Network dynamics modeling of homotopic region pairs. A Diagram of
the network model, including four bilateral areas (Xi, Xc, Yi, and Yc) and three types
of projections: self-projections (green), homotopic projections (blue), and het-
erotopic projections (orange). B Illustration of the three structural features: het-
erogeneity, homotopic strength, and self-homotopic overlap. Homotopic
correlation demonstrates a decline with higher heterogeneity (C), and an increase
with stronger homotopic connections and greater self-homotopic overlap (D, E),

across varying noise conditions (0.05, 0.1, 0.2). Discrepancies in the FC variation
range attributable to heterogeneity against those due to homotopic strength (F)
and self-homotopic overlap (G), respectively. For visualization clarity, a second-
order polynomial model fits the trend lines. The difference in variation range
(Δvariation range) consistently increases with larger N under different noise levels
(0.05, 0.1, 0.2). Source data of (C–G) are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47762-y

Nature Communications |         (2024) 15:3403 6



Strength and stability of interhemispheric functional
connectivity
To validate our model’s predictions, we examined the strength and
variability of inter-regional correlations in experimental recordings of
neural activity. We built a wide-field imaging system that can perform
multi-channel recordings across the entire dorsal cortex of mice and
synchronize the signals from electroencephalography (EEG) and
electromyography (EMG) to facilitate accurate determination of
mouse status (Fig. 5A). We recorded neural activities of skull-cleared
Thy-1 GCamp6smice in different natural brain states, including awake,
non-REM sleep (NREM) and REM sleep. The observed brain states

exhibited different brain activity patterns (Fig. 5B), aligned with pre-
vious studies24,25. Although exhibiting similar patterns of inter-regional
FC (Supplementary Fig. 7A), different states differed in FC strengths
(Fig. 5C and Supplementary Fig. 7B). Specifically, when comparingwith
the NREM state, a significant increase in FC strength was observed in
91.61% of intrahemispheric connections during the awake state and in
62.80% during the REM state. In terms of interhemispheric connec-
tions, 90.22% during awake and 57.96% during REM states showed
significantly greater FC strength compared to the NREM state. Fur-
thermore, we identified that 37.42% of intrahemispheric heterotopic
connections in the awake state, 42.58% in the NREM state, and 43.12%

0

0.2

0.4

0.6

0.8
0.01
0.05
0.1
0.2
0.4
0.6
0.8

1 10 20 30
N

P(N)

h value

N

m

m

h
m mmin

6 , 4

h
m

=
=

h
m

=
=

h
m

=
=18

1

12

0.5

6

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

-1

0

1

2

-2

-1

0

1

2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-2

-1

0

1

2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1 2 3 4

0.2

0.6

1

N

1 2 3 4
0

0.2

0.4

0.6

P
(N

)

Simulated heterogeneity Simulated dynamics

1 2 3 4

0.2

0.6

1

h = 0

h = 0.5

h = 1

noise level

h

A

D

B

E

C

F G

h h

H
et

er
og

en
ei

ty

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
0.01
0.02
0.05
0.1
0.2

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

SynchronousAsynchronous

P
(N

)
P

(N
)

N
or

m
al

iz
ed

 d
ur

at
io

n
(s

yn
ch

ro
no

us
)

N
or

m
al

iz
ed

 s
tr

en
gt

h
(a

sy
nc

hr
on

ou
s)

N
or

m
al

iz
ed

 v
ar

ia
bi

lit
y

(a
sy

nc
hr

on
ou

s)

n

n

N 1( )n

mmin

min

max

mmax

Fig. 4 | Network dynamics modeling of multiple heterotopic downstream
regions. A Diagram of the network model with self-projections and heterotopic
projections. B Definition of heterogeneity parameter h. Within an example model
encompassing four regions (N = 4), each region contains three heterotopic down-
stream targets. Neuron subsets, each comprising six neurons (N = 6), project to
respective downstream regions. The total number of projecting neurons in an
upstream region ranges from its minimum value (mmin= n) when neuron subsets
completely overlap, to its maximum value (mmax = n(N-1)) when there is no overlap
between subsets. Parameter h, normalized from m, scales from 0 (complete over-
lap) to 1 (no overlap). The diagram on the right illustrates how h andm regulate the
overlap between neuron subsets, where each small circle represents a projecting
neuron, and large gray contours delineate different neuron subsets. C Adjusting h
changes the heterogeneity level. In simulationswithN = 30 regions, thedistribution

function representing heterogeneity is shown for different h values (0.01, 0.05, 0.1,
0.2, 0.4, 0.6, 0.8). An increase inh shifts the distribution P(N = i) leftward, indicating
a rise in heterogeneity.D The graphs show single neuron activities (gray lines) and
the mean neural activity (red lines) under a noise level of 0.05, revealing how
heterogeneity influences network dynamics. In a completely non-heterogeneous
scenario (h =0), the network alternates between asynchronous and synchronous
states. At h =0.5, state alternation frequency decreases, and at h = 1, the network
maintains at one state. E The duration of state transitions decreases as hetero-
geneity increases. Durations are normalized relative to the maximum transition
duration observed at different noise levels (0.01, 0.02, 0.05, 0.1, 0.2). F,G Both the
normalized strength and variability of inter-regional correlations during asyn-
chronous phases exhibit a decline as heterogeneity increases. Source data of
(C, E–G) are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47762-y

Nature Communications |         (2024) 15:3403 7



B

2 10

1

0

-1

awake REM NREM

470 nm
405 nm

A

A raw image (470 nm)

40Hz
20Hz
20Hz

EEG

EMG

neck muscle

amplifier

0.2 mV
150 ms

EEG

EMG

50 s

2 10-2

1

0

-1

2 10-3

0

-2

awake-NREM

-0.05

0.05

0.1

0.15

0.2

0.25

awake-REM

Interhemispheric targets

Intrahemispheric targets

FR
P

AC
Ad

M
O

s
TE

a
SS

s
SS

p-
bf

d
SS

p-
tr

SS
p-

ll
SS

p-
ul

SS
p-

un
SS

p-
n

SS
p-

m
M

O
p

VI
Sa

l
VI

Sl
VI

Sp
VI

Sp
l

VI
Sl

i
VI

Sp
or

VI
Sr

l
VI

Sa
VI

Sa
m

VI
Sp

m
R

SP
ag

l
R

SP
d

R
SP

v
AU

D
p

AU
D

d
AU

D
v

AU
D

po

Intrahemispheric targets

Interhemispheric targets

REM-NREM
Intrahemispheric targets

Interhemispheric targets

C

FRP
ACAd

PL
MOs
TEa
SSs

SSp-bfd
SSp-tr
SSp-ll

SSp-ul
SSp-un

SSp-n
SSp-m

MOp
VISal

VISl
VISp
VISpl
VISli

VISpor
VISrl
VISa

VISam
VISpm

RSPagl
RSPd
RSPv
AUDp
AUDd
AUDv

AUDpo

-0.25

-0.2

-0.15

-0.1

0

FR
P

AC
Ad PL

M
O

s
TE

a
SS

s
SS

p-
bf

d
SS

p-
tr

SS
p-

ll
SS

p-
ul

SS
p-

un
SS

p-
n

SS
p-

m
M

O
p

VI
Sa

l
VI

Sl
VI

Sp
VI

Sp
l

VI
Sl

i
VI

Sp
or

VI
Sr

l
VI

Sa
VI

Sa
m

VI
Sp

m
R

SP
ag

l
R

SP
d

R
SP

v
AU

D
p

AU
D

d
AU

D
v

AU
D

po PL

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

FR
P

AC
Ad PL

M
O

s
TE

a
SS

s
SS

p-
bf

d
SS

p-
tr

SS
p-

ll
SS

p-
ul

SS
p-

un
SS

p-
n

SS
p-

m
M

O
p

VI
Sa

l
VI

Sl
VI

Sp
VI

Sp
l

VI
Sl

i
VI

Sp
or

VI
Sr

l
VI

Sa
VI

Sa
m

VI
Sp

m
R

SP
ag

l
R

SP
d

R
SP

v
AU

D
p

AU
D

d
AU

D
v

AU
D

po

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

FRP
ACAd

PL
MOs
TEa
SSs

SSp-bfd
SSp-tr
SSp-ll

SSp-ul
SSp-un

SSp-n
SSp-m

MOp
VISal

VISl
VISp
VISpl
VISli

VISpor
VISrl
VISa

VISam
VISpm

RSPagl
RSPd
RSPv
AUDp
AUDd
AUDv

AUDpo

0

0.06

0

30

Fr
eq

. (
H

z)

Amp.

0.2 mV

-3

Fig. 5 | Wide-field calcium imaging of different brain states. A The diagram
depicts wide-field calcium imaging in Thy1-GCaMP6s mice, synchronized with
electroencephalography (EEG) and electromyography (EMG) recordings. To
reduce hemodynamics signals (seeMethods and Supplementary Fig. 6A), the
470 nmexcitation light and405 nm light are alternated frame-by-frame, achieving a
sampling frequency of 20Hz. Cartoons created by Biorender.com.
B Differentiation of brain states according to the EEG spectrum (upper) and EMG
signals (bottom), with the duration of the brain state highlighted in green. Lower
panels: Brain activity patterns during awake, REM, and non-REM sleep states,

represented by the mean fluorescence intensity of calcium imaging. The baseline
(F) is set as the median fluorescence intensity over the entire recording time, and
the color scale displays △F/F values. C Disparity matrices illustrate differences in
FC strength for intra- and interhemispheric connections across various brain states.
Areas shaded in gray represent connections where the FC strength differential is
not statistically significant (N = 19, a two-sided t test, p >0.05). The corresponding t
statistic and p value for all connections are provided in Supplementary Data 7. For
the raw FC matrices pertaining to each brain state, refer to Supplementary Fig. 7.
Source data of (B, C) are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47762-y

Nature Communications |         (2024) 15:3403 8



in the REM state exhibited significantly greater strength than inter-
hemispheric heterotopic connections (Supplementary
Fig. 7A, p < 0.05).

The cortical FC patterns provided useful data to evaluate our
model predictions. We first compared heterogeneity and the strength
of direct homotopic connections in terms of their influence on
homotopic FC (Fig. 6A, B). Considering that the wide-field imaging
window covered 31 regions in each hemisphere, we analyzed the
homotopic FC across 31 corresponding region pairs. The hetero-
geneity of projections to each homotopic region pair was determined
using the single-neuron data (see Fig. 2C). The strength of direct
homotopic connections could be derived from either the Allen
population data or the single-neuron data. Since the Allen population
data encompassed more brain regions compared to the single-neuron
dataset, we used the homotopic connection strength estimated from
theAllen populationdata for our analyses. Subsequently, we examined
the correlations between homotopic FC and both heterogeneity and
homotopic connection strength. Our findings revealed a pre-
dominantly negative correlation between homotopic FC and hetero-
geneity (r = −0.614,p <0.001) (Fig. 6A), but aweakcorrelationbetween
homotopic FC and the strength of homotopic connections (r =0.218,
p =0.238) (Fig. 6B). These observations supported our model’s pre-
diction that heterogeneity was a key factor in influencing homotopic
correlation (Fig. 3).

We subsequently evaluated the strength and variability of FC for
intrahemispheric and interhemispheric connections (Fig. 6C, D).
According to the model predictions, we expected the
interhemispheric-heterotopic FC to be weaker but more stable since
the contralateral projections were found to have larger heterogeneity
(Fig. 2E, F).Wemeasured FC among anatomically connected regions as
identified in the Allen population data, employing network densities of
69.93% for intrahemispheric-heterotopic and 34.56% for interhemi-
spheric connections, in line with the previously established
threshold12. As our analysis identified a higher density of anatomical
connections in single-neuron data, we also applied an adjusted net-
work density threshold of 91.22% for intrahemispheric-heterotopic
connections and 70.26% for interhemispheric connections (Supple-
mentary Fig. 9A).

Both adjusted and unadjusted threshold analyses yielded similar
results (Fig. 6C, D and Supplementary Fig. 9B, C). Homotopic con-
nections exhibited the highest strength on average (p <0.001), which
aligned with a previous human fMRI study11. Interestingly,
interhemispheric-heterotopic connections showed higher FC strength
than intrahemispheric-heterotopic connections (Fig. 6C; p <0.05).
This observation might be attributed to the denser network and thus
greater number of connections with lower FC strength in
intrahemispheric-heterotopic connections. This assumption gained
support from the finding that 87.3% (unadjusted) and 82.3% (adjusted)
of interhemispheric-heterotopic connections had lower FC strengths
than their corresponding intrahemispheric counterparts (Fig. 6E).
Similar results were obtained when comparing FC strengths in indivi-
dual brain states (awake, NREM, and REM) (Supplementary Fig. 9C–E),
although in REM state the difference was not significant.

Further, we utilized the multivariate partial least squares (PLS)
analysis to estimate the variability of FC across brain states, following a
method applied in a prior study11. PLS yielded a salience value for each
connection, which represented the degree of variance of this con-
nection across states; thus, lower salience values corresponded to
lower variability of FC between states. The PLS analysis resulted in a
significant latent vector (LV) (p <0.001), accounting for most cross-
state covariance (75.4% for unadjusted, and 76.7% for adjusted
thresholds). According to salience values in the LV, intrahemispheric-
heterotopic connections exhibited the highest average variability
across brain states (Fig. 6D). Interestingly, despite their relatively low
FC strength (Fig. 6C), interhemispheric-heterotopic connections

demonstrated significantly lower FC variability than intrahemispheric-
heterotopic connections (p <0.001), no matter the connections were
paired or not (Fig. 6D, F). The high stability of interhemispheric-
heterotopic connections was also reflected in the comparison with
homotopic connections (Fig. 6G–H). Each brain region had only one
homotopic connection but multiple interhemispheric-heterotopic
projections. Among 31 brain regions, only 7 regions contained at
least one interhemispheric-heterotopic connection with greater FC
strength than the corresponding homotopic connections, while 28
regions demonstrated interhemispheric-heterotopic connections with
superior FC stability compared to their respective homotopic con-
nections. These findings highlighted the previously underestimated
functional stability of interhemispheric-heterotopic connections
across various brain states and confirmed the model prediction that
interhemispheric-heterotopic FC would be weaker but more stable
than their intrahemispheric-heterotopic counterparts.

Discussion
Utilizing single-neuron tracing data, we identified dense and highly
asymmetric patterns of structural connections, especially for the
interhemispheric case. In comparison with single-neuron tracing from
the PFC, Allen population data underestimated network density by
22.08% for intrahemispheric connections and 39.53% for interhemi-
spheric connections. This underestimation resulted from the imaging
threshold necessary for AAV-based bulk neuronal tracing16, which dif-
ferentiated signal-positive pixels from the background. In our study,
we adopted a threshold similar to the manually defined threshold in
the original study to optimize the balance between true positives and
true negatives16. This led to the omission of many weak and sparse
connections, thereby underestimating network density. Contrastingly,
single-neuron data, relying on a semi-automatic method to trace the
axonal paths of individual neurons, allowed the reconstruction of
these sparse but widely spread regional connections. This dispersed
connection pattern in mice aligned with recent discoveries of diffuse
projections in marmosets. Through high-resolution connectomic
mapping of the marmoset brain, a recent study distinguished two
projection patterns in the cortex and striatum: patchy and diffuse
projection26. The patchy projection was defined by column-scale pre-
cision of reciprocal and strong connectivity, whereas diffuse projec-
tions presented a highly distributed pattern of relatively weak
anterograde labeling. These widely spread, sparse but direct connec-
tions augmented global connectivity density, potentially enhancing
the efficiency and robustness of communication within the brain
connectome.

The connections also exhibited greater diversity and asymmetry
at the single-neuron level. Merely 3.2% of neurons projected symme-
trically to bilateral homotopic regions, with the majority displaying
asymmetrical patterns. From such complex patterns, we estimated the
heterogeneity of projections. Network modeling suggested that this
structural property laid the foundation for the upstream regulation of
homotopic synchronization that was stronger than the effect of direct
interaction between homotopic regions. These results may elucidate
previous findings regarding the frontal cortex’s resilience to unilateral
impairment or inhibition12. In themouse’s anterior lateralmotor cortex
(ALM), neurons showed coordinated bilateral motor information
representation. Yet, unilateral impairment or inhibition of the ALM
neither disrupted neural representation in the contralateral hemi-
sphere nor impaired the mouse’s motor execution12. If the function
depended solely on direct homotopic interaction, damage within one
homologous area would likely disrupt its normal functions. Hence, the
principal role of upstream regulation may bolster the resilience of
downstream homotopic communications, emphasizing a potential
upstream-downstream hierarchical relationship among brain regions.
Heterogeneity also accounted for the increased stability in con-
tralateral correlation compared to the ipsilateral case, serving as a
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mechanism formaintaining stable interhemispheric communicationof
the cortex.

The robustness of interhemispheric communication was also
reflected in the dynamics of FC. Typically, FC was measured by com-
puting temporal correlations of the intrinsic infra-slow (<0.1Hz) fluc-
tuations of blood-oxygen-level-dependent (BOLD) signals derived
from resting-state fMRI2,11,27,28. Through the temporal correlation of

region-wise BOLD signals, a prior fMRI study evaluated the patterns,
strengths, and stabilities of FC within interhemispheric connections,
revealing that homotopic connections were the most robust, with
interhemispheric-heterotopic or intrahemispheric-heterotopic con-
nections showing no significant difference in strength or stability11.
However, recent advancements in wide-field calcium imaging have
demonstrated that BOLD signals encapsulated only a small portion of
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functional dynamics and neuronal activities29–33. Based on wide-field
imaging data, we found that interhemispheric-heterotopic connec-
tions exhibited stronger FC stability than their intrahemispheric-
heterotopic counterparts, a difference undetectable by BOLD fMRI11,
likely due to its limited sensitivity in detecting changes in weak ana-
tomical connections.

Our research offers a systematic delineationof the anatomical and
functional patterns of interhemispheric connections, employing
advanced neuronal tracing and functional imaging data. Despite
uncovering noteworthy findings, our study faced several limitations
that underscore avenues for future exploration. Firstly, the single-
neuron tracing data was limited to the PFC of the mouse brain.
Although this area presents complex connectional patterns, more
comprehensivemappings of the entiremouse brain, as well as primate
species26,34–36, are indispensable for a deeper understanding of the
anatomical principles of interhemispheric connectivity. Secondly, our
single-neuron tracing analysis exposed diverse anatomical con-
nectivity patterns across different cells, implying possible variations in
FC within a neuronal population. While our wide-field imaging
approach covered most cortical areas interconnected by the corpus
callosum, it recorded brain activity at a population level without a
single-neuron resolution. The emergence of enhanced optical imaging
techniques and the development of genetically modified mice with
calcium-signal indicators in upcoming research could enable large
field-of-view recordings of single neurons and distinguishing neuronal
types. Such advancements could foster amore refined comprehension
of the functional organization of interhemispheric connectivity.
Finally, our study described the heterogeneity in neural projections
primarily in terms of overlap among projecting neurons. This
approach simplified the complex interactions in neural networks,
assuming random connections within brain regions and neglecting
structured interactions among neuron subsets with distinct down-
stream projections. Such structured interactions likely existed and
may significantly influence the complex relationships between differ-
ent projections. Investigating these relationships requires more com-
prehensive single-neuron data that captures both intra- and inter-
regional projections.

Methods
All the experiments were approved by the Laboratory Animal Care and
Use Committees from the Center for Excellence in Brain Science and
Intelligence Technology (Institute of Neuroscience) of the Chinese
Academy of Sciences.

Analysis of neuronal tracing data
Allenmouse brain connectivity data analysis. The AllenMouse Brain
Connectivity Atlas was utilized to obtain population-level information

on axonal projections of interhemispheric connections16,37. Each
injection experiment outlined the connectivity between the injection
site and the entire brain, with the data being freely accessible at http://
connectivity.brain-map.org/. For corticocortical projections, 127 cor-
tical injections fromwildtypemice and 787 injections from 26 Cre-line
transgenic mice were used to map the cortical neuronal projections
across different regions and layers (Supplementary Data 1 and Data 2
for detailed strain and experimental data).

Given that the neuronal tracing data consistently produced non-
zero background signals, an image threshold was necessary to distin-
guish signal-positive pixels. In the initial study16, a threshold of 10−1.5 of
normalized projection volume was manually determined to optimize
the balance between true positives and true negatives of projections
for corticocortical projections. Normalized projection volume was
defined as the total projection signals detected across all voxels within
a structure, normalized by the total signals detected at the manually
annotated injection site. Here, we adopted a similar threshold based
on normalized connection strength output from the voxel-level
interpolation model37, which was defined as connection strength
divided by the size of the source region. This definition mirrored that
of normalized projection volume. Post-thresholding, the cumulative
connection weights between any two regions were calculated to gen-
erate connectivity matrices for wild-type mice and various layer-
specific Cre mice.

To understand regional projection patterns, the projection areas
were initially categorized into three groups: unique ipsilateral cortical
areas (projecting exclusively to this area in the same hemisphere
without projections to the corresponding area in the opposite hemi-
sphere; I for short), shared bilateral cortical areas (projecting to the
same area in both hemispheres; B for short), and unique contralateral
cortical areas (projecting exclusively to this area in the opposite
hemispherewithout projections to the corresponding area in the same
hemisphere; C for short). Two distinct regional types were discerned,
comprising the IB regional type that projected to specific ipsilateral
and commonbilateral targets; and the IBC regional type that projected
to specific ipsilateral, specific contralateral, and common bilateral
targets.

ION single-neuron projectome data analysis. Single-neuron pro-
jectome data of the mouse prefrontal cortex were provided by the
Center for Excellence in Brain Science and Intelligence Technology
(Institute of Neuroscience; ION), Chinese Academy of Sciences
(https://mouse.braindatacenter.cn/)17,38. The data mapped axon pro-
jections of a total of 6357 neurons in multiple brain regions, including
frontal pole (FRP), orbitofrontal (ORB), prelimbic (PL), infralimbic
(ILA), anterior cingulate (ACA), dorsal and ventral agranular insular
(AId/v) and secondary motor (MOs) areas. Among the 6357 neurons,

Fig. 6 | The strength and stability of interhemispheric functional connectivity.
A A significant negative correction is observed between the FC of homotopic
regions and the heterogeneity of their projections (r = −0.614, ±95% C.I. = [−0.7955,
−0.3322], p <0.001). B Homotopic FC is not significantly correlated with the
strength of direct connections between homotopic regions (r =0.218, ±95% C.I. =
[−0.1475,0.5315], p =0.238). C FC strength of the three types of connections across
all brain states: intrahemispheric-heterotopic (intra-hete), interhemispheric-
heterotopic (inter-hete), and homotopic connections (homo) (N = 19, the number
of sessions). The left column presents the results of FC from all anatomically
connected regions (Tukey-HSD two-side test for multiple comparisons, intra-hete
vs inter-hete: p =0.0485, intra-hete vs homo: p =0, inter-hete vs homo: p =0),
which have more intrahemispheric-heterotopic connections than
interhemispheric-heterotopic connections. The right column compares
interhemispheric-heterotopic connections with their corresponding
intrahemispheric-heterotopic counterparts (Tukey-HSD two-side test for multiple
comparisons, intra-hete vs inter-hete: p =0.0001). The FC strength comparison in
each brain state is presented in Supplementary Fig. 7C.D FC variability of the three

types of connections. Variability is estimated by salience values of PLS analysis
across brain states (N = 1000, the number of Bootstrap sampling). Left panel:
Tukey-HSD two-side test for multiple comparisons, (intra-hete vs inter-hete: p =0,
intra-hete vs homo: p =0, inter-hete vs homo: p =0). Right panel: Tukey-HSD two-
side test formultiple comparisons, (intra-hete vs inter-hete:p =0). E, FComparison
between the interhemispheric-heterotopic connections and their intrahemispheric
counterparts in FC strength and stability across all brain states. Results for each
brain state are shown in Supplementary Fig. 9D, E. Note that stability is represented
by the inverse of variability. “only intra-hete”, only intrahemispheric heterotopic
anatomical connections exist between two brain regions; “intra-hete > inter-hete”,
the intrahemispheric heterotopic connection has a higher value (strength or sta-
bility) than the interhemispheric heterotopic one, and vice versa for “inter-hete >
intra-hete”. Comparison between interhemispheric-heterotopic connections and
the homotopic connection of each brain region in FC strength (G) and stability (H).
The median value (white point), the 25th percentile, the 75th percentile, the max-
imum value, and the minimum value of all violin plots are provided in Supple-
mentary Data 8. Source data are provided as a Source Data file.
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dendrites of 1920 neurons were also reconstructed. Projection data
were preprocessed and registered to the Allen Mouse Common
Coordinate Frameworkversion 3 (CCFv3) template space, as described
in a previous study17. Based on the Allen Mouse CCFv3 atlas, the spe-
cific areas corresponding to each neuronal soma and the terminal
points of its projections were determined. This allowed for the com-
putation of the connection strength between 11 prefrontal cortex areas
(PFC) and 43 other cortical areas. If a source region comprised M
neurons, with N neurons projecting to a target region, the connection
strength between these regions was defined as N/M. For connections
between different layers, only neurons within a particular layer in the
source region were considered, and the connection strength of these
neurons to the target regions was assessed. Note that IT neurons were
used to study PFC projections to cortical regions.

Given the three categories of projection regions, we proceeded to
calculate the proportion of each neuron’s occupancy within these
three projection types. Five types of neuronswere identified, including
IB neurons that projected to specific ipsilateral (I) and common bilat-
eral (B) targets; BC neurons that projected to common bilateral and
specific contralateral targets; B neurons that symmetrically projected
to common bilateral targets; IC neurons that projected to specific
ipsilateral and specific contralateral targets; and IBC neurons that
projected to specific ipsilateral, specific contralateral, and common
bilateral targets. To enhance the visual representation of soma dis-
tribution for each neuron category, their locations were mapped onto
a dorsal view of a cortical flat map.

To delineate the axonal and dendritic characteristics of each
neuron type, both the branch number and the lengths of axons and
dendrites were computed for each neuron. A branch point was clas-
sified as a node with two or more offspring nodes, with the branch
number equating to the total of these points. Each neuron possessed
multiple terminals projecting onto the cortex. The length from the
neuronal soma to each cortical terminal was defined as an axonal
length and its path to reach each terminal was determined. For the
terminal m, the Euclidean distances between adjacent points on the
path were then computed and summed, resulting in the axonal length
(Lengthm) of the neuron’s projection to that terminal. This is repre-
sented by the following formula:

Lengthm =
Xn

i

jjxi � xi�1jj2, ð1Þ

where i = 2, 3,…, n, and ||∙||2 signifies the Euclidean distance between
two points, m being the mth path. The maximum axonal length mea-
sured the neuron’s most distant cortical projection, and the total
axonal length of the neuron measured the sum of all axonal projec-
tions from the neuron. The total length of the neuron’s dendritic
projections was computed using a similar approach to that of the
axons. Subsequent comparisons involving axonal morphologies and
dendriticmorphologies were subjected to statistical analysis using the
Tukey Honestly Significant Difference (HSD) test, a two-sided
examination, followed by adjustment through Holm’s multiple
comparison method. The statistical analysis results are provided in
Supplementary Data 5.

We adopted the dendritic subtypes defined in a previous study
that identified 38 subtypes according to morphology38. For clarity, we
assigned codes to these 38 subtypes. Specifically, the 24 dendritic
subtypes associated with typical pyramidal neurons were labeled from
1 to 24, adhering to the nomenclature in the referenced study. The
seven dendritic subtypes of layer 2/3 atypical pyramidal neurons,
previously classified as subtypes 1 to 7, were labeled from 25 to 31. The
dendritic subtype of layer 4-like spiny stellate neurons was designated
as 32. Additionally, the five dendritic subtypes of layer 6 atypical pyr-
amidal neurons were labeled from 33 to 37, and a rare dendritic sub-
type was assigned the label 38.

Computational modeling
The quantification of projection heterogeneity and all the model
simulations were performed in MATLAB (2020a).

Heterogeneity of projections to pairs of homotopic regions. Let U
represent the upstream region and D denote the downstream, with Di

and Dc denoting the bilateral homotopic areas of D. The subset of
neurons in U projecting to Di (or Dc) is represented by ui (or uc). The
heterogeneity of projections to Di and Dc is defined as one minus the
overlap between ui and uc, where the overlap is calculated as follows:

overlap =
jui \ ucj

minðjuij, jucjÞ
, ð2Þ

where |X| denotes the number of elements in a set X. For example, |ui|
represents the number of neurons in the subset ui. Heterogeneity is
calculated as oneminus overlap. The overlap takes themaximumvalue
of 1, and heterogeneity takes theminimum value of 0 when one subset
is completely included in the other subset. On the contrary, when ui
and uc have no intersection, overlap takes a minimum value of 0 and
heterogeneity is equal to 1.

Heterogeneity of projections to mutually heterotopic regions. Let
region X project to regions Y1, Y2,…, Yn, which can be either intrahe-
mispheric or interhemispheric to X. The corresponding sets of pro-
jecting neurons within X were denoted as x1, x2,…, xn. Heterogeneity
was defined by the distribution P(N), which described the number of
subsets (N, ranging from 1 to n) that included the projecting neurons.
With this definition, heterogeneity was also a measure of the dis-
tribution of the number of downstream regions for each projecting
neuron. For instance, in an extreme scenario, where each neuron in X is
projected solely to one downstream, P(N = 1) = 1 and P(N = i) = 0 for i
from 2 to n. Larger heterogeneity represents the situation in which the
mass of the distribution P(N) moves to the side of smaller N.

Simulate network dynamics. The dynamics of the neuronal network
evolved based on the interaction between neurons and the noisy
external input. The activity of a given neuron i was denoted by its
membrane potential Vi(t), which exhibited spontaneous linear relaxa-
tion towards resting potential in the absence of input from other
neurons or the external input. The evolution of neuronal dynamicswas
described in the following equation:

dVi

dt
= � rV i +

X

i

Wij f j +Vrest + IðtÞ, ð3Þ

where r >0 is the rate of linear relaxation ofmembrane potential,Wij is
the directed connection fromneuron j to neuron i, fj is the firing rate of
neuron j, Vrest is the resting potential and I(t) is the noisy external input.
The firing rate f was calculated from the membrane potential V
according to a nonlinear transformation: fj = 0.5*[1+erf(βVj)], where
erf(.) is the Gaussian error function. The model considered both
excitatory and inhibitory interactions, reflected in the sign of the ele-
ments in connection matrix W. The relative amount of excitatory
connections versus inhibitory connections was set by a parameter 0
<f < 1. The strength of excitatory connections and inhibitory connec-
tions were randomly sampled from Gaussian distributions centered at
μe and μi with standard deviation se and si, while all the excitatory
connections were then required to be > 0 and inhibitory connections
<0. Moreover, we made sure that the network was balanced by
requiring ΣWij =0.

Model parameters for plots in Fig. 3C–G: f = 0.8, μE = 0.1, μI = −0.4,
sE = 0.02, sI = 0.04, p = 0.1, pself = 0.5, q =0.1, Vrest = −0.1, r = −1, β = 10.
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Model parameters for plots in Fig. 4D–G: f =0.8, N = 5, μE = 0.1,
μI = −0.4, sE = 0.02, sI = 0.04, p = 0.25, pself =0.5, q = 0.1, Vrest = −0.1,
r = −1, β = 10.

Tune the structural featuresof the network. Heterogeneity and other
structural features were reflected in the connection matrix W. The
model of paired homotopic regions incorporated 2N homotopic areas
fromNheterotopicbrain regions. For example, ifwe setN = 3, resulting
in a total of 6 areas, and each area encompassed n = 100 neurons, thus
the network included 2Nn = 600 neurons, making the size of W to be
600*600. Several parameters were used to decide the pattern of W.
The parameter q sets the sparsity of projections so that if a neuron
projects to a region, it will project to nq neurons in this downstream.
The parameter pself sets the probability of self-projecting neurons so
that npself neurons in each region will project to the region itself.
Similarly, the parameters pcontra and p set the probability of homotopic
projection and heterotopic projections respectively. The parameter
overlaphomo sets the ratio of the number of neurons that simulta-
neously form self-projections and homotopic projection over the
minimum number of neurons forming self-projections or homotopic
projections, as described in the Methods part Heterogeneity of projec-
tions to pairs of homotopic regions. Similarly, the parameter
overlaphetero sets the proportion of neurons that simultaneously pro-
ject to a pair of homotopic downstream regions that are both het-
erotopic to the upstream. Importantly, overlaphetero, overlaphomo, and
pcontrasdetermine the three structural features investigated in themain
results: heterogeneity, self-homotopic overlap, and homotopic
strength. Higher heterogeneity, self-homotopic overlap, and homo-
topic strength are achieved by setting smaller overlaphetero, larger
overlaphomo, and larger pcontras, respectively. In each simulation of a set
of given parameters, overlaphetero is kept the same for heterotopic
projections fromall upstream to all downstreampairs, and overlaphomo

and pcontras are kept the same for all homotopic projections and self-
projections.

The model of multiple heterotopic regions comprised N areas,
each corresponding to a different brain region. Hence, thismodel only
included self-projections and heterotopic projections. For example, if
we set N equal to 3, with each area incorporating 100 neurons, the
connection matrix W will have a size of 300 × 300. Heterogeneity in
this model was also determined by the overlap between projecting
neurons.Consider anupstreamregionU and (N-1) downstreamregions
D1,D2,…,DN-1, each receiving projections from a subset of n neurons in
U. We first randomly selected m neurons that represented the entire
union of projecting neurons inU, wheremwas larger thanmmin = n and
smaller than mmax = (N-1)n. Then, from the m neurons, we randomly
selected n neurons to project to each downstream Di, while ensuring
that each of the m neurons was selected at least once. We defined
h = (m-mmin)/(mmax-mmin). Therefore, h =0 when m=mmin, represent-
ing the case of complete overlapping of projecting neurons and lowest
heterogeneity; h = 1 whenm =mmax, representing the case of complete
non-overlapping and highest heterogeneity.

Calculation of strength and variability of inter-regional correlation.
The activity of each region was calculated as the average over the
activities of all neurons in the region. The correlation between activ-
ities of the two regions was calculated at each time point over a win-
dow of 100 time points. At each time point, the correlations between
different pairs of regions were then averaged to give an overall cor-
relation level at the time. According to the distribution of the overall
correlation values over time, we decided on a threshold for dividing
asynchronous periods and synchronous periods (Supplementary
Fig. 4). Times when the overall correlation was larger than the
threshold belonged to the synchronous periods, and otherwise
belonged to asynchronous periods. The strength and variability of
correlation under fixed structural features were calculated during the

asynchronous periods. The strength of correlation was the average of
the overall correlation over time, and the variability of correlation was
the variance over time.

Acquisition of wide-field calcium imaging data
Animals. Eight Thy1-GCaMP6s transgenic adultmalemice (JAX024275)
were procured from the Jackson Laboratory and then bred in the SPF
class mouse house at the Center of Excellence in Brain Science and
Intelligent Technology, Chinese Academy of Sciences. Mice were
housed under strict conditions at 20–26 °C, with daily temperature
difference being less than or equal to 4 °C, and 30–70% relative
humidity (normally around 60%). We started wide-field imaging
experiments on each mouse from the age of at least 12 weeks and
ended at the age of about 5–6 months. The Thy1-GCaMP6s mice had
the expression of the calcium indicator GCaMP6s in excitatory pyr-
amidal neurons, primarily located in cortical Layers II/III and V, driven
by the Thy1 promoter39. Standard housing conditions (22 °C–24 °C,
light/dark rhythmof 7:00–19:00)weremaintained for allmice, with no
more than six per cage. Stringent measures were taken to observe
animal welfare and minimize suffering during experiments.

Construction of a wide-field imaging system. A wide-field imaging
system was constructed to directly record the neural activity of the
entire dorsal cortex in different states of the mouse. The system con-
sisted of three components: amicroscope system, an LED light source,
and an acquisition system. The imaging system used an Olympus
MVX10 macro zoom microscope frame, equipped with an MVPLAPO
1X objective lens (Olympus) featuring a numerical aperture of 0.25 and
a working distance of 65mm. The system was illuminated by a triple-
wavelength LED light source (pE-300 ultra, CoolLED) spanning the
ultraviolet to the infrared spectrum, including multiple TTL interfaces
and a high-performance three-pass filter (69401, Chroma) for swift and
stable switching between color lasers at high speeds. The TTL signal
from the camera was transmitted to an electrophysiological signal
amplifier (Apollo, Jiangsu EGG Biotechnology Co., Ltd.) for alignment
with the EEG/EMG data. The LED light source was synchronized with
the camera using a high-frequency multi-channel trigger box (Multi-
StreamPro, CAIRN), enabling alternationof differentwavelengths. The
acquisition system employed a high-resolution back-illuminated
research-grade CMOS camera (Prime BSI Express, Teledyne) with 95%
quantum efficiency, 4.0 megapixels, 6.5 µm×6.5 µm pixel size, and
100Hz sampling rate. The rolling shutter mode was employed for
higher frame speed and sensitivity, and the LED light source’s feeding
time was limited to the reading time of each line using violet and blue
light. The camera’s resolution (~6.5 µm) was much higher than the
complete dorsal cortex imaging requirement (~50 µm), so a combined
2 × 2 pixel array was used for data acquisition with an actual resolution
of ~20 µm and improved light sensitivity by adjusting the gain to
reduce data volume.

Fabrication of EEG/EMG electrodes. The electrodes for EEG/EMG
recording were fabricated by connecting a 1.27mm 4-pin round hole
pin to a matching female connector and soldering four 0.05mm
304 stainless steel wires to each of the four pins. The wires were cov-
ered with polyimide (PI) tubes with different lengths to distinguish the
channels: 1.0 cm for ground (GND), 0.5 cm for EEG, and 1.5 cmfor EMG,
with a diameter of 0.1mm, to prevent mutual contact. The tubes were
secured in place with super glue (1204490, Loctite) and the connec-
tions were checked with a multimeter. Finally, the solder joints and
metal parts of the row of pins were encapsulated with epoxy resin
AB glue.

Surgery for wide-field imaging. Mice were anesthetized with 5%
isoflurane and secured to a stereotaxic device. Isoflurane was
maintained at 1.0–1.5%, and the mice were warmed and had their
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eyes protected. The skull was exposed after shaving and disinfec-
tion of the head, by dissecting the head skin and removing excess
tissue, and by gently pushing the temporal occlusal muscle with a
scalpel handle. The skull surface was coatedwith cyanoacrylate glue
followed by nail polish. The EEG and GUD electrodes were placed
around the cranial pegs in the auditory cortex and cerebellum,
respectively, and the two EMG electrodes were inserted into the
neck muscles. The cranial window was closed with light-curing
adhesive and the stainless steel head post was fixed to the cere-
bellum. A black opaque film capwas secured to themouse head. The
mice received three consecutive days of two intraperitoneal injec-
tions each day of 5mg/kg carprofen and 1% ceftriaxone sodium to
prevent pain and infection.

Design of a runningdevice allowing free-limbmovements for head-
fixed mice. To reduce the effect of mouse stress during data collec-
tion, a running tray was designed for mice to move their limbs freely
while their headswerefixed. The bottomof the running diskwasmade
of a 0.3mm thick carbon fiber sheet with a diameter of 30 cm, sur-
rounded by a 2 cm high soft opaque black PE plastic sheet and glued
with T-7000 dot drill black glue. Five SP-8 304 gimbals were fixed
around the bottom of the running disk and in the center of the circle
with hot melt glue.

Data acquisition of wide-field calcium imaging with EEG and EMG
recording. The mice were pre-trained to minimize stress and were
affixed with M3 screws to a head post using a custom-made optical
fixation bar while in an awake state. This device minimized the
pressure exerted on the mice’s bodies and did not impede their
movement. The mice were mounted on the recording device with-
out the use of anesthesia, which eliminates the side effects of
anesthesia. The head position of the mice was fine-tuned for com-
fort through adjustments to the universal cross-rotating rod holder
(NT01UP12, Natter Optics) and the XYZ-axis precision displacement
table (Brilliance Machinery, Shenzhen). The lens angle was also
adjusted through a heavy-duty manual angular stage (customized)
to ensure that the entire imaging plane was in focus. Once the
desired position was achieved, all adjustable elements were
secured. The lens was positioned so that the LED beam covered the
entire cranial window, and a custom hood was used to prevent the
laser from entering the mouse’s eye. GCaMP6s signals were
obtained using a bandpass filter and captured by a CMOS camera. A
multi-channel trigger box controlled the alternation of the LED light
source between 405 nm and 470 nm wavelengths and synchronized
with the camera, and laser power was adjusted after several tests to
avoid overexposure. To reduce the file size, images were stored as a
2 × 2 merge with a resolution of 512 × 512 pixels and a pixel size of
approximately 20 um, with an 11-bit pixel depth and an exposure
time of 25ms, resulting in a sampling frequency of 40 Hz. A 2.8 mm
focal length infraredwebcam (DS-IPC-T12-1, HIKVISION) was used to
monitormouse activity and an IR narrowband industrial camera was
used for recording the mice’s pupil and facial whisker movements
throughout the experimental procedure. The luminance in the
behavior chamber was maintained at approximately 40 lux during
recording.

To reduce stress in head-fixed mice during recording, they were
positioned with their heads facing downwards at a 15° angle, similar to
a free-ranging position, to promote comfort and sleep. After surgery,
mice underwent a one-week recovery period and pre-training adap-
tation, where theywere held and touched gently twice daily for 20min
over two days. The head-fixation training was carried out for 5 days,
with the fixing time gradually increasing daily and the process being
consistent at the same time every day. As the number of training days
increased, the mice’s stress behavior decreased, and they were

eventually able to calm down quickly after fixation and fall asleep
spontaneously under head fixation.

The electrodes, fabricated in-house for EEG/EMG recording, were
affixed to the heads of the mice and connected to the preamplifier
through a homemade cable. Data were then acquired by the Apollo
Neural Recording System with a sample rate of 1000Hz and low-pass
filtering below 200Hz. A Fast Fourier Transform was applied to the
EEG/EMG data and the data were downsampled to one sample point
per 5 s. The states of Wake, NREM, and REM were manually classified
based on EEG/EMG characteristics.

In total, 19 sessions of wide-field imaging recording from8mice
were collected. For each session, the mice underwent a different
duration of awake, NREM, and REM sleep. Detailed information for
each session is provided in Supplementary Data 6.

Analysis of wide-field calcium imaging data
Data preprocessing of wide-field calcium imaging. All data proces-
sing and analysis were performed inMATLAB (2019b). The raw images
underwent compression by combining 4 × 4 pixels into a single mean
point. This process reduced the data volume and facilitated faster
computational processing, yielding pixel sizes of approximately
60–70μm. Subsequently, random noise was filtered through the
application of the “imgaussfilt” function (with a 3-pixel window),
resulting in improved image quality.

The data preprocessing procedure had three stages: (1) motion
correction, (2) hemodynamics correction, and (3) registration to
the standard brain atlas (CCFv3 atlas). To mitigate motion artifacts,
a rigid body alignment was executed to align each frame of every
channel to the midpoint of the entire recording session. The raw
calcium imaging signals encapsulated not only the calcium activity
but also the hemodynamics signals. To eliminate the hemody-
namics signals, the 470 nm excitation light, and 405 nm light were
alternately applied frame by frame, with the fluorescence under the
405 nm light being largely independent of the calcium
concentration40,41. As depicted in Supplementary Fig. 6A, the
hemodynamics signal (405 nm, violet) exhibited a descending trend
that impacts the raw calcium imaging signal (470 nm, blue). Con-
sequently, the 405 nm signals were utilized to regress the 470 nm
signals and were subsequently removed (black). Lastly, nine land-
marks (Supplementary Fig. 6B) were identified for the registration
to the Allen CCFv3 standard brain atlas, employing the MATLAB
function “fitgeotrans” with the “affine” method.

Strength of functional connectivity. In the analysis of FC, only
anatomically connected regions were considered. The structural
connectivity data was obtained from a structural connectivity
matrix created at the population level using Allen bulk tracing data
from wild-type mice. It was found that Allen bulk tracing data tends
to underestimate network density. Thus, two types of thresholds
were implemented: the default threshold, as previously mentioned,
and an adjusted threshold. The adjusted threshold by single-neuron
data was obtained through the following process (Supplementary
Fig. 9A): Initially, both the intrahemispheric IAll and interhemi-
spheric connectivity densities CAll were determined at the primary
threshold. Structural connections were subsequently extracted
from the PFC regions, and the resultant intrahemispheric IPFC and
interhemispheric connectivity densities CPFC were calculated. Con-
currently, the intrahemispheric Icell and interhemispheric con-
nectivity densities Ccell between the PFC regions and the 43 cortical
regions were established at the single-neuron level. The ratio of the
increase in both intrahemispheric and interhemispheric con-
nectivity densities relative to the population level was then calcu-
lated. These ratios were applied to the intrahemispheric and
interhemispheric connectivity densities between the 43 regions,
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yielding the adjusted intrahemispheric IcorrectAll and interhemispheric
connectivity densities Ccorrect

All :

IcorrectAll = IAll � ð1 + ðIcell � IPFC Þ=IPFCÞ, ð4Þ

Ccorrect
All =CAll � ð1 + ðCcell � CPFC Þ=CPFCÞ: ð5Þ

The Pearson correlationwas computed between the time series of
each pair among the 62 regions, serving as a region-to-region FC
metric. The time series for each regionwas calculated as the average of
the time series of all pixels within the respective region. The resulting
FC matrix was then integrated with the structural connection matrix,
retaining only those FCs where structural connections were present.
To obtain region-to-region FCs under different states, the time series
corresponding to those states were initially extracted, followed by
repeating the previous operations to generate the analyzable FCs. For
the analysis, FCs were divided into three categories: homotopic con-
nections (interhemispheric connections between homotopic regions),
interhemispheric heterotopic connections (interhemispheric connec-
tions between non-homotopic regions), and intrahemispheric het-
erotopic connections. To quantify the differences in FC patterns
produced by different states, we perform pairwise subtraction of FC
matrices corresponding to the three states. Subsequently, a t test was
performed on the resultant difference matrices to ascertain the sta-
tistical significance of the distinctions between the states. The quan-
tification of differences in FC patterns between intra- and inter-
hemispheres across 3 states follows the same operation. The com-
parison of FC strength among various types of connections underwent
Tukey’s honestly significant difference (HSD) test, a two-sided test,
followed by adjustment utilizing Holm’smultiple comparisonmethod.

Stability of functional connectivity. FC matrices were generated for
each brain state. Connections with a structural basis were extracted
from these matrices, reshaped into vectors, and subsequently com-
piled into a data matrix, X, ordered first by sample, then by condition.
Concurrently, a state marker matrix, Y, was assembled with each row
corresponding to a row in X and each column representing a distinct
state. The first step of PLS analysis involved computing a covariance
matrix for X and Y, illustrating the correlation between FCs and con-
ditions. Subsequently, the covariancematrix underwent singular value
decomposition (SVD), yielding multiple interpretable latent vectors
(LVs). The first LV typically accounted for the largest covariance pro-
portion. Each LV encompassed a set of saliences indicating the spa-
tiotemporal pattern, a singular value reflecting the covariance between
FCs and conditions, and a contrast between states. Thus, each LV
denoted a state-associated combination of FCs, optimally weighted.
Absolute salience values demonstrated the varying influence of states
on FCs; larger saliences denoted higher state influence, while smaller
values indicated relative state stability. The significance of each LVwas
evaluated through permutation testing. This involved creating 1000
permuted samples by random subject and condition label reordering
within the brain set, keeping the condition set labels constant. This
resulted in 1000 new covariance matrices representing the null
hypothesis. Each permuted covariance matrix was subjected to SVD,
yielding a null distribution of singular values. The original LV’s sig-
nificancewas assessedby comparing its singular value to thepermuted
distribution. Bootstrap sampling, creating 1000 samples by resam-
pling subjects within each condition while preserving condition labels,
was used to assess the reliability of each functional connection’s
expression of the LV pattern. Each bootstrap sample underwent SVD,
and the bootstrapped dataset’s saliences were used to construct a
sampling distribution of saliences from the original dataset. This pro-
cess aimed to assess each salience’s reliability, with broader distribu-
tions indicating saliences that highly depended on the included

participants. The bootstrap distribution then served to estimate the
saliences’ standard errors and confidence intervals. The comparison of
FC variability across various types of connections involved conducting
a Tukey-HSD test, a two-sided test, subsequently applying Holm’s
correction for multiple comparisons.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Allen population tracing data are from a public database via
https://connectivity.brain-map.org. The ION single-neuron tracing
data are from theBrain ScienceDataCenter of theChineseAcademyof
Sciences (CEBSIT/ION Digital Brain, www.digital-brain.cn) via https://
mouse.digital-brain.cn/projectome/pfc. The wide-field imaging data
were deposited on ScienceDB (https://www.scidb.cn/en) and are
available via dataset https://doi.org/10.57760/sciencedb.17064.
Source data of all figures in the main contents and all Supplementary
Figs. are provided with the paper. Source data are provided with
this paper.

Code availability
The codes used in this study are publicly available via https://github.
com/marmosetbrainmapping/codes_Fei2024.
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