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Large-scale cross-ancestry genome-wide
meta-analysis of serum urate

Chamlee Cho 1,13, Beomsu Kim 1,13, Dan Say Kim1,13, Mi Yeong Hwang 2,
Injeong Shim 1, Minku Song1, Yeong Chan Lee 3, Sang-Hyuk Jung 4,
Sung Kweon Cho 5, Woong-Yang Park6, Woojae Myung 7, Bong-Jo Kim2,
Ron Do 8,9, Hyon K. Choi10, Tony R. Merriman 11,12, Young Jin Kim 2,14 &
Hong-Hee Won 1,6,14

Hyperuricemia is an essential causal risk factor for gout and is associated with
cardiometabolic diseases. Given the limited contribution of East Asian ances-
try to genome-wide association studies of serum urate, the genetic archi-
tecture of serum urate requires exploration. A large-scale cross-ancestry
genome-wide association meta-analysis of 1,029,323 individuals and ancestry-
specific meta-analysis identifies a total of 351 loci, including 17 previously
unreported loci. The genetic architecture of serum urate control is similar
between European and East Asian populations. A transcriptome-wide asso-
ciation study, enrichment analysis, and colocalization analysis in relevant tis-
sues identify candidate serum urate-associated genes, including CTBP1,
SKIV2L, and WWP2. A phenome-wide association study using polygenic risk
scores identifies serum urate-correlated diseases including heart failure and
hypertension. Mendelian randomization and mediation analyses show that
serum urate-associated genes might have a causal relationship with serum
urate-correlated diseases via mediation effects. This study elucidates our
understanding of the genetic architecture of serum urate control.

Serum urate (SU) is known to cause gout if a high SU level (hyperur-
icemia) is maintained1. It is associated with several diseases, including
nephrolithiasis, hypertension, and cardiovascular disease2–4. Accord-
ing to guidelines from the American College of Rheumatology5, urate-
lowering therapeutics (ULTs) are strongly recommended to decrease
the risk of gout flares after gout diagnosis. Despite the importance of

SU in managing related diseases, only five Food and Drug Adminis-
tration (FDA) approved and manufactured ULTs are currently avail-
able: allopurinol, febuxostat, probenecid, rasburicase, andpegloticase.
These medications have multiple limitations, including severe allergic
reactions, increased risk of cardiovascular death, drug-drug interac-
tions, and high costs6; therefore, novel ULTs are required. Given the
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heritable nature of SU (30–70%)7, revealing the underlying genetics of
SU should enhance the understanding of SU biology and the patho-
genesis of related diseases.

Genes related to SU, including SLC2A9 (GLUT9), ABCG2, and
SLC22A12 (URAT1), have been discovered in several genome-wide asso-
ciation studies (GWAS)8–12. More SU-associated variants and genes have
been discovered through a large-scale cross-ancestrymeta-analysis, and
the causality and pleiotropy between SU and several cardiometabolic
traits were evaluated. Additionally, a novel missense mutation in HNF4A
(p.Thr139Ile) involved in urate homeostasis had its function experi-
mentally validated13. However, the results were derived from data con-
taining a disproportionately large number of individuals of European
ancestries. Inequity in disease risk prediction for non-European popu-
lations results from this Eurocentric bias, implicating the need for
additional genomic studies conducted on non-European populations14.

In this study, we aimed to identify novel variants, genes, and
pathways associated with SU through a large-scale cross-ancestry
meta-analysis of 1,029,323 individuals of multiple ancestries
(Europeans = 677,373, East Asians = 219,768, others = 132,182), fol-
lowed by a functional assessment of the results comprising colocali-
zation, transcriptome-wide association study (TWAS), and functional
enrichment analyses. A phenome-wide association study (PheWAS)
using the polygenic risk score (PRS) was performed to understand the

genetic relationship of various traits with SU. Potential causal rela-
tionships between SU, heart failure, and hypertension were examined
using Mendelian randomization analysis. To identify potential ther-
apeutic targets of ULTs for the above three diseases, summary-based
Mendelian randomization (SMR) and mediation analyses were
performed.

Results
Cross-ancestry and ancestry-specific GWAS for SU
We performed three genome-wide meta-analyses (cross-ancestry, Eur-
opean, and East Asian) for SU using GWAS summary statistics from the
Chronic Kidney Disease Genetics Consortium (CKDGen, N=457,690)13,
UK Biobank (UKBB, NEUR= 388,724, Nnon-EUR= 72,170)

15, Biobank Japan
(BBJ, N= 109,029)16, and the Korean Genome and Epidemiology Study
(KoGES, N= 110,739) genotyped by the Korea Biobank Array (KBA)
project17,18 (Figs. 1 and 2, Supplementary Fig. 1, and Supplementary
Data 1). To ascertain the robustness of the PC values provided by the
UKBB in accounting for population stratification, we also performed
GWAS using PC values derived from European and non-European
populations, respectively (Methods). GWAS results adjusted for the
newly calculated PCs were highly consistent with the original GWAS
results adjusted for the provided PCs (Supplementary Figs. 2 and 3). We
identified 351, 269, and 90 lead signals in the cross-ancestry

Fig. 1 | Study overview.Overview of this study. Six GWAS summary statistics were
used for the meta-analysis of the ancestry-specific study. In the cross-ancestry
study, previously unreported loci were identified by a meta-analysis of CKDgen,
UKBB, and KoGES summary statistics. The European ancestry study performed a
meta-analysis of CKDgen (European) and UKBB (European) summary statistics,
whereas the East Asian ancestry studyperformed ameta-analysis of BBJ andKoGES.
In this ancestry-specific meta-analysis, post-GWAS, such as functional enrichment,

PRS, and eQTL analyses, were performed separately for each meta-analysis. GWAS
genome-wide association study, SNP single-nucleotide polymorphism, LDSC link-
age disequilibrium score regression, PRS polygenic risk score, pheWAS phenome-
wide association study, MR Mendelian randomization, SMR summary-based MR,
UKBB UK BioBank, CKDgen Chronic Kidney Disease Genetics Consortium, KoGES
Korean Genome and Epidemiology study, BBJ Biobank Japan.
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(N= 1,029,323), European ancestry (N=677,373), and East Asian ances-
try (N=219,768) analyses, respectively (Supplementary Data 2, 3, and 4).
The genetic correlation of SU between the two ancestries was estimated
to be high (ρge = 0.942, standard error [s.e.] =0.079) using Popcorn19

(Supplementary Data 5). The effect size and direction of lead variants
from each of the ancestry meta-analysis results showed modest to high
correlations between European and East Asian populations
(ρ =0.763–0.867, κ=0.591–0.862, Fig. 2b–d). Of the significant lead loci,
58, seven, and one were identified only in the cross-ancestry, European-
specific, and East Asian-specific analyses, respectively (Supplementary

Data 6). We compared the effect size and the direction of the lead
variants in the cross-ancestry meta-analysis with those in each of the
four genetically distinct groups (India, Italy, Nigeria, and Poland) and
found significant positive correlations (ρ =0.426–0.77, κ=0.376–0.626,
Supplementary Fig. 4).

The cross-ancestry meta-analysis additionally identified 17 loci
that were previously unreported in the GWAS Catalog and SU GWASs
(Table 1 and Supplementary Fig. 5). Of these, six loci were previously
associated with SU-associated traits, such as triglyceride, chronic
obstructive pulmonary disease (COPD), and type 2 diabetes (T2D)20–22.

GWAS (Genome-wide association study)

TWAS (Transcriptome-wide association study)
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κ = 0.591 (P = 7.72 × 10-7 )

Fig. 2 | Mirrored Manhattan plots of GWAS and TWAS in the cross-ancestry
meta-analysis and comparison of the variant effect sizes for each ancestry-
specific meta-analysis. a GWAS and TWAS mirrored Manhattan plots for cross-
ancestry study. The upper plot represents the GWAS result, and lower plot repre-
sents the TWAS result. The red line in the upper graph represents the GWAS sig-
nificance cutoff (P = 5 × 10−8), and that in the lower graph represents the TWAS
significance cutoff after Bonferroni’s correction (P = 2.31 × 10−6). The orange dots
represent previously unreported loci and the genes mapped or associated with
those loci are labeled. TWAS associations for all 49 tissues are shown.

b–dComparison of effect sizes of the lead variants between the European and East
Asian ancestries. b Cross-ancestrymeta-analysis lead variants. c European ancestry
meta-analysis lead variants. d East Asian ancestry meta-analysis lead variants. Each
point represents the beta coefficient of the lead variant. The horizontal lines in the
points reflect its standard deviation in the Europeanmeta-analysis, and the vertical
lines represent the standard deviation in the East Asianmeta-analysis. P-valueswere
determined using a two-sided test. GWAS, genome-wide association study; TWAS,
transcriptome-wide association study.
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In addition, the nearest genes or expression quantitative loci (eQTL)
genes in seven loci were previously associated with SU-associated
traits, such as ADAMTS9 associated with coronary artery disease and
MBL1P associated with COPD23,24. The remaining four loci were pre-
viously unreported.

Heritability estimation and genetic correlation
We estimated single-nucleotide polymorphism (SNP)-based herit-
ability using linkage disequilibrium score regression (LDSC) v1.0.125 for

European and East Asian populations (Methods and Supplementary
Data 7). The SNP-based heritability values for the European and East
Asian cohorts were 8.74 and 11.87%, respectively. The proportion of SU
variance explained by the lead SNPs in our cross-ancestry GWAS was
8.36% compared to 7.7% in a previous cross-ancestry GWAS13.

We estimated the genetic correlation between SU and other traits
using LDSC v1.0.1 (Supplementary Fig. 6). In the EuropeanGWAS, 63 of
320 traits showed significant genetic correlations that passed the false
discovery rate (FDR) threshold (P <0.0071). The most significant

Table 1 | Summary of 17 previously unreported loci

SNP info GWAS catalog GTEx

SNP Position Effect P value Consequence Mapped gene Reported trait Gene Tissue

rs2992756b 1:18807339 0.0132 1.15 × 10−8 Intergenic KLHDC7A
IGSF21

Breast cancer
eGFR

KLHDC7A Thyroid
Liver

rs4129858b 1:183004334 −0.0131 2.73 × 10−9 Intron LAMC1 Blood protein levels
Type 2 diabetes

LAMC1
LAMC1-AS1

Artery (Tibial)
Adipose
(Subcutaneous)

rs6708702b 2:137074132 0.015 3.19 × 10−9 Intergenic UBBP1 eGFR
BUN

THSD7B Artery (Aorta)

rs12623489a 2:240222564 −0.0195 1.12 × 10−8 Intron HDAC4 Triglycerides
HDL
eGFR
SBP
DBP

rs13096863a 3:64651920 −0.0147 6.51 × 10−9 Intron ADAMTS9 Waist-hip ratio
ABSI
Type 2 diabetes
Hip circumference
SBP
DBP
CAD
BFP
BUN
Pulse pressure

ADAMTS9 Cells
(Cultured fibroblasts)

rs13100870 3:88099788 −0.0196 9.43 × 10−9 BMI C3orf38 Artery (Tibial)
Adipose
(Subcutaneous)

rs34221697a 3:195635432 0.0463 3.20 × 10−9 nc-transcript
variant
2KB upstream
variant

TNK2-AS1

TNK2

BUN
eGFR
SCL

TNK2 Artery (Tibial)

Adipose
(Subcutaneous)

rs4647939a 4:1019312 0.015 8.85 × 10−11 3′-UTR FGFRL1 Type 2 diabetes
eGFR

UVSSA
FGFRL1
CRIPAK

Artery (Aorta)
Artery (Tibial)
Thyroid

rs9395816 6:52637594 −0.0154 5.67 × 10−9 Triglyceride
Serum urea level

GSTA1
GSTA2

Adrenal Gland
Liver

rs125124b 7:130584684 0.0127 4.00 × 10−8 Intron LINC00513
LINC-PINT

BCC
SAL
STP

LINC-PINT Cells
(Cultured fibroblasts)

rs17616958a 10:82137461 −0.0234 3.60× 10−9 COPD MBL1P
PLAC9

Artery (Tibial)
Adipose
(Subcutaneous)

rs34869311 11:15769438 0.015 3.19 × 10−9 Intron LOC105376567

rs529343a 11:77843719 0.0159 2.82 × 10−8 Intron ALG8 DBP
BMI

NDUFC2-KCTD21 Heart
(Atrial Appendage)
Adipose
(Subcutaneous)
Brain (Cortex)

rs12422756a 12:93789526 0.0185 1.99 × 10−9 Intron NUDT4 Blood cell related UBE2N
NUDT4

Cells
(Cultured fibroblasts)

rs112533663 13:40767072 0.0199 2.20 × 10−11 Intron LOC124903162 LINC00332
FOXO1

Pancreas
Cells
(Cultured fibroblasts)

rs73176948b 13:41611271 −0.0286 7.90 × 10−9 Intron ELF1 AST
ALT

WBP4 Heart (Left Ventricle)
Adipose
(Subcutaneous)
Thyroid

rs1518149b 18:40732054 −0.0123 2.35E−08

SNP single-nucleotide polymorphism,GWAS genome-wide association study, eGFR estimated glomerular filtration rate,HDL high-density lipoprotein cholesterol, SBP systolic blood pressure, DBP
diastolic bloodpressure,ABSI abodyshape index,BFPbody fat percentage,CAD coronaryarterydisease,BUNbloodurea nitrogen levels,SCL serumcreatinine levels,BCCbasal cell carcinoma,SAL
serum albumin levels, STP serum total protein level, COPD chronic obstructive pulmonary disease, BMI body mass index, CRP C-reactive protein, AST aspartate aminotransferase, ALT alanine
aminotransferase, eQTL expression quantitative trait loci.
aMapped genes and eQTL genes are associated with reported traits.
bLead SNP of loci is associated with reported traits.
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positive correlation was renal failure (rg = 0.50, P = 1.36 × 10−5) in the
physical health category, followed by T2D (rg = 0.36, P = 7.48 × 10−25)
and hypertension (rg = 0.31, P = 1.17 × 10−21). In the laboratory and
physical findings category, high-density lipoprotein (HDL) cholesterol
(UKBB, rg = −0.3, P = 4.11 × 10−25) and testosterone (rg = −0.22,
P = 3.41 × 10−12) were negatively correlated with SU. In the East Asian
GWAS, 26 of 181 traits showed significant genetic correlations that
passed the FDR threshold (P <0.0083). The most significant positive
correlation was C-reactive protein (rg = 0.3, P = 1.3 × 10−3) in the

laboratory and physical findings category, followed by triglycerides
(AGEN, rg = 0.27, P = 3.0 × 10−4) and y-glutamyl transferase (rg = 0.24,
P = 3.0 × 10−4). In the physical health category, estimated glomerular
filtration rate (rg = −0.22, P = 1.39 × 10−5) and HDL cholesterol
(rg = −0.15, P = 7.6 × 10−3) were negatively correlated with SU.

Tissue and gene set enrichment of SU GWAS
We investigated the tissues in which the genes of SU-associated loci
were enriched according to the physiological system category (Fig. 3a,
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Fig. 3 | The tissue enrichment analysis in cross-ancestry meta-analysis and
gene-set enrichment analysis in ancestry-specific meta-analysis for serum
urate-associated loci. a Tissue enrichment related to SU-associated loci in cross-
ancestrymeta-analysis is shown by tissue groups into physiological systems. The x-
axis represents tissues grouped by physiological systems, and the y-axis represents
-log10 (P-value). The orange color indicates significantly enriched tissues and labels
(FDR<0.05). P-values were determined using a two-sided test. b For the meta-

analysis results for each ancestry, gene-set enrichment was performed using GSA-
SNP2. The enrichment in the canonical pathway gene sets of databases such as
KEGG (Kyoto Encyclopedia of Genes and Genomes), NABA (Matrisome Project),
and REACTOME (Reactome Project) was investigated using MSigDb c2.cp.v6.2.
Only significantly enriched gene sets with q-value < 0.25 are shown after FDR cor-
rection. SU serum urate, FDR false discovery rate.
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Supplementary Fig. 7, and Supplementary Data 8). A total of 40, 36,
and 29 tissues showed significant enrichment in cross-ancestry, Eur-
opean, and East Asian, respectively. Overall, various tissues of the
urogenital, digestive, and endocrine systems were significantly enri-
ched. The urinary tract of the urogenital system showed the strongest
enrichment (PCROSS = 1.43 × 10−10, PEUR= 3.99 × 10−9, PEAS= 2.54 × 10−4).
Cardiovascular system-related tissues, such as heart valves, were sig-
nificantly enriched in the European ancestry only (P = 6.07 × 10−4). The
fetal blood of the hematologic and immune system (P = 9.31 × 10−3) and
the nasal mucosa of the respiratory system (P = 3.65 × 10−3) were sig-
nificantly enriched in the East Asian ancestry only.

We conducted gene set enrichment analysis using genes in the
loci significantly associated with SU. Significant gene sets that pas-
sed the FDR correction (FDR ≤0.25) were selected from the results
obtained using GSA-SNP2 (released 2020-09-01) (Fig. 3b). As in
the tissue enrichment analysis, more gene set enrichment results
were identified in the cross-ancestry GWAS (Supplementary Data 9).
We identified additional results of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway related to high-level functions of
biological systems. For example, the “systemic lupus erythemato-
sus” gene set in the KEGG pathways was significantly enriched, and
the relationship between this pathway and SU has been reported in
previous clinical studies26,27.

Colocalization with eQTL in glomerular and tubulointerstitial
tissues
To further understand the functional roles of the identified loci and
identify candidate causal genes, specifically expressed genes in glo-
merular (GLOM) and tubulointerstitial (TUBE) tissues were analyzed in
termsof colocalizationwith the identified loci in this study. In total, 173
genes in GLOM and TUBE tissues from the Nephrotic Syndrome Rare
Disease Clinical Research Network III (NEPTUNE)28 were colocalized
with our GWAS results (posterior probability for colocalization [PP.H4]
>0.8); 54 and 148 colocalized genes in GLOM and TUBE tissues,
respectively (Fig. 4a and Supplementary Data 10, 11, and 12). These
genes were colocalized with 159, 110, and 48 GWAS SU association
signals in the cross-ancestry, European, and East Asian cohorts,
respectively. Of the colocalized genes, 27 and 9 were identified in the
European and East Asian ancestry only, respectively. For most of the
genes colocalized in both cross-ancestry and European results, the
number of variants included in the credible set was less in the cross-
ancestry than in the European set; 28 of 30 and 40 of 50 genes in the
GLOM and TUBE tissues showed identical or reduced size of the 95%
credible set, respectively (Fig. 4b). By conducting a cross-ancestry
meta-analysis, 68 more colocalized genes were identified than in the
European meta-analysis, and 52 of those genes were cross-ancestry-
specific. Cross-ancestry revealed colocalization signals that were not
found in ancestry-specific analyses; although rs28362590, a lead var-
iant near MXD3 in the cross-ancestry (β =0.021, SE = 0.0025,
P = 4.15 × 10−17), showed genome-wide significance in the European
(β =0.019, SE = 0.0031, P = 1.80 × 10−9) and East Asian (β =0.023, SE =
0.0036, P = 1.93 × 10−10) cohorts, cis-eQTLs ofMXD3 in the TUBE tissue
were colocalized only with SU GWAS results in the cross-ancestry
(PP.H4 =0.930), but not in the European (PP.H4 = 0.076) and East
Asian (PP.H4 =0.770) cohorts (Fig. 4c).

TWAS
We conducted a TWAS using GWAS results for each ancestry-specific
meta-analysis result to identify genes whose predicted gene expres-
sion levels were associated with SU (Methods, Fig. 2a, and Supple-
mentary Fig. 1). TWAS was conducted to determine the association
between SU-associated loci andGenotype-Tissue Expression (GTEx) v8
eQTL results in 49 tissues29. A total of 1,111 genes were significantly
associated with SU across all the tissues (Supplementary Data 13, 14,
and 15). While 178 genes were commonly significant in the three meta-

analyses, 183 of 945, 83 of 780, and 75 of 334 significant genes were
only significant in the cross-ancestry, European, and East Asian popu-
lations, respectively.

PheWAS and survival analysis using PRS
We calculated the SU PRS for UKBB individuals using each meta-
analysis from the cross-ancestry and European cohorts as reference
summary statistics (Methods and Supplementary Fig. 8a). PheWASwas
conducted across 1621 UKBB phecodes using cross-ancestry and Eur-
opean ancestry SU PRS. A total of 129 and 142 phenotypes were sig-
nificant in PheWAS using cross-ancestry and European PRSs,
respectively (Fig. 5 and Supplementary Fig. 9). Among these, 133
phenotypes, including gout and heart failure, were commonly asso-
ciated. Three were significant only when the cross-ancestry PRS was
applied, including pulmonary heart disease, erythematous conditions,
other alveolar and parietoalveolar pneumonopathies, and 16 were
significant only when the European PRS was applied (Supplementary
Data 16 and 17). In addition, we conducted the PheWAS with the cross-
ancestry SU PRS and East Asian SU PRS on the Korean participants to
investigate the similarities and differences with the European results
(Methods and Supplementary Fig. 8b). Among the 37 self-reported
diseases, gout and hypertension were significantly associated with the
SU PRS (Supplementary Data 18).

To investigate the association between the polygenic risk for SU
and the risk of gout, heart failure, and hypertension, we performed
survival analyses using cross-ancestry and the European PRS on
380,213 participants with gout, 331,432 participants with heart failure,
and 357,453 participants with hypertension who did not take ULT-
related medications at enrollment. Compared to the group with low
PRS, those with high PRS presented a higher absolute incidence rate
for the three traits in both the cross-ancestry and European PRS ana-
lyses (Supplementary Data 19 and 20). During the median follow-up
period of 12.80, 12.76, and 11.62 years for gout, heart failure, and
hypertension, respectively, we evaluated the association of SU PRS
with the traits using Cox proportional hazard regression models.
Cross-ancestry and European ancestry SU PRS were significantly
associated with gout risk (cross-ancestry, hazard ratio [HR] = 1.63; 95%
confidence interval [95% CI] = 1.592–1.67; P < 2.00 × 10−16; European,
HR = 1.641; 95% CI = 1.603–1.681; P < 2.00 × 10−16). Both SU PRS were
also significantly associated with risk of heart failure (cross-ancestry,
HR = 1.056; 95% CI = 1.036–1.078; P < 2.00 × 10−16; European, HR =
1.061; 95% CI = 1.04–1.082; P < 2.00 × 10−16) and hypertension (cross-
ancestry, HR = 1.065; 95% CI = 1.056–1.073; P < 2.00 × 10−16; European,
HR = 1.065; 95% CI = 1.057–1.074; P < 2.00 × 10−16). Compared to the
group with lower SU PRS, the HR of incident gout, heart failure, and
hypertension was higher in the higher PRS group in both cross-
ancestry and European ancestry SU PRSs. For example, participants in
the very high (99th percentile) SU cross-ancestry PRS group showed
7.00-, 1.37-, and 1.34-times higher risk of gout, heart failure, and
hypertension, respectively, than participants in the low (0–19th per-
centile) SU cross-ancestry PRS group. These results were similar to
those of the analysis of participants of European ancestry (Supple-
mentary Data 21). The Kaplan–Meier survival curve showed a similar
result (Supplementary Fig. 10).

Disease risk prediction in an independent Korean population
using the cross-ancestry and East Asian SU PRS
SUPRSs of KoGES individualswere calculated using cross-ancestry and
East Asian meta-analyses. These two SU PRSs were used to predict
disease risk in an independently genotyped Korean sample set
(KoGES). The prevalence of hypertension and gout increased accord-
ing to the SU PRS groups, and these differences were greater when the
cross-ancestry meta-analysis was used to calculate the SU PRS. When
cross-ancestry PRS was applied, the prevalence of hypertension was
21.9, 20.8, and 18.2% in the high, intermediate, and low groups,
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Fig. 4 | Colocalizationwith eQTL inkidney tissues. aVenndiagrams represent the
numberof colocalizedgenes ineach study (top) and in eachkidney tissue (bottom).
b Comparison of the number of variants in the 95% credible set of each gene
colocalized in each kidney tissue between the cross-ancestry (y-axis) and the Eur-
opean study (x-axis). Genes with a smaller number of variants in the credible set in
the cross-ancestry study than those in the European study are lightly colored.
c Regional plots (500kb) of association analysis for serum urate (top) and MXD3

expression in the tubulointerstitial tissue (bottom). Each dot represents a variant
plotted as -log10 (P-value) on y-axis against the corresponding variant position (Mb)
on the x-axis and variants are colored according to linkage disequilibriumwith lead
variants (rhombus) in each study. Blue shading (200 kb) is the region used for the
colocalization analysis. P-values were determined using a two-sided test. GWAS
genome-wide association study, eQTL expression quantitative trait loci.
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respectively. The prevalence of gout was 1.31, 0.41, and 0.33% in the
high, intermediate, and low groups, respectively (Supplementary
Fig. 11 and Supplementary Data 22). This increasing pattern was also
observed across the SUPRSdecile groups. As for the odds ratio (OR) of
each decile group, the PRS applied with the East Asian meta-analysis
was generally higher for hypertension, and the PRS applied with the
cross-ancestry meta-analysis was higher for gout, although the CIs
overlapped (Supplementary Fig. 12 and Supplementary Data 23). The
top PRS decile in East Asian ancestry had a 1.5-fold higher risk of
hypertension, and the top PRS decile in cross-ancestry had a 7.1-fold
higher risk of gout.

We constructed and evaluated a risk prediction model for each
disease (Supplementary Figs. 13 and 14 and Supplementary Data 24).
For both hypertension and gout, the combinedmodel using the cross-
ancestry meta-analysis PRS showed the best performance (area under
the receiver operating characteristic curve = 0.718 and for hyperten-
sion, 0.793 for gout).

Mendelian randomization analysis for causal inference
To infer the causal relationships of SU with gout, heart failure, and
hypertension, we used a two-sample Mendelian randomization (MR)
approach. A putative causal effect of SU on gout and heart failure was
detected using the inverse-varianceweighted (IVW) regressionMR test
(gout, OR = 4.86, P = 2.97 × 10−36; heart failure, OR= 1.10, P = 1.78 × 10−4;
hypertension,OR = 1.20,P = 3.63 × 10−6). The additional sensitivity tests
had effects in the same direction as those of the IVW test. MR analysis
was performed after pleiotropy correction by removing outlier var-
iants (potentially pleiotropic variants) derived fromMR-PRESSOv1.0 in
hypertension. MR-Egger showed no evidence of horizontal pleiotropy
(intercept = 0.003, P =0.085) (Supplementary Data 25).

To identify genes that contribute to the causal relationship of SU
with gout, heart failure, and hypertension, we conducted SMR v1.3.1
with 2671 SU-associated genes from enrichment analysis, colocaliza-
tion analysis, and TWAS; 2263 and 2271 genes in the TUBE and GLOM
tissues from the NEPTUNE study, respectively. A total of 467 and 323
genes in the TUBE and GLOM tissues, respectively, passed the nominal
significance level (SMR P <0.05) in the SMR analysis for SU as an

outcome (Supplementary Data 26). Among these genes, 13, 7, and
34 showed potential causal associations (FDR P < 0.05 and hetero-
geneity in dependent instruments (HEIDI) P ≥0.01) with gout, heart
failure, and hypertension, respectively, in the SMR analysis for each
disease as an outcome (Supplementary Data 27).With these significant
genes, we performed sensitivity analyses using other gene expression
data: whole blood and kidney tissues from the GTEx v830 and blood
tissue from the eQTLgen31 datasets. We validated a concordant direc-
tion of effect sizes of CTBP1, PPM1G, SEPT2, and KRTCAP3 for gout;
SKIV2L for heart failure; and AAK1, MAPKAPK5-AS1, POLA2, RSG1, and
WWP2 for hypertension (Table 2). Among these ten genes, SKIV2L and
CTBP1 were identified only by analysis using cross-ancestry GWAS.

For the 10 genes validated in the sensitivity analyses, we investi-
gated their indirect effects via SU using mediation analysis. The pro-
portion of mediation effects of CTBP1, PPM1G, SEPT2, and KRTCAP3
through SU on gout were 12.63, 12.82, 8.55, and 12.31%, respectively;
that of SKIV2L through SU for heart failure was 3.34%; and that of AAK1,
MAPKAPK5-AS1, POLA2, RSG1, and WWP2 for hypertension were 7.75,
7.94, 6.26, 6.65, and 8.02%, respectively. Similar results were observed
in the sensitivity analyses (Supplementary Data 28).

Discussion
The aim of our study was to identify variants, genes, pathways, and
traits associated and causally related to SU.We conducted a large-scale
cross-ancestry meta-analysis of 460,894 individuals from the UKBB
and 110,739 individuals from KoGES. This extended study included
1,029,323 individuals, which is approximately double the sample size
of previous cross-ancestry studies. In this study, we identified 351
significant SU-associated genetic loci, including 17 previously unre-
ported loci13,32,33, which weremore than 2Mb away from the previously
reported loci. We observed similar effect sizes for these loci between
the European and East Asian populations. These SU-associated loci are
enriched in the SU-related tissues, including the urinary tract and
kidney in the urogenital system. Our GWAS meta-analysis provided
additional insights that have not been thoroughly examined in pre-
vious SU studies. 1) The SU-associated loci showed similar effect sizes,
high genetic correlation, and shared genetic architecture across
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ancestries, which was in line with the findings on the traits from other
studies34,35. The effect sizes of the lead variants were positively corre-
lated (ρ = 0.426–0.77) across the European, East Asian, and other
ancestries. 2) In addition to the cross-ancestry analysis, we conducted
downstream analyses based on the GWAS results for each ancestry,
which allowed some analyses to identify ancestry-specific results. 3)
We identified 467 and 323 potential causal genes in the tubulointer-
stitial and glomerular kidney tissues, respectively, among 2671 genes
in the SU-associated GWAS loci, through a series of enrichment ana-
lysis, colocalization analysis, TWAS, and SMR. 4) In the PheWAS with
PRS, the PRS of SUwas significantly associatedwith gout, heart failure,
and hypertension. We identified the significant potential causal effects
of SU on these SU-associated diseases, including heart failure and
hypertension, which was previously controversial. 5) We identified ten
genes that showed potential causal associations of SU alongwith heart
failure and hypertension and investigated their effects on the diseases
through SU.

Colocalization analysis identified 173 potentially causal genes in
the SU-associated loci, including 36 genes identified in the ancestry-
specific analysis. Most of the colocalized genes had a smaller credible
set size in the cross-ancestry than in the European cohort, and more
genes were colocalized in cross-ancestry. As shown withMXD3, cross-
ancestry analysis helped identify potentially causal genes with greater
power than ancestry-specific analyses and averaged linkage dis-
equilibrium (LD) patterns across ancestries. Potentially causal genes
within a particular ethnic group can be identified in ancestry-specific
analysis, but methods that more delicately consider LD patterns are

required. The eQTLdata for colocalizationanalysiswerebasedongene
expression levels in patients with nephrotic syndrome (NEPTUNE
study), which might affect the colocalization results of SU-associated
variants in the general population.

This study provides valuable insights into the genetics and biol-
ogy of SU and its related diseases. The cross-ancestry meta-analysis
results were enriched inmost tissues, including the urinary tract of the
urogenital system, kidney, and cartilage and exhibited the lowest
P-values. In addition, we observed ancestry-specific enrichment in
tissues such as the cardiovascular tissues in European ancestry and the
fetal blood and the nasal mucosa tissues in East Asian ancestry. The
enrichment in the cardiovascular tissues was consistent with the
results of the MR analysis of the European ancestry, which identified a
potential causal relationship between SU and both heart failure and
hypertension. The East Asianmeta-analysis resultswereenriched in the
fetal blood of the hematologic and immune system (P =0.001) and the
nasal mucosa of the respiratory system (P = 3.65 × 10−3). Previous clin-
ical studies have shown that SU is associated with fetal growth36,37, and
studies on the association between various air pollutants and the nasal
cavity have revealed urate as an important first-line defense factor
against reactive oxygen species38,39. Moreover, both ancestry-specific
GWAS results were enriched in digestive system tissues. The associa-
tion between SU and the intestinal tract is consistent with previous
studies that found that intestinal ABCG2 dysfunction was a cause of
hyperuricemia40,41. Gene set enrichment analysis identified that the
systemic lupus erythematosus and TGF-β signaling pathways were
associatedwith SU in cross-ancestry andEuropeanancestry. SU is a risk

Table 2 | Significant MR associations in both main and sensitivity analysis

Trait Gene eQTL source eQTL tissue Beta SMR FDR P P HEIDI

Main analysis

gout CTBP1 NEPTUNE GLOM 0.081 6.53E−10 1.000

gout PPM1G NEPTUNE GLOM −0.119 4.06E−06 0.202

gout SETP2 NEPTUNE TUBULO 0.146 3.87E−02 0.954

gout KRTCAP3 NEPTUNE GLOM 0.122 3.60E−04 0.510

heart failure SKIV2L NEPTUNE GLOM 0.033 7.23E−04 0.879

ESS HTN AAK1 NEPTUNE TUBULO −0.023 1.27E−04 0.211

ESS HTN MAPKAPK5-AS1 NEPTUNE TUBULO 0.031 3.92E−04 0.399

ESS HTN POLA2 NEPTUNE TUBULO −0.028 8.85E−04 1.000

ESS HTN RSG1 NEPTUNE TUBULO 0.015 2.71E−03 1.000

ESS HTN WWP2 NEPTUNE TUBULO −0.039 2.14E−03 0.619

Sensitivity analysis

gout CTBP1 eQTLGEN whole blood 0.092 4.48E−02 0.034

gout KRTCAP3 GTEX v8 whole blood 0.121 2.21E−13 0.061

gout PPM1G GTEX v8 whole blood −0.516 5.26E−05 0.743

gout SETP2 eQTLGEN whole blood 0.046 1.13E−02 1.000

gout SETP2 GTEX v8 whole blood 0.086 1.25E−02 1.000

heart failure SKIV2L GTEX v8 whole blood 0.027 1.08E−02 0.970

ESS HTN AAK1 eQTLGEN whole blood −0.153 6.27E−03 1.000

ESS HTN AAK1 GTEX v8 whole blood −0.019 1.59E−03 0.658

ESS HTN MAPKAPK5-AS1 GTEX v8 whole blood 0.033 5.54E−13 0.014

ESS HTN POLA2 eQTLGEN whole blood −0.027 5.51E−97 0.151

ESS HTN POLA2 GTEX v8 whole blood −0.035 4.62E−16 0.414

ESS HTN RSG1 GTEX v8 whole blood 0.026 8.14E−04 0.998

ESS HTN WWP2 GTEX v8 whole blood −0.060 4.78E−10 0.023

SignificantMR associations were observed in bothmain analysis using NEPTUNE kidney tissue and sensitivity analysis using eQTLgen, GTEx v8 whole blood and kidney tissue. Results with opposite
beta SMR between the main analysis and sensitivity analysis were excluded. Significant MR associations that passed the FDR correction (FDR P ≤0.05). P-values were determined using a two-sided
test.
MR Mendelian randomization, ESS HTN essential hypertension, GLOM glomerular, TUBULO tubulointerstitial, CHR chromosome, BP base position, SNP single nucleotide polymorphism, eQTL
expression quantitative trait loci, A1 effective allele, SMR summary-based Mendelian randomization, FDR P P-value adjusted by false discovery rate, HEIDI heterogeneity in dependent instruments.
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predictor or therapeutic factor for systemic lupus erythematosus27,42.
Previous experimental studies showed that a decrease in SU had a
preventive effect against TGF-β1-induced profibrogenic progression in
patients with type 2 diabetic kidney disease43. Cross-ancestry analysis
identified an association between the extracellular matrix receptor
interaction gene set and SU, consistentwith a previous study reporting
elevated SU in renal fibrosis and offend-stage chronic kidney disease
(CKD)44. SUGWASwas also enriched in the focal adhesion gene set that
included the IBSP gene, related to vascular calcification and a strong
prognostic marker for cardiovascular mortality in CKD patients45,46.
Only the East Asian ancestry analysis revealed an association between
SU and the MAPK signaling pathway, supported by previous findings
that SU is associated with renal tissue growth through the MAPK
pathway47. The ancestry-specific findings in this study have two pos-
sible explanations. It is possible that ancestry-specific genetic loci
affect SU-related biological pathways in certain ancestral populations
only, or that the identification of such unique loci and the subsequent
findings based on themmay also be due to the differences in statistical
power in each ancestry. For example, despite shared biological
mechanisms across ancestries, some genetic loci can be identified as
ancestry-specific loci that are unidentifiable in other ancestries or
cross-ancestry meta-analysis, owing to several factors, such as differ-
ent allele frequencies, LD structure, and environmental factors.
Therefore, the interpretation of ancestry-specific findings requires
caution, and comparisons are warranted for larger datasets across
ancestries. Nevertheless, genetic studies of diverse ancestries and the
findings from each ancestry may provide new and valuable insights
into the biological background of SU.

Cross-ancestry PRS had advantages over European and East Asian
ancestry PRSs. PRS PheWAS performed in the UKBB European popu-
lation, applying cross-ancestry and European PRSs, found >80% of
significant phenotypes in both the cross-ancestry and European PRS
analyses had higher R-squared values in the European PRS. When
cross-ancestry PRS was applied, new associated phenotypes were
found. Erythematous conditions (P = 2.07 × 10−5) are symptoms of
acute gout48, and pulmonary heart disease was associated with SU in
previous clinical studies49,50. As other alveolar and parietoalveolar
pneumonopathies are significantly associatedwith SU PRS, this should
be further studied in clinical studies of SUand lung-relateddiseases51,52.
Consistent with the results from the European population, gout and
hypertension were significantly associated with the SU PRS in the
PheWAS of the Korean population. The predictive utility of the
ancestry-specific SU PRS for gout, heart failure, and hypertension was
evaluated through survival analysis in the UKBB European population.
Zhang et al.53 reported that individuals with high gout PRS (highest
tertile) had a 77% higher risk of gout than those with low genetic risk
(lowest tertile). Although the improvement of gout risk prediction by
SU PRS has been previously examined13, no studies have examined the
association of SU PRS with the risk of heart failure and hypertension.
This study found that individuals with very high (99th percentile) SU
cross-ancestry PRS had 7.00-, 1.37-, and 1.34-fold higher risks of gout,
heart failure, and hypertension, respectively, than those with low
(0–19th percentile) SU cross-ancestry PRS. The association between SU
and hypertension, shown in previous observational studies, was also
confirmed using PRS in the East Asian population54. These results
suggest that PRS can help identify individuals with a high genetic
predisposition to specific diseases associated with SU, though the
predictive ability should be improved.

SU has been extensively studied, with most studies confirming its
direct causative role in gout. However, its role in other diseases
remains controversial. Stewart et al. highlighted the difficulty in
inferring a direct causal relationship between hyperuricemia and
hypertension and suggested that large-scale randomized trials are
required to further elucidate this relationship55. A study by Krishnan
et al. was pivotal in identifying SU as a potential risk factor for heart

failure, which had previously been unrecognized56. However, large-
scaleMR studies have failed to identify a causal relationship among SU,
blood pressure, and heart failure57,58. In addition, umbrella reviews of
SU have failed to find convincing evidence regarding the clear role of
SU indiseases other than gout and nephrolithiasis1. In contrast to these
negative findings, a recent MR study showed that genetically deter-
mined SU levels were significantly associated with heart failure (OR =
1.07, 95% CI = 1.03–1.10; P = 8.6 × 10−5)59. The current study replicated
this result using more instrumental variables (OR = 1.10; 95%
CI = 1.05–1.16; P = 1.78 × 10−4). Although associations between SU and
hypertension have been reported60,61, a causal genetic association has
not yet been established inMR research57,62. Our study demonstrated a
potential causal association between SU and hypertension without
genetic pleiotropy (OR= 1.20; 95% CI = 1.11–1.30; P = 2.80 × 10−6); this is
in contrast to a previous report about the existence of genetic
pleiotropy63. This result provided evidence that a direct causal rela-
tionship may exist without the pleiotropic effect of SU on hyperten-
sion, which is consistent with previous studies that suggested a causal
relationship between SU and BP and gout with hypertension,
respectively64,65.

For gout, heart failure, and hypertension, which were potentially
causally associated with SU, SMR analysis was performed to infer the
association between these traits and the expression of 2671 SU-related
genes selected from the enrichment analysis, colocalization analysis,
and TWAS. The associations between these genes and traits were
investigated to identify new treatment targets for these three diseases.
Typically, the ULT methods employed to reduce SU levels involve the
use of drugs with specific mechanisms of action (MOA), such as xan-
thine oxidase inhibitors (XOIs), uricosuric agents, and uricase. The
2020 ACR guidelines recommends XOIs as the first-line treatment for
patients with gout5. However, only two drugs (allopurinol and
febuxostat) are widely used as XOIs. Several large randomized clinical
trials have shown that allopurinol is ineffective in the treatment of
hypertension, CKD, and ischemic heart disease66–70. This indicates that
ULT drugs are almost exclusively effective in the treatment of gout.
A review of all currently available ULTs highlights the need for new
ULTswithmultiplemechanisms6. Our study identified candidate genes
for new ULT methods (four for gout, one for heart failure, and five for
hypertension) that may have a direct causal effect on SU and an
indirect effect on the three diseases via SU. For these genes, the pro-
portion of the mediation effect of SU on gout, heart failure, and
hypertension was examined and found to be smaller than that of the
direct effect. These genes may have multiple mechanisms in these
three diseases, including direct and indirect effects via SU. Further
research is required to elucidate the functions of these genes.

Although a direct associationbetween these genes and SU has not
been reported, this potential relationship is supported by other bio-
logical experimental studies. We investigated the MOA of the ten ULT
candidate genes identified in our study. SKIV2L is one of the complexes
that make up the RNA exosome, and its various roles in the exosome
have emerged71,72. The SKIV2L exosome is closely related to the
immune response73 and may be causally associated with heart failure
via immune system activation74,75. CTBP1 is a co-repressor complex in
the notch signal pathway, and activation of the notch signal due to an
increase in urate levels leads to an inflammatory response that causes
gout76–79. Although little is known about the function of KRTCAP3, it
affects obesity and insulin sensitivity80. Previous studies have
demonstrated that increased urate is associated with the risk of
developing diabetic nephropathy in diabetic patients, and gout is
associatedwith diabetes81,82.WWP2 is amember of the Nedd4 family of
E3 ligases, which plays an important role in protein ubiquitination.
WWP2 is involved in endothelial injury and vascular remodeling after
endothelial injury as a novel regulatory factor, suggesting a possible
new target for the prevention and treatment of hypertensive vascular
disease83. Although a direct functional relationship between these
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genes and SU remains unclear, further studies are required to identify
the precise biological mechanisms underlying these potential
target genes.

In summary, we investigated variants, genes, tissues, pathways,
and diseases associated with SU and potential therapeutic targets
through the largest cross-ancestry and ancestry-specific meta-analysis
for SU to date. This approach highlighted the potential of repositioned
drugs targeting SU for the treatment of other diseases. In addition, we
identified potential causal relationships between SU, target genes, and
various diseases. Our study further adds insight into the genetic
architecture by leveraging abundant genomic resources.

Methods
Characteristic of study cohorts
We performed a meta-analysis using six summary statistics for the four
cohorts. First, we produced summary statistics for serum urate (SU)
using genotype and phenotype data from the UKBB (UK Biobank)
database (release version 2). UKBB is a large-scale biomedical database
and research resource containing in-depth genetic and health informa-
tion from half a million participants in the United Kingdom. Of
approximately 500,000 samples, 460,894 individuals with information
on SU were selected, and analysis was performed by dividing them into
388,724 Europeans and 72,170 non-Europeans using genetic ethnic
grouping (UKBB field ID 22006) information. Second, we used the
summary statistics of the Chronic Kidney Disease Genetics Consortium
(CKDGen), a cross-ancestry study that meta-analyzed 74 multiple-
ancestry SU studies13. Summary statistics for the cross-ancestry GWAS
(457,690 individuals) and the European GWAS (288,649 individuals)
were providedby theCKDGen, and the individuals in both datasetswere
not included in the UKBB. Third, we used the analysis of East Asian
ancestry GWAS SU summary statistics of 110,739 individuals from the
Korean Genome and Epidemiology Study (KoGES) cohort provided by
the South Korea National Institute of Health. Additionally, 22,607 indi-
viduals, independent of the 110,739 individuals involved in the discovery
analysis, were included in the replicates. Fourth, SU GWAS summary
statistics of 109,029 individuals provided by the BioBank Japan Project
were used32. This cohort was analyzed by classifying it as East Asian
ancestry. Detailed information about each cohort is presented in Sup-
plementary Data 1. The genotype data and summary statistics of all
cohorts used in the meta-analysis were aligned with the Genome
Reference Consortium human build (GRCh) 37.

Genotype data quality control and GWAS
UKBB (release version 2) performed quality control (QC) and GWAS
after removing sex mismatch and aneuploidy samples and dividing
them into European and non-European groups according to genetic
ethnic grouping (Data-Field 22006). Kinship was not removed among
all individuals, and variant QC was performed with a call rate <0.95,
minor allele frequency (MAF) < 0.005, Hardy-Weinberg equilibrium
(HWE) P < 1.0 × 10−6, and INFO <0.4. Association analysis was per-
formed using linear mixed model analysis with BOLT-LMM v2.3.484 as
the residual value of SU (mg/dl) ≈AGE + SEX. The first four principal
components (PCs) of genetic ancestry,whichwere calculated based on
the entire UKBB population provided by the UKBB (data field 22009),
were used as covariates. To examine the robustness of the PCs in
accounting for population stratification, we additionally performed a
PCA using HapMap phase 3 variants on the unrelated European indi-
viduals (N = 276,250) from the UKBB who self-identified as ‘White
British’ (data-field 21000) and have very similar genetic ancestry based
on a PCA of the genotypes (data-field 22006). We then calculated the
PCs of all UKBB European individuals (N = 408,188) using PC loadings
from the PCA. The Spearman’s correlation coefficient was used to
compare the beta coefficients from the GWAS of the two sets of PCs
(Supplementary Fig. 2). To examine population stratification in the
GWAS of UKBB non-European individuals, we defined seven

genetically distinct groups for individuals categorized as having non-
White British” ancestry based on the PC values provided by UKBB, as
delineated by Privé et al.85. We performed a GWAS of SU in each of the
seven genetically distinct groups separately and analyzed the results.
Association analysis was performed using linear mixed model analysis
with SAIGE v1.1.386 as the residual value of SU (mg/dl) ≈AGE + SEX. The
first four PCs of genetic ancestry, calculated for each ancestry group
using PLINK v2.087, were used as covariates. Themeta-analysis of seven
non-European GWAS (N = 28,320) showed highly consistent effect
sizes of the analyzed variants, but slightly less significant associations
in comparison with the combined non-European GWAS adjusted for
PCs provided by the UKBB (N = 72,170) (Supplementary Fig. 3). Based
on this observation, the analyses in this study were conducted using
72,170 non-European individuals from the UKBB to enhance the
statistical power.

In the case of the KoGES cohort, the Korea Biobank Array (KBA)
project genotyped individuals from three population-based cohorts, a
part of KoGES, using the KBA, a customized genotyping array opti-
mized for Korean genome research. The three cohorts were Ansung-
Ansan, health examinee, and cardiovascular disease association study.
QC of the genotype data was performed with the following criteria17,88.
Briefly, genotypes were called per batch (3–8K samples) considering
recruitment year and site. In the subsequent sample QC, putative low-
quality samples were removed if sex inconsistency, low call rate
(<97%), excessive heterozygosity, and outliers from the principal
component analysis (PCA) result. Additionally, samples with second-
degree relatedness were removed using KING v.289. In variant QC,
variants were excluded if call rate <0.95 and HWE P < 1.0 × 10−6. QCed
genotypes were phased using Eagle v2.390 and the following imputa-
tion analysis was performed using IMPUTE v.491 with a merged refer-
ence panel from 2504 samples of the 1000 Genomes Project phase 3
and 397 samples of the Korean Reference Genome. After imputation,
variants with INFO less than 0.8 or MAF < 1% were removed. Prior to
association analysis, the level of SU was transformed by taking the
residuals from the following equation: SU (mg/dl) ≈AGE+ SEX. Single
variant association analysis was performed on the residuals adjusting
for four PCs using the EPACTS package v.3.2.6 [See URL: https://
genome.sph.umich.edu/wiki/EPACTS].

Ancestry-specific meta-analysis
After checking each GWAS summary statistic using GWAtoolbox
v2.2.4-1092 and custom scripts, the A1 allele was set the same between
cohorts. The QC levels of the variants were adjusted equally to
MAF >0.005 and INFO >0.6. Cross-ancestry meta-analysis was per-
formed on UKBB (European and non-European), CKDgen (cross-
ancestry), and KoGES (East Asian). For European ancestry, a meta-
analysis of UKBB (European) and CKDgen (European) was performed.
For East Asian ancestry, a meta-analysis of BioBank Japan (BBJ, East
Asian) and KoGES (East Asian) was performed. Themeta-analyses were
performed using a fixed-effect inverse-variance weighted (IVW) meta-
analysis using METAL (released on 2011-03-25)93. When performing
meta-analysis for each ancestry, only the variants common to at least
half of the cohorts included in the analysis were extracted. BBJ was not
added in the cross-ancestry meta-analysis to avoid data duplication
because CKDgen (cross-ancestry) already included BBJ.

We changed the P-value by finding the lowest value that was not
recognized as zero for each ancestry-specific meta-analysis to prevent
cases in which the P-value was recognized as zero and excluded from
other analyses.

Significance criteria for GWAS loci
Lead loci were similarly extracted from the results of each ancestry-
specific meta-analysis. The SNP with the smallest P-value for each
chromosome was selected as the lead locus. Based on these loci, the
flanking 500 kb was considered as one region (1Mb). Regions of this
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size were extracted until no more significant loci (P < 5.0 × 10−8) were
found across the entire genome. Therefore, the lead loci were at least
500 kb apart. Functional annotation of the lead loci for each ancestry
was performed using ANNOVAR (released 2019-09-27)94.

For set-specific significant loci, loci unique to each ancestrymeta-
analysis were selected by comparing the lead variants extracted from
eachancestry-specificmeta-analysis. Basedon the lead variants of each
ancestry meta-analysis, set-specific significant loci were selected by
comparing significant lead variants between ancestry meta-analyses
(P < 5.0 × 10−8) and by confirming that lead variants in one ancestry-
specific analysis were more than 1Mb away from those in the other
ancestry-specific analysis.

In the cross-ancestry meta-analysis, previously unreported loci
were identified. These loci were compared with the reported loci from
the GWAS Catalog (ver. 22 June 2023) and recently published SU
GWASs95–97. To define unreported loci strictly, we regarded our sig-
nificant loci as previously unreported loci if there were no significant
variants (P < 5.0 × 10−8) in other SU GWASs in the 2Mb (4Mb region)
window on both sides from our lead SNPs.

Regional plots for 17 previously unreported significant loci were
generated using LocusZoom v1.498. Linkage disequilibrium (LD)
information was calculated and used from the 1000 Genomes Project
Phase 3 data.

Comparison of effect size of ancestry-specific lead loci
The effect size was compared by extracting the common variants from
the European ancestry and the East Asian ancestry meta-analysis with
the lead loci (P < 5.0 × 10−8) of each of the three ancestry-specificmeta-
analyses. Out of 351 cross-ancestry meta-analysis lead loci
(P < 5.0 × 10−8), only 263 variants common in the European and East
Asian ancestry meta-analyses were extracted to compare the effect
size (beta coefficient). In the case of 269 lead loci (P < 5.0 × 10−8) of the
European ancestry analysis, the effect size was compared with 190
variants common to the East Asian ancestry analysis. In the case of 90
EastAsian lead loci (P < 5.0 × 10−8), 65 variants commonlypresent in the
European ancestry analysis were compared. Spearman’s correlation
test and Cohen’s kappa coefficient were used to compare effect sizes
and investigate the directional consistency of genetic effects between
European and East Asian ancestry analyses.

We compared the effect sizes of the lead variants in the cross-
ancestry GWASmeta-analysis with those from the GWAS of each of the
four genetically distinct groups in UKBB with a sample size of >3000
individuals. The GWAS was performed for each group using the same
QC process that was used for the UKBB European GWAS. Among the
lead variants in the cross-ancestry GWAS meta-analysis, 263, 323, 177,
and 331 variants were found in the data from India, Italy, Nigeria, and
Poland, respectively. Spearman’s correlation and Cohen’s kappa
coefficients were used to compare the effect sizes and directional
consistencies of the genetic effects, respectively.

Genetic heritability and genetic correlation in European and
East Asian ancestry, and genetic correlation between the two
ancestries
The single nucleotide polymorphism (SNP)-based heritability of each
ancestry-specific meta-analysis was calculated using LD score regres-
sion (LDSC) v1.0.125. After meta-analysis, we adjusted the value to the
lowest possible level in the software to prevent variants with a too low
P-value frombeing excluded from the calculation. For quantificationof
the explanatory power of cross-ancestrymeta-analysis, the proportion
of SU variance explained by lead SNPs was calculated by referring to
Tin et al.; β2ð2pð1�pÞ

var Þ, where β is the effect size for SU, p is the minor
allele frequency, and var is the phenotypic variance.

Furthermore, we calculated genetic correlations with 320 other
traits of European ancestry and 181 other traits of East Asian ancestry
using public GWAS data. Significant results were obtained through

FDR correction within the genetic correlation results for each ancestry
(FDR <0.05). The pre-calculated LD score for each ancestry was used
by receiving data based on the 1000Genome Project phase 3 from the
LDSC website.

The cross-population genetic effect correlation between Eur-
opean and East Asian ancestry was performed using Popcorn19. This
software canbe used to obtain two types of common-SNP-based cross-
population genetic correlations. These are genetic effect correlation
and genetic impact correlation; among them, genetic effect correla-
tion is known as a more realistic model. Pre-computed scores for the
European and East Asian 1000 Genomes Project data were down-
loaded from the software website.

Functional enrichment analysis for GWAS loci
We performed functional enrichment analysis for each ancestry-
specific meta-analysis. Tissue enrichment analysis was performed
using Data-driven Expression Prioritized Integration for Complex
Traits (DEPICT)99. Among the SU-associated variants for each ancestry,
those with P-value < 1.0 × 10−5 were used as input. Independent SNPs
were identified using the PLINK v1.9100 clump command within 500 kb
flanking regions and r² > 0.2 in the 1000Genomes project phase 3 data
for each ancestry. Significant tissue (q <0.05) was separately indicated
through false discovery rate (FDR) correction.

Gene set enrichment analysis was performed using GSA-SNP2
(released 2020-09-01)101. The padding size was set to 20 kb so that
genes with a high correlation adjacent to the SNP could be included as
much as possible. Gene set annotation used 2,982 canonical pathway
gene sets (KEGG, REACTOME, and NABA) among curated gene sets of
the MSigDB c2.cp.v6.2 database102. Associated gene sets were selected
only if they passed the FDR threshold (q <0.25).

Colocalization with expression quantitative trait locus from
NEPTUNE
We performed colocalization between ancestry-specific meta-analysis
and cis- expression quantitative trait locus (eQTL) results in micro-
dissected human glomerular (from 240 individuals) and tubulointer-
stitial (from 311 individuals) kidney tissues from the Nephrotic
Syndrome Rare Disease Clinical Research Network III (NEPTUNE)28

using the coloc.abf function from the R package coloc v5.1.1103. The
colocalization analysis was conducted for loci within ±100 kb of each
lead variant from ancestry-specific meta-analyses. Among the asso-
ciation pairs of each locus, those containing less than 30 cis-eQTLs or
having a minimum eQTL P-value > 1.0 × 10−4 were excluded from ana-
lysis. European, East Asian, and European + East Asian samples from
the 1000Genomes Project phase 3104 were used as LD reference panels
for the European, East Asian, and cross-ancestry meta-analyses,
respectively. Association pairs with a posterior probability for colo-
calization (PP.H4) greater than 0.8 were considered colocalized.
Variant-level posterior probabilities for colocalization (SNP.PP.H4)
were derived from the colocalization analysis. The 95% credible set
represented the smallest set of SNPs with a cumulative SNP.PP.H4
greater than 95%.

Transcriptome-wide association study
Transcriptome-wide association study (TWAS) analysis is a method
used to determine the association between the expression of the
transcriptome and a specific trait, and genes that are different from
those mapped by GWAS analysis are selected. We conducted a TWAS
to determine the relevant eQTL for each ancestry-specific meta-ana-
lysis using PrediXcan v0.7.529. A total of 49GTEx v8 tissue eQTL data of
the MASHR-based model provided by PrediXcan were used to find
related genes for each tissue. The most significantly associated gene
was found by integrating all tissues using the S-multiXcan function.
Genes that passed the Bonferroni correction were considered sig-
nificant (Pbon =0.05/21,681 in cross-ancestry, Pbon =0.05/21,681 in
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Europe, Pbon = 0.05/20,154 in East Asia), and these genes were used for
the eQTL Mendelian randomization analysis.

Leave-one-out polygenic risk score
Tenfold leave-one-out PRS (LOO PRS) was performed for each
ancestry-specific genotype. In the case of European ancestry, theUKBB
data were randomly divided into ten equal parts, and association
analysis was performed on nine datasets using BOLT-LMM in the same
way as described above. Then, cross-ancestry and European meta-
analyses were performed with METAL (released on 2011-03-25), and
PRS was calculated by applying these summary statistics to the
remaining UKBB data. Thus, cross-ancestry and European PRS for
UKBB individuals were obtained. This process was repeated ten times
to calculate the PRS for all samples of the UKBB data, so that sample
overlap did not occur. The Pearson correlation coefficient (R2)
between PRS and SU residuals calculated in this way was 0.306 and
0.310 for the cross-ancestry and European PRS, respectively.

Similarly, we performed LOO PRS for the East Asian ancestry. The
KoGES data of 72,299 of the 110,739 unrelated individuals, whose
individual-level genotype data were available in this study, were ran-
domly divided into ten groups. Association analysis was performed on
nine datasets using PLINK v1.9, and the PRS was calculated for the
remaining dataset. As a result, cross-ancestry and East Asian PRS for
72,299 individuals from the KoGES were obtained. The Pearson cor-
relation coefficients between the PRS and SU residuals were 0.272 and
0.267 for the cross-ancestry and East Asian PRS, respectively.

PRS calculations were performed using PRS-CS-auto (released on
2021-06-04)105. An additional detailed explanation of this process
(Supplementary Fig. 8).

Disease risk prediction in the replication study using PRS from
the cross-ancestry and East Asian ancestry
We conducted disease risk prediction using the cross-ancestry and
East Asian ancestry PRS in an independent dataset comprising 22,607
Korean individuals from the KoGES. This dataset was independent
from the 110,739 KoGES individuals used in the discovery analysis. The
QC procedures for the replication dataset have been described
elsewhere17. To avoid overfitting, we constructed adjusted weights for
PRS analysis using summary statistics from the discovery studies
without the replication dataset (Supplementary Data 1). We obtained
each ancestry-specific PRS by applying previously performed cross-
ancestry and East Asian ancestry meta-analyses. The target diseases,
hypertension and gout, were defined based on self-reports.

1.We assessed the prevalence of hypertension and gout in the PRS
group. The PRS was divided into quartiles, and the second and third
quartiles were grouped as “intermediate” to compare the lower 25,
middle 50, and upper 25%.

2. We partitioned the individuals into PRS deciles and estimated
the OR between the first decile and each of the other decile groups.

3. Logistic regressionwasperformed for hypertension andgout to
test the performance of PRS by ancestry. ROC curves for PRS, demo-
graphic (AGE+ SEX) + 4 PCs, and combined (PRS + AGE+ SEX + 4 PCs)
for each disease were calculated using pROC ver.1.18.0 in R106.

Phenome-wide association study in European and East Asian
populations using cross-ancestry and ancestry-specific PRS
Cross-ancestry and European ancestry PRS for UKBB individuals
obtained from the LOO PRS were adjusted by age, sex, and four PCs.
The phenome-wide association study (pheWAS) was performed using
Firth’s bias-reduced logistic regressionmodel for 1621UKBBphecodes.
For multiple-comparison correction, a phenotype significantly related
to SU PRS was derived by reducing false-positive results using the
Bonferroni correctionmethod (Pbon = 0.05/1621). Among these results,
the phenotype showing a very significant level was used for Mendelian
randomization analysis.We conducted the PheWASwith PRS in an East

Asian population using a similar approach. Cross-ancestry and East
Asian PRS for KoGES individuals obtained from the LOO PRS were
adjusted for age, sex, and the first four PCs. PheWAS was performed
using Firth’s bias-reduced logistic regression model for 37 self-
reported diseases in the KoGES. We considered results with P-values
less than the Bonferroni correction threshold (Pbon = 0.05/37) to be
significant.

We commonly applied 1.0 × 10−317, the lowest value that can be
expressed when the result value was zero.

Survival test in European ancestry using cross-ancestry and
European-ancestry PRS
We used UKBB individuals and cross-ancestry and European ancestry
PRS for the survival test.We excludedUKBB individuals who tookULT-
related medications at enrollment (data field 20003; allopurinol and
probenecid) from the survival analyses. The baseline characteristics of
the study population were compared by SU PRS group using ANOVA
for continuous variables and chi-squared tests for categorical vari-
ables. The follow-up year was used as the time scale in the model. The
follow-up time was calculated from baseline assessment until the first
event (gout, heart failure, and hypertension), death, or February 31,
2021, whichever occurred first. Essential hypertension, defined by ICD
code (I10) was analyzed.

Cox proportional hazards regression models were applied to
estimate the hazard ratio (HR) and 95% confidence interval (95% CI) of
gout or heart failure concerning the genetic risk of SU adjusted for sex,
age, and four PCs. The HR of SU PRS for gout, heart failure, and
hypertension were used both as quantitative variables reported per
one standard deviation and as categorical variables defined as follows:
low (0–19th percentile), intermediate (20–79th percentile), high
(80–98th percentile), and very high (99th percentile). All analyses were
performed using the survival and survplot package in R. All P values
were two-sided, and the statistical significance threshold was
set at 0.05.

Two-sample Mendelian randomization in European population
For Mendelian randomization (MR) analyses, we used GWAS results
from ameta-analysis of European ancestry (CKDgen andUKBB) for SU,
the Global Urate Genetics Consortium (GUGC) for gout33, the Heart
Failure Molecular Epidemiology for Therapeutic Targets (HERMES)
Consortium for heart failure107, and FinnGen for hypertension108. We
performed two-sample MR (TSMR) using the MR-Base and ‘TwoSam-
pleMR’ v0.5.6 package in R109. We used conventional IVW MR analysis
as a principal MR test. We also conducted MR-Egger, simple mode,
weighted median, and weighted mode methods as a sensitivity analy-
sis, which are more robust to potential violations of standard instru-
mental variable assumptions.MR-PRESSO analysis was performedwith
the number of bootstrap replications of 100,000 times for pleiotropy
correction and identification of potentially pleiotropic variants. MR-
Egger intercept test was conducted to check the presence of potential
pleiotropy. In every MR analysis, we clumped genome-wide sig-
nificance (P < 5 × 10−8) SNPs with r2 values ≤0.001. FinnGen GWAS
summary statistics for essential hypertension defined by the ICD code
(I10) were used.

Summary-data-basedMendelian randomization in the European
population
We used summary-based Mendelian randomization (SMR) v1.3.1 to
determine associations between the expression of SU-associated
genes and gout, heart failure, and hypertension110. We gathered SU-
associated genes from DEPICT, TWAS, and colocalization analysis and
then selected the same genes that had expressiondata in theNEPTUNE
kidney tissue. In the main analysis, we performed SMR analysis with
kidney gene expression (NEPTUNE tubulointerstitial and glomerular
tissue) using European-specific SU GWAS. Genes whose expression in
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the kidney was associated with SU (P < 0.05) were included in further
SMR analysis with gout GWASdata from theGUGC, heart failure GWAS
from HERMES, and hypertension GWAS from FinnGen. FDR P-value <
0.05, and HEIDI P-value > 0.01, were used for determining association
and distinguishing pleiotropic associations from LD. For significant
SMR associations, we performed additional sensitivity analysis with
other expression data: GTEx whole blood tissue, GTEx kidney tissue,
and eQTLgen blood tissue. Based on the MR results, which indicated
that high SU levelswere associatedwith an increased riskof gout, heart
failure, and hypertension, we excluded the genes that showed oppo-
site effects on SU and disease.

For proteins that causally associate in both themain and sensitivity
analysis, we conducted a mediation analysis to estimate the effects of
proteins on traits via SU. The “total” effect of protein on trait and effects
of protein on SU were utilized with the previous SMR analysis. The
effects of SU on traits were captured by the previous MR analysis. We
used the product method and the delta method to estimate the beta,
standard error, and confidence interval of the indirect effect.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full summary statistics of cross-ancestry, East Asian, and Eur-
opean GWAS are publicly available at the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/downloads) with accession numbers
GCST90319904, GCST90319905, and GCST90319906, respectively.
The UKBB genotype and epidemiologic data are available by
requesting access on the UKBB homepage (https://www.ukbiobank.
ac.uk/). Summary statistics are publicly available from the Chronic
Kidney Disease Genetics Consortium (CKDGen, http://ckdgen.imbi.
uni-freiburg.de/). BBJ summary statistics were downloaded from the
Biobank Japan PheWeb (https://pheweb.jp/). The full summary sta-
tistics of the KBAGWAS are available at the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/downloads) and the Korea National
Institute of Health PheWeb (https://coda.nih.go.kr/usab/pheweb/
intro.do). The GTEx data are publicly available upon reasonable
application (http://www.gtexportal.org/home/datasets). The NEP-
TUNE eQTL data are publicly available (https://nephqtl.org). The
HERMES GWAS summary statistics are publicly available (https://
www.hermesconsortium.org). The FinnGen GWAS summary statis-
tics are publicly available (https://www.finngen.fi/en). The GUGC
GWAS summary statistics are publicly available (https://kp4cd.org/
node/179).

Code availability
Previously developed pipelines were used to produce the results for
the current study. No custom code was developed. Please see the
Supplementary Information for details on the software URLs and
data used.
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