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Cross-modality mapping using image
varifolds to align tissue-scale atlases to
molecular-scale measures with application
to 2D brain sections

Kaitlin M. Stouffer 1,2,3 , Alain Trouvé 3, Laurent Younes 4, Michael Kunst5,
Lydia Ng5, Hongkui Zeng 5, Manjari Anant1, Jean Fan 1, Yongsoo Kim 6,
Xiaoyin Chen 5, Mara Rue 5 & Michael I. Miller 1,2

This paper explicates a solution to building correspondences between
molecular-scale transcriptomics and tissue-scale atlases. This problemarises in
atlas construction and cross-specimen/technology alignment where speci-
mens per emerging technology remain sparse and conventional image
representations cannot efficientlymodel the high dimensions from subcellular
detection of thousands of genes. We address these challenges by representing
spatial transcriptomics data as generalized functions encoding position and
high-dimensional feature (gene, cell type) identity. We map onto low-
dimensional atlas ontologies by modeling regions as homogeneous random
fields with unknown transcriptomic feature distribution. We solve simulta-
neously for the minimizing geodesic diffeomorphism of coordinates through
LDDMM and for these latent feature densities. We map tissue-scale mouse
brain atlases to gene-based and cell-based transcriptomics data fromMERFISH
and BARseq technologies and to histopathology and cross-species atlases to
illustrate integration of diverse molecular and cellular datasets into a single
coordinate system as a means of comparison and further atlas construction.

Since the 17th century, scientists have seen living organisms as a
hierarchy of biological mechanisms at work across scales. To under-
stand the interplay of these mechanisms, reference atlases that
incorporate genetic, cellular, and connectivity measures into a single
coordinate space have been constructed and which aim to summarize
the mass of data across scales through a set of discrete partitions. An
instance of the more general segmentation problem in computer
vision, atlas construction relies on the underlying assumption of
homogeneity within each region. The optimal partitioning assigns a
label to each region based on this homogeneity and the presence of
sharp changes at the boundaries between regions. In biology, this label

frequently reflects behavior or function, as seen in two of the most
common mouse brain atlases: the Allen Common Coordinate Frame-
work (CCFv3)1 and the Franklin and Paxinos Atlas2. Together, the
common coordinate framework an atlas provides in addition to its
ontology facilitates the comparison of different types or replicates of
data in a single coordinate system and hones efforts of study to par-
ticular regions relevant to each unique investigation.

Hence, atlas construction and segmentation of new data with
defined atlases comprise two classes of widespread problems across
domains of biology. These are particularly relevant in the context of
emerging datasets in spatial transcriptomics, where atlases have still
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yet to be constructed3 and where the different technologies used
number quite high, thus emphasizing the need for mapping data
across samples and technologies into a common coordinate frame-
work for comparison. A central challenge in both atlas construction
and segmentation, however, is in aligning in a single coordinate space
data that often exists at different scales (e.g. coarse scale atlases to
fine-scale datasets) and is fundamentally of different functional mod-
alities (e.g. tissue regions to molecular images). These differences
preclude an obvious definition of similarity for consequently opti-
mizing alignment.

In the classical image setting, a large family of diffeomorphism-
basedmethods4 has been developed within the field of Computational
Anatomy (CA)5,6 for transforming coordinate systems at the tissue
scales. The smoothness, invertibility, and non-rigid nature of diffeo-
morphisms are particularly relevant in medical image alignment as
they reflect the mechanics/dynamics of soft tissue7. Consequently,
methods rooted in diffeomorphic registration come particularly from
multiple labs in the magnetic resonance imaging (MRI) community,
with variations developed in the contexts of both atlas construction
and segmentation at these tissue scales7–16. Large Deformation Dif-
feomorphicMetricMapping (LDDMM)17, onwhichmany suchmethods
are built, specifically equips diffeomorphismswith ametric that allows
them to be reduced to a low-dimensional representation that con-
veniently identifies shape. Consequently, it has been harnessed in the
setting of image classification and the study of atrophy in diseased
versus control populations17–19. While successful at aligning images of
the same modality, most of these diffeomorphism-based methods
focus exclusively on generating geometric transformations (e.g. dif-
feomorphisms). The challenge of crossing functional modalities has
instead been addressed in a classical imaging setting by coupling such
methods to variations in matching cost or additional transformations.
These include matching based on analytical methods using cross-
correlation13 or localized texture features20, and methods for trans-
forming one range space to another in crossing modalities and scales
based on polynomial transformations21, scattering transforms22, gra-
phical models23, and neural networks24–26.

In the molecular setting, however, both the diversity and magni-
tude of data measured by spatial transcriptomics technologies27 often
prohibit the representation of suchdata as classical continuous images
discretized as regular grids, and consequently, the direct use of these
image alignment methods at the molecular scales. As seen in reposi-
tories generated in the BRAIN Initiative Cell Census Network (BICCN)
and archived at the Brain Image Library (BIL), these datasets are
already on the order of terabytes and will only continue to increase as
technologies shift frommouse to humanmeasurements. Hence, while
some methods in deep learning have been applied to align single-cell
datasets, modeled as regular grid images, both to atlases at the his-
tological scale28 as well as reference transcriptional atlases that are
beginning to emerge29, most image-based tactics are limited in their
ability to represent this high-dimensional and memory-intensive data.
Furthermore, many learning-based schemes in the context of classical
images have relied on the use of extensive numbers (typically on the
order of hundreds) of images from different subjects for extracting
features useful for cross-modalities and mapping18,26. In the setting of
spatial transcriptomics technologies that have been developed only
over the last few years, the acquisition of such large training datasets is
typically prohibitive for some of these learning-based approaches.

Consequently, an independent class of methods has been devel-
oping for aligning spatially resolved transcriptional datasets at these
molecular scales. With influence from image-based methods, some of
these including GPSA3 and PASTE30 focus exclusively on spot-based
data in which gene expression is measured in a neighborhood of each
spot for a regular array of spots, analogous to a voxel grid in an image.
In contrast, image-based technologies such as STARmap, BARseq, and
MERFISH, which take pointmeasures of individualmRNAmolecules or

cells, covermeasurements irregularly sampledover spaceaccording to
tissue architecture and dynamics. Furthermore, natural fluctuation in
gene expression over time and space coupled to the dynamics of each
spatial transcriptomics technology leads each tissue section, at the
molecular/cellular (0.3–100micron) scales, to have a varying number
of such particles with no natural ordering of particles consistently
apparent between sections. Consequently, landmark-based methods31

that assume direct permutation correspondence between particles are
not applicable. Methods aimed at generalizing to allow alignment
within and across these additional technologies are typically rooted in
different data representations, such as graphs, in the case of SLAT32

that aims to find correspondence between cells or groups of cells in an
atlas and target or CAST33, a deep graph-based neural network (GNN)
algorithmwhich learns a graph representation of single-cell resolution
omics data and subsequently aims to align datasets via these graph
representations. Additionally, while many methods have showcased
success at aligning different replicates within a single technology for
both human and mouse samples, cross-technology alignment has
typically relied on a nonempty intersection of feature sets across these
technologies28,32,33, limiting extension of these methods to the type of
cross-modality and cross-scale mapping required for integrating
tissue-scale atlases and molecular scale data.

Here, we build on both of these lineages in presenting a model
equally equipped at representing tissue-scale atlases and molecular-
scale data, and an associated cross-modality registration mechanism
that addresses both challenges of crossing scales and functional
modalities by estimating simultaneously geometric and functional
transformations to align each dataset to the other. Specifically, we
harness the generalizability of image varifolds, which have emerged in
molecular CA34, for simultaneously modeling molecular and tissue-
scale data with both irregular and gridlike sampling schemes in a
common framework (addressed in SLAT and CAST, for instance, by a
graph-based representation in the setting of molecular and cellular
data32,33). A subproblem covered by the image-varifold theory outlined
in ref. 36 is the mapping of molecular scale data to atlas coordinate
systems. As specified there, we estimate minimal energy diffeo-
morphic transformations as in image-based LDDMM17, but where the
action of diffeomorphisms on images has been adapted to the setting,
here, of image varifolds in a consistent manner34. Additionally, we
estimate in tandem a latent distribution over the molecular functional
space for each atlas partition, without the need for the large datasets
often used in deep learning approaches, but by instead relying on an
assumption of spatial homogeneity in distribution across each atlas
partition. We use this latent distribution to transform the functional
spaceof each atlas (i.e., its ontology) to themolecular functional space.
We refer to this method of jointly estimating diffeomorphisms and
latent feature distributions, as Cross Image-varifold LDDMM (xIV-
LDDMM), where the cross emphasizes its ability to map across scales
andmodalities35.Wedemonstrate thismethodologywith two common
implementations of image varifolds (triangulated meshes and point
clouds). First, we introduce themethodology through ademonstration
of mapping both gene-based and cell-based MERFISH datasets to
corresponding sections of the Allen Common Coordinate Framework
(CCFv3)1. Second, we quantify accuracy in mapping specifically char-
acterized cell types in BARseq data36 to the CCFv3. Finally, we illustrate
themethod’s generalizability to additionalmodalities andoffer diverse
examples of its use across the spans of biology in atlas construction,
cross-replicate and cross-species comparison, and data segmentation.

Results
Data model and optimization problem: image varifolds and
transformations for molecular scales based on varifold norms
To accommodate the high feature dimensionality and spatial irregu-
larity of molecular datasets, as described in the Introduction, we har-
ness the recent work that extends the theory of diffeomorphisms and
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image-based LDDMM17 to the setting of image varifolds and estimation
of correspondences between them34,35. We first describe this frame-
work of image varifolds to emphasize their capacity for modeling
diverse types of tissue-, cellular-, and molecular-scale data. Image
varifolds are geometric measures over the product space, R2 ×F ,
therefore encompassing measures over both physical and feature
spaces, R2 and F , respectively. At the finest scale of capture in both
classical imaging and image-based spatial transcriptomics technol-
ogies, wemight model a set of pixels or detections (e.g. mRNA reads)
as a discrete set of point measures (particles) with an elementary
Dirac measure, centered over physical location and feature value for
each detection. At coarser (e.g. cellular) scales or in spot-based
technologies, however, point measurements taken at single physical
locations may capture a range of individual detections. To generalize
to the range of technologies, we model both tissue-scale atlases and
molecular data with semi-discrete image varifolds where the physical
arrangement of measurements is captured by a collection of discrete
point (Dirac) measures, but where each such point measure is asso-
ciated with a full distribution over feature values measured in its
neighborhood. This collection of point measures is indexed by i∈ I,
with discrete measures, δxi

, evaluating to 1 at locations xi 2 R2, and
distributions over feature values modeled as weighted probability
distributions: wipi. Weight, wi, is representative of total mass (e.g.
total mRNA reads or total cells) measured at location xi, thus
enabling an estimate of density over physical space, and probability
distribution, pi, captures the proportions of each feature type within
that mass.

The measure of the complete collection is denoted by the sum:

μ¼:
X
i2I

wiδxi
� pi: ð1Þ

Feature spaces considered here are finite, yielding probability
distributions over 10s–100s of different elements depending on the
application:

• MERFISH gene sections:wi is the total mRNA at location xi, and pi
is the probability distribution on gene (~700).

• BARseq cell sections:wi is the total cells at location xi and pi is the
probability distribution on cell type (~30).

• CCFv3 tissue sections: wi = 1 for location xi in foreground tissue
and pi is the probability distribution on ontology label (~700).

Within this established framework, we align image varifolds cap-
turing tissue-scale atlases to those capturing molecular-scale data via
the estimation of two types of correspondence: one between physical
coordinates (φ) and the other between feature spaces (π). These cor-
respondences act independently and in parallel on the physical and
feature measure components of the image-varifold object. Conse-
quently, while they are both applied in the setting of optimization to
evaluate the alignment of the atlas to target (top panel, Fig. 1) they can
be applied individually as relevant to specific applications including
data segmentation, atlas construction, and cross-specimen compar-
ison, as depicted in the middle panel in Fig. 1.

Regarding physical correspondence, in Computational Anatomy
(CA), correspondence between tissue sections is computed using
coordinate transformation between the sections by solving an opti-
mization problem characterized by the set of possible transformations
to optimize the image similarity function that specifies the alignment
of the sections. These transformations are modeled as affine motions
and diffeomorphisms, φ, which act to generate the space of all con-
figurations.Wemodel physical transformations in the setting of image
varifolds similarly to diffeomorphisms, optimally solving for themwith
LDDMM17. However, while for classical images such as for MRI,
LDDMM17 uses the action of diffeomorphisms on images I as classical

functions using function composition on the right with the inverse of
the diffeomorphism: φ ⋅ I(x) = I∘φ−1(x) for x∈Rd, the action of diffeo-
morphisms on image varifolds is defined, as in34,35:

φ � μ¼:
X
i2I

jDφjxiwiδφðxiÞ � pi , ð2Þ

for the formof the image varifolddefined in (1). Thedeterminant of the
Jacobian, ∣Dφ∣, capturing the local expansion/contraction of physical
space, is introduced to retain the given spatial density of the original
object following physical transformation. Notably, the estimated dif-
feomorphism can be applied in both the forward and inverse direc-
tions, taking tissue-scale atlas to molecular coordinates or vice versa,
as shown in the middle panel in Fig. 1. The bottom panel depicts the
determinant of the Jacobian of the diffeomorphism taking CCFv3
section to MERFISH section (B,G) with areas of local expansion in red
and local contraction in blue.

To define a similarity metric between the deformed atlas and the
target, we also need to carry the feature component of tissue-scale
atlases to the feature space of the molecular target. For this, we
associate to each feature value in the atlas ontology (‘ 2 L), a dis-
tribution (denoted πℓ) over target feature values, capturing the
assumption of spatial homogeneity we make within each atlas region.
Importantly, these distributions are not normalized, enabling the
generation of both a measure of target mass (e.g. mRNA or cells) over
physical space (given by w0

i) and conditional probability distribution
(p0

i) over target features (e.g. gene or cell type). Both molecular mass
and conditional probability distribution are associatedwith each point
measured in the atlas through the mixture distribution:

w0
ip

0
i =wi

X
‘2L

pið‘Þπ‘ , ð3Þ

with wi, pi denoting the initial weight and probability distribution of
the point measure over the atlas feature space and with

w0
ip

0
iðf Þ=

mass of cell type f at location xi for f 2 F = fcell typesg
massof gene f at location xi for f 2 F = fgenesg :

�

The bottom panel in Fig. 1c, h exhibits the estimated mRNA density
(w0

i) for each location in the corresponding CCFv3 section while the
middle column of the middle panel summarizes the estimated prob-
ability distribution over genes (p0

i) with the gene with the highest
probability denoted for each location.

Finally, the estimation and application of both geometric
transformations and latent feature distributions, φ, π, to the atlas
image varifold take it to both the physical and feature space of the
target as necessary to evaluate the similarity function in the opti-
mization scheme (top panel, Fig. 1). In the image setting, the simi-
larity function used is often a norm on functions, and solving the
problem of minimization of the norm in the space of diffeo-
morphisms gives the metric theory of LDDMM for generating geo-
desic matching between exemplar anatomies37,38. Here, the
similarity function is a norm on image varifolds (see “Molecular
scale varifold norm” section), capturing proximity in both physical
and feature spaces of the target. xIV-LDDMM jointly estimates
optimal φ and π (top panel, Fig. 1) to minimize this normed differ-
ence in the space of diffeomorphisms through either simultaneous
or alternating optimization algorithms using LDDMM (see “Alter-
nating LDDMM and quadratic program algorithm for joint optimi-
zation” section), with additional regularization imposed in both
settings on the estimated π to ensure, for instance, positive values
(see “Variational problems” section for explicit variational pro-
blems). Note that throughout we highlight mapping examples using
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both mesh-based35 and particle-based (point cloud)34 implementa-
tions of image varifolds, with detailed construction, similarities, and
differences of each covered in “Construction of image-varifold
representation for different modalities” section. Supplementary
Fig. 1 shows equivalence in these two implementations and in the
corresponding mappings estimated in each case for the CCFv3 and
MERFISH sections shown in Fig. 1.

Generalizability of xIV-LDDMM to settings of complete and
incomplete gene-based and cell-based data
Here, we emphasize the generalizability of xIV-LDDMM for computing
mappings from tissue-scale atlases to datasets spanning a range of
both gene-based and cell-based features. The bottom panel of Fig. 1
specifically summarizes the estimated latent distribution over genes
for each atlas region with the sum over gene counts, exhibiting the

a

f

b c d e

g h i j

Al
le

n 
C

C
Fv

3 
Z=

48
5

Al
le

n 
C

C
Fv

3 
Z=

38
5

Allen CCFv3 Regions Estimated Diffeomorphism
Estimated mRNA Density 

on CCFv3 Geometry
Estimated mRNA Density on 
Deformed CCFv3 Geometry MERFISH mRNA Density

Allen CCFv3 Atlas

 Synthesis of Gene 
Features (    )

D
at

a 
S

eg
m

en
ta

tio
n

C
ro

ss
-S

pe
ci

m
en

 C
om

pa
ris

on
 

Allen CCFv3 Atlas MERFISH Gene Reads

Application of Forward and Inverse Transformation

 Inverse Geometric 
Transformation (       )

to MERFISH 
Coordinates

 Forward Geometric 
Transformation (    )

to CCFv3 
Coordinates

 in CCFv3 
Ontology

 A
tla

s 
C

on
st

ru
ct

io
n 

Allen CCFv3 Atlas

 Synthesis of 
Gene Features

Geometric 
Transformation

 Error Updates Feature Distribution (   ) and Geometric Transformation (    )

Compare 
to 

MERFISH

Transformed CCFv3 Atlas MERFISH Gene Reads

Optimization Scheme

Article https://doi.org/10.1038/s41467-024-47883-4

Nature Communications |         (2024) 15:3530 4



estimateddensity ofmRNAover physical space.However, asdescribed
in “Data model and optimization problem: image varifolds and trans-
formations formolecular scales basedonvarifoldnorms” section, a full
weightedprobability distribution over feature values (e.g. gene type) is
estimated via π for each atlas location that not only contributes to
achieving geometric alignment but can be visualized independently as
reflective of mean distributions in target data. Figure 2a–c, for
instance, shows the relative expression of three genes, (Gfap, Trp53i11,
Wipf3, respectively) over space out of a total set of 20 in the target
MERFISH section shown in Fig. 1. Figure 2e–g show the corresponding
expression of each of these genes in each region of the CCFv3 section,
as estimated through π, with notable similarity in probability magni-
tude and variation over space. Figure 2d, h showcase another com-
parative summary of the estimated feature distributions for the
CCFv3 section versus MERFISH expression in depicting at each loca-
tion the most probable gene type. The assumption of spatial homo-
geneity in distribution is evidenced here, particularly in large areas of
the CCFv3, such as the striatum, where each gene carries a single
probability of expression across the entire region and Kirrel3 is uni-
formly the most probable gene type.

The previous result solved the mapping problem between CCFv3
andMERFISH sections based on themRNA reads directly. Often, these
raw mRNA reads are segmented into discrete cells as a mode of data
reduction followed by downstream analyses clustering the cells into
discrete cell types. We emphasize that there are various methods for
solving the segmentation to cells and thereby dimension reduction as

determined by the specific imaging technology. Some of the methods
are rooted in image-based segmentation schemes such as the Water-
shed algorithm, operating jointly on transcriptional data and immu-
nofluorescence images such as DAPI stains39, while others utilize
learning-based methods40 for accommodating often a wider diversity
of cell shapes and sizes. In either case, the assignment of mRNA reads
to specific cells introduces a layer of functional information at the
micron scale, which can now be modeled in lieu of or in tandem with
the functional information at the nanometer scale (e.g. raw mRNA
reads) as the feature space of a target image varifold to which we wish
to map sections of an atlas.

We demonstrate the efficacy of xIV-LDDMM for mapping tissue-
scale atlases to cellular-scale data inmapping CCFv3 section Z = 675 to
a section of cell-segmented MERFISH transcriptional data (courtesy of
the JEFworks Lab, Johns Hopkins University) (Fig. 3). The total gene set
measured is ≈500 genes, with each transcript assigned to a single cell.
Transcriptional profiles per cell are clustered into 33 distinct clusters
using Leiden graph-based clustering41 and annotated as cell types
based on known marker genes. This gives a cell-based dataset analo-
gous to the transcript-based dataset used in the above where we now
capture the spatial density of cells, and conditional probability dis-
tributions over cell types, which can be summarized via the depiction
of the cell type with the highest probability at each location in space
(Fig. 3a). The latent cell type distribution per each CCFv3 region,
estimated in tandem with the geometric transformation taking
CCFv3 section toMERFISH spatial coordinates exhibits similarity to the

Fig. 1 | Methodology and results of xIV-LDDMM for transforming
CCFv3 sections toMERFISHspatial transcriptomic countsof 20 selectedgenes.
Top panel shows an iterative optimization scheme to estimate geometric trans-
formation (φ) and latent feature distribution (π) by minimizing the normed dif-
ference (error) between the geometric and feature-transformed CCFv3 section to
target MERFISH. Middle panel illustrates the application of estimated geometric
transformation (φ) to deform the CCFv3 atlas to MERFISH coordinates (left); the
application of latent feature distribution (π) to generate gene distributions on
initial CCFv3 geometry (middle); and the application of inverse geometric trans-
formation (φ−1) to deformMERFISH genes to CCFv3 coordinates (right). Gene with
the highest probability of expression at each location is shown as a MERFISH

feature. Bottom panel illustrates the results of mapping CCFv3 sections to corre-
sponding MERFISH sections. a, f 10μm atlas sections at Z = 385 and Z = 485 out of
1320 visually chosen to match MERFISH architecture (e, j) rendered as meshes at
100μm. e, j MERFISH sections rendered as meshes at 50μm, with mRNA density
depicted as a feature. b, g Geometric mappings (φ) of CCFv3 sections to MERFISH
coordinates with the approximate determinant of the Jacobian showing areas of
contraction (blue) and expansion (red). c, h Estimated mRNA density per atlas
region (w0

i in (3)), as given by π shown in CCFv3 coordinates. d, i Estimated mRNA
density shown per atlas region following geometric deformation to MERFISH
coordinates.
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Fig. 2 |Measuredandpredicted spatial patterns of gene expression for a subset
of 20 genes measured by MERFISH. a–c Relative expression on target section of
MERFISH transcriptomics data for three genes (Gfap (a), Trp53i11 (b),Wipf3 (c)) out
of a set of twenty (shown at the right), with demonstrated spatial variability
according to a computed mutual information score. e–g Predicted expression for
the same three genes (Gfap (e), Trp53i11 (f), Wipf3 (g)) in each region of the

CCFv3 section Z = 485 out of 1320, as part of the latent distribution over genes
estimated in tandemwith a geometric transformation to align the CCFv3 section to
MERFISH section. d Gene with the highest probability in MERFISH target section.
h Predicted gene with the highest probability in estimated latent distribution for
the CCFv3 section.
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MERFISH target in both total cell density and cell type with highest
probability predicted per CCFv3 region (Fig. 3a). Alternatively, each
MERFISH section canbe characterizedwith a feature space over genes,
and a corresponding latent distribution over genes can be estimated
via xIV-LDDMM in mapping the same CCFv3 section to MERFISH gene

target (Fig. 3b, c). Here, we subsample the entire gene space by
selecting a subset of six genes (Baiap2, Slc17a6, Adora2a, Gpr151,
Gabbr2, Cckar) as those most spatially varying according to Moran’s I
score42. We combine both cell density and gene expression by aggre-
gating the individual mRNA transcripts into an average gene
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Fig. 3 | Mapping of CCFv3 section Z = 675 out of 1320 to single MERFISH cell-
based section with either cell type or gene feature spaces. a Top row depicts
MERFISH target rendered as a mesh with cell density (left) and cell type with the
highest probability (right) used to summarize cell typedistributions. Bottomshows
predicted cell density (left) and cell typewith the highest probability (right) for the
latent feature distribution estimated for each CCFv3 region in the native CCFv3

coordinates.b, cTop rowdepicts the probability of expression for each gene out of
a subset of 6 selected from a total measured set of ~500 as those with high spatial
variance. Bottom rowdepicts the estimatedprobability of expression for each gene
for the latent feature distribution estimated for each CCFv3 region in the native
CCFv3 coordinates.
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expression feature per cell and normalizing the total mRNA per cell to
1. The target and estimated probabilities for each gene out of this
subset of six are shown following the estimation of an alternative
geometric transformation and latent distribution, now, over genes
rather than cell types. Correspondence is seen in both the absolute
magnitude as well as the relative probability of each gene between
those in the target MERFISH section and those resulting from the
estimated feature laws, π. Two examples include the area of high
Baiap2 expression adjacent to the hippocampus (probability ≈0.95)
and the area of high Slc17a6 expression in the rhomboid nucleus
(probability ≈0.6), both depicted in Fig. 3b. This correspondence
serves to reinforce the validity in the estimated feature laws in
xIV-LDDMM.

Notably, the assumedbiological correlationbetween cell type and
pattern of gene expression implies that signals of variation across cell
types at the scale of microns should also exist across gene types at the
scale of nanometers. Consequently, we might expect similar spatial
deformation of a tissue-scale atlas in mapping onto the same geo-
metric target, but with conditional feature distributions defined over
either gene or cell types, with partition boundaries deforming to
match regions of homogeneity that would be roughly consistent
across genes and cells. Supplementary Fig. 2 shows the diffeomorph-
ismestimated in the two cases (6 genes and cell type) in Fig. 3 together
with that for a third feature space comprised of a second set of 7
different genes selected for high spatial variance using mutual infor-
mation. We observe the global similarity in spatial pattern and mag-
nitude of contraction and expansion occurring but with nuanced
differences in areas where these feature spaces likely emphasize dif-
ferent boundaries. Hence, the manifest stability in the geometric
mappings jointly estimated with the feature laws over three different
feature spaces supports the stability of our method in the face of
different numbers and types of features but also speaks to the stability
of the biological organization across tissue, cellular, and molecular
scales.

Finally, we emphasize the generalizability of our mapping meth-
odology across particularly image-based spatial transcriptomics tech-
nologies by showcasing the alignment of a cell-segmented BARseq36,43

partial coronal section to a corresponding full coronal CCFv3 section
(Supplementary Fig. 3). Note that cells were typed according to the
same procedure used for the full coronal section highlighted in
“Quantitative and comparative evaluation of xIV-LDDMM” section. The
costs involvedwithmanyof theseemerging technologies coupledwith
their use in studying particular subregions or brain circuits of interest
has caused the partial measurement of tissue areas to be incredibly
prevalent across both image-based and spot-based technologies44.
Consequently, this generates even greater variety in the scope and
shape of tissue sections measured, only further emphasizing the need
for aligning such partial captures to a common scaffold, such as an
atlas coordinate system, where information can be merged across the
intersection of these captures. The image-varifold representation,
particularly in its semi-discrete form as used here, is amenable to
representing data with regions of missing or disrupted capture as an
extension of the irregularity in sampling that is assumed in the general
case. To estimate mappings in these cases, variation in both the forms
and sizes of kernels governing the varifold norm (see “Molecular scale
varifold norm” section) can control the granularity to which matches
between atlas and target should be evaluated,with coarser scalesmore
appropriate to noisier tissue sections with higher numbers of artifacts.
Additionally, the varifold normed difference in the cost function, as
presented in (10) in “Variational problems” section can be appended
with spatially varying weights, as used in settings of mapping digital
pathology to MRI22 to prioritize matching amongst certain intact
regions over others. We utilize this strategy to align a partial BARseq
section to a corresponding full CCFv3 section where initial geometric
offset (Supplementary Fig. 3A) requires accurate estimation of scale,

rigid, and diffeomorphic transformations to position the partial cap-
ture within the scope of the correct CCFv3 hemisphere (Supplemen-
tary Fig. 3B).

Quantitative and comparative evaluation of xIV-LDDMM
We specifically evaluated the efficacy of xIV-LDDMM in mapping
CCFv3 sections to corresponding coronal sections of BARseq cell-
segmented and subsequently cell-typed data. As described in ref. 37,
cells were segmented in the BARseq data using Cellpose45. Gene
reads were assigned to cells, and cells containing fewer than 5 unique
genes and 20 total gene counts were excluded. Cells were clustered
using an iterative clustering approach based on Louvain clustering to
achieve a similar resolution as a subclass in recent single-cell RNAseq
studies46.

Given the difference in atlas and target modalities mapped with
xIV-LDDMM, traditional measures of accuracy, such as Dice overlap
score, as are often used to evaluate image registration tools cannot be
directly applied. Furthermore, landmarks common to both atlas and
target modalities are not typically readily available or necessarily
identifiable given the diversity in measures taken by molecular
modalities3. Consequently, to evaluate the accuracy, particularly in the
geometric alignment achieved with xIV-LDDMM, we matched corre-
sponding atlas feature values (regions) with target feature values (e.g.
cell types) and quantified the resulting distance individual cells of a
given type from the atlas region in which we expect to find them.

We quantified accuracy by computing the set distance between
cells of types specific to hippocampal regions (e.g. CA1, CA2, and CA3
pyramidal cells and DG granule cells) and particles of these regions in
the CCFv3. We specifically defined this distance for each cell, indexed
by c 2 CR, for region R, as:

dc = min
a2AR

k xa � yck22 , ð4Þ

where location yc was the given 2D coordinate of the cell in the native
BARseq coordinate system, and the setAR refers to the set of indexed
locations in the atlas section with feature value (region label) of R (e.g.
with pa(R) = 1, and pa(f) = 0 for f ≠ R). We compared these distances to
those after deformation, by replacing yc with the mapped position of
each cell marker to the CCFv3 section: φ−1(yc), via the inverse diffeo-
morphism estimated in our joint image-varifold-based method.
Figure 4 depicts these measures for two separate CCFv3 sections
mapped to two corresponding sections of BARseq cell data. Initial
positions (Fig. 4a, c) of CCFv3 regions versus cells give distances
(Fig. 4e, g) on the order of 1mm, where notably, neighboring particles
in the CCFv3 are at 10 μm, thus giving a lower bound to distance
metrics wemight expect for cells to be neighboring CCFv3 particles. In
contrast, the positioning of CCFv3 regions versus cells following
geometric transformation reflects the effects of rotations, translations,
scale, and diffeomorphisms effectively estimated to bring them into
correspondence (Fig. 4b, d). Kernel size governing diffeomorphism
regularization and varifold norm matching were both on the order of
100μm. Median distances for all three regions in the first section are
on the order of 20−30μm(Fig. 4f) whereas those in the second section
are on the order of 5μm for CA1 and DG and 300μm for CA3 (Fig. 4h),
whichwe assume is coming from the separate group of cells labeled as
CA3 at the edge of CA1 (indicated by the white star) in contrast to the
group overlaying the CCFv3 region, which falls within the first 10μm
bin. Note that this discrepancy likely stems in part from the
approximation of each BARseq section as a strictly coronal section
of theCCFv3,where the cuttingplane is instead slightly offset from this
coronal plane. In any case, we observe in both sections an accuracy on
the order of 10−30μm, analogous in the image setting to cells being
mapped to within 1–3 pixels (at a resolution of 10μm) to the
appropriate atlas region.
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Wealso comparedour joint image-varifold-based approach in xIV-
LDDMM to a classical image-based approach matching, estimating
only a geometric transformation and matching based on foreground-
background (Fig. 5). We mapped one of the same CCFv3 sections
(Z = 837) to an image rendering of the BARseq cell section, with
grayscale intensity capturing density of cells over space. Both CCFv3
and BARseq images were discretized at 50μm resolution to estimate
the mapping, with the latter computed with Gaussian smoothing, and
image-based LDDMM, as described in ref. 17 was used to estimate
optimal diffeomorphic transformation of the atlas to the target. To
compare these methods more directly, a 10μm BARseq image was

transformed with the estimated diffeomorphism to the CCFv3 space
(Fig. 5a) as closer to the particle-based representation at full resolution
used for estimation of the diffeomorphism in the image-varifold based
mapping (Fig. 5c). At this resolution, ~1.5 million pixels are needed to
model the BARseq data as an image whereas only ~90k particles are
needed in the image-varifold representation. In addition to the com-
putational and memory expense of image handling, we compromise
our ability to delineate one cell from another, as evidenced in the blur
in the image rendering (Fig. 5a) versus image-varifold representation
(Fig. 5c), with 75% of cells having a nearest neighbor less than 23μm
away and 25% having a nearest neighbor less than 3.5μm away in the

Initial Positions Non-Rigid Alignment

a b

c d

Initial Distances Distances Following Alignment
e

g

f

h

Fig. 4 |Quantificationof accuracy in twocoronal slices of CCFv3mapped to two
corresponding slices of BARseq cell data classified into 52 cell types. a, b Initial
positions of cell markers (circles) from BARseq sections in three hippocampal
regions (CA1, CA3, Dentate Gyrus (DG)) and initial positions of equivalent CCFv3
regions in corresponding coronal sections (Z = 877 and Z = 837 out of 1320). e, g Set
distance of cell markers to CCFv3 region in initial positions. c, d Positions of cell
markers (circles) in BARseq sections mapped to CCFv3 coordinates with xIV-

LDDMM and positions of equivalent CCFv3 regions in corresponding coronal
sections. f, h Set distance of cell markers to CCFv3 region in aligned positions
following estimation of diffeomorphismwith xIV-LDDMM. Percents of cell markers
clipped to 25% in all histograms, with 70%, 50%, and 60% cell markers within 10μm
inCA1, CA3, andDG, respectively in (f) and 95%, 35%, 60%cellmarkerswithin 10μm
in CA1, CA3, and DG, respectively in (h).
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BARseq capture. Nevertheless, with a kernel of bandwidth 10μm used
to generate the 10 μm smoothed image and most regions at least on
the order of 100μm inwidth at their narrowest (e.g. corpus callosum),
the majority of cell mass stayed primarily within the initial region it
was found.

Regarding alignment, an image-based approach can achieve glo-
bal alignment of the template to the target (Fig. 5a), with initial dif-
ferences in scale and shape (Fig. 4b) resolved with the estimated
transformation. However, we see clear differences in alignment on the
order of 50−150μm by examination of the overlap in the different
layers of the cortex and adjacent corpus callosum (Fig. 5b, d). Impor-
tantly, as described in “Data model and optimization problem: image
varifolds and transformations for molecular scales based on varifold
norms” section, in the joint image-varifold-based approach to esti-
mating geometric transformations and latent distributions, we model
each atlas region as homogeneous and stationary with respect to
space. This gives an optimal alignment between the atlas and target
that maximizes similarity in distribution over features across each site
in a single atlas region while minimizing the energy of the geometric
deformation (diffeomorphism).Wewould consequently expect this to
skew emphasis away from the foreground-background boundaries
that typically govern image alignment and instead highlight the
underlying assumptions in the architecture of the cartoon atlas, whose
boundaries were initially constructed so as to maximize the homo-
geneity of the region. This becomes clear in comparing the alignment
of BARseq to CCFv3 section in areas of low versus high cell density
where these areas of low density correctly alignwith layer 1 and corpus
callosum (CC) as a result of the image-varifoldbased approach (Fig. 5d)
but not in the image-based approach (Fig. 5b). Notably, the corpus
callosumanddorsal hippocampal commisure appearwith equivalently

low cell density on both right and left hemispheres in the image-
varifold-based approach (yellow arrow) whereas we see these areas
partially covered by CA1 cells, particularly in the right hemisphere in
the image-based approach. Layer 1 (white arrow) is coveredbyhigh cell
density around the entire circumference of the coronal section in the
image-based approach, whereas it is visible, with relatively few cells
mapping to it, as expected, in the image-varifold-based approach.
Supplementary Fig. 4 shows the relative cell density in each of the
cortical layers andwhitematter structures within the neighborhood of
the primary visual cortex, with xIV-LDDMM showing more accurate
alignmentwith higher levels (4–6×) in layers 2–6 comparedwith layer 1
and white matter. Image-based LDDMM, in contrast, yields similar
levels of cell density across all of these structures,with thebandof high
cell density in BARseq layers 2–6 covering the entirety of the cortex,
thus generating overestimates (4–6×) of cell density in layer 1. Cell
density within CA1 also covers the areas of the corpus callosum,
leading to overestimates of density there. Finally, as the image-
varifold-based approach jointly considers both variations in the total
density of cells and relative distribution of cell type, we seewithin each
layer of cortex delineated in the CCFv3, a majority of corresponding
cell types indicating correct layer-by-layer alignment (Fig. 5d). Classi-
fication of cells by nearest atlas region yields 88% of layer 2/3 cells
(total 443), 86% of layer 4/5 cells (total 436), 87% of layer 5 cells (total
278), and 70% of layer 6 cells (total 608) classified correctly according
to cortical layer, within a 1.5mm2 section through the primary visual
cortex shown in Fig. 5. In contrast, for a similar section in the result of
image-basedmapping (Fig. 5b), 38% of layer 2/3 pixels (total 308), 36%
of layer 4 pixels (total 269), 64% of layer 5 pixels (total 225), and 78% of
layer 6 pixels (total 326) are classified correctly according to nearest
cortical layer.
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Fig. 5 | Comparison of mapping CCFv3 section Z = 837 out of 1320 to corre-
sponding BARseq cell data using image-based LDDMM17 versus image-varifold-
based mapping method. a Estimated diffeomorphic transformation applied to
10μm smoothed cell density image to bring into overall alignment with
CCFv3 section in CCFv3 coordinates. Source and target images rendered at 50μm
for image-based LDDMM, with matching based on foreground/background in
CCFv3 section to smoothed cell density in BARseq. b Estimated diffeomorphic
transformation applied to 5μm cell type image highlighting noticeable misalign-
ment in (a) of high cell density areas to layer 1 and white matter structures (corpus

callosum and dorsal hippocampal commissure) in CCFv3 section with image-based
LDDMM. Layer-by-layer mismatch (~150μm) observed between characteristic
BARseq prescribed layer-specific cell type and CCFv3 delineations. c Estimated
diffeomorphic transformationwith xIV-LDDMMapplied to BARseq section to bring
into overall alignment with CCFv3 section in CCFv3 coordinates without mis-
alignment in white matter structures. d Layer-by-layer matching in CCFv3 partition
of cortex to cell types in BARseq following image-varifold based mapping.
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Cross-replicate comparison and atlas construction
As described in the Introduction, two key applications of xIV-LDDMM
are in cross-sample comparison and atlas construction. We illustrate
both of these applications in considering cell-typed MERFISH sections
taken from three separate mice at approximately the same coronal
level (Fig. 6a–c). CCFv3 section Z = 890 out of 1320 was mapped
separately to each of these targets with both geometric transforma-
tions and latent feature distributions estimated in each case. As in the

classical imaging setting with LDDMM, comparison of the estimated
diffeomorphisms taking the CCFv3 section to each respective target
section offers one metric of similarity between both atlas and target
and across targets37,38 (Supplementary Fig. 5A–C). Here, the
CCFv3 section contracts to a similar extent (~0.5) in all three mice in
areas of the midbrain around the periacqueductal gray matter. In
contrast, levels of contraction/expansion across the cortical layers in
the primary visual area range from 0.7 to 1.4 across the three mice,

Rigid+Scale Diffeomorphism Spatial Variance in Cortical Regions 
(3 Mouse Replicates)

Spatial Variance in Cell Type Probability Distribution
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Fig. 6 | Cross-replicate comparison and atlas construction from mapping
CCFv3 sectionZ = 890out of 1320 toMERFISHcell-typedcoronal sections from
threemice at approximately the same location. a–c Position and cell type for all
cells measured in each mouse section. d-f CCFv3 section geometrically trans-
formed to each target space with the most probable cell type in estimated latent
distribution shown for each atlas region. g–i Initial CCFv3 section with summative
statistics of empirical probability distribution over cell types estimated from the
inverse transformation of all three replicates to CCFv3 coordinates. g Variance in
estimated empirical probability distributions across replicates. White dotted arrow

highlights area around medial geniculate nucleus with variance in cell types
between replicates shown in (a–c). hMost likely cell type in empirical distribution
estimated from all three replicates. i Spatial variance in empirical probability dis-
tribution per each atlas regionwith white arrowhighlighting region of outer cortex
varying in ependymal cell and excitatory pyramidal neuron distributions across the
space of the region. j Spatial variance in empirical cell type distribution following
rigid+scale (left) versus diffeomorphic (right) transformations in each of the three
mice. k Reduction in spatial variance in two adjacent areas of cortex (red/blue box
in j) following rigid+scale or diffeomorphic transformation in mice.
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indicating differences in geometric shape. In xIV-LDDMM, the jointly
estimated latent feature distributions offer a second metric of simi-
larity (Supplementary Fig. 5D–G). Differences in the predicted cell type
with highest probability occur, for instance, in the perirhinal and
ectorhinal areas with excitatory granule cells, excitatory pyramidal
neurons, or cortical excitatory neurons predominant in the different
mice (Fig. 6d–f). The sample variance for each atlas region across the
three estimated cell type probability distributions,modeled as vectors,
p 2 RC , for C = 33 cell types and ∣p∣ = 1, measures difference not just in
the single cell type with highest probability, but amongst the entire
estimated distributions over cell type for each mouse (see “Empirical
distribution estimation and cross-replicate statistical comparison”
section). Sample variance (Supplementary Fig. 5F, G) is computed as
1

N�1

PN
i = 1 k pi � �pk22 in RC , with N = 3 and �p, the sample mean (Sup-

plementary Fig. 5D, E). Notably, the area of the medial geniculate
nucleus, while exhibiting excitatory neurons as the predominant cell
type across mice, exhibits high variance in total distribution. This
region is magnified in Supplementary Fig. 6A, illustrating this variance
in relative distribution of excitatory neurons, astrocytes, endothelial
cells, and ependymal cells.

Regarding atlas construction, the sample mean cell type dis-
tribution across those latent distributions estimated jointly with geo-
metric transformations (Supplementary Fig. 5D, E) gives one potential
construction of a cell type atlas over space. A finer-grained atlas can
alternatively be achieved in this setting by pulling back each target
MERFISH section onto the same CCFv3 section via the inverse esti-
mated diffeomorphism (Fig. 1). This eliminates some of the variance in
geometry between targets (Supplementary Fig. 5A–C), facilitating
more direct comparison of cell type distributions. Particles (analogous
to foreground pixels) in the CCFv3 section serve as a scaffold for
resamplingmapped cells to with either a nearest neighbor assignment
or dispersion of cell mass according to kernel choice (see “Empirical
distribution estimation and cross-replicate statistical comparison”
section). Atlases can be constructed from the resampling of each tar-
get individually, with variance across the replicates’ empirical cell type
probability distributions (Fig. 6g) similar to those estimated jointly in
xIV-LDDMM (Supplementary Fig. 5D–G), but also together for gen-
eration of a population average (Fig. 6h). Importantly, each particle,
here, is treated independently without assuming homogeneity in the
cell type distribution across particles belonging to the same atlas
region. This is in contrast to the distributions estimated jointly with
geometric transformations (Fig. 6d–f), and consequently results in
more locally varying distributions. Overall, ventral areas exhibit higher
spatial variance than dorsal areas (Fig. 6i), exhibiting that in such
regions, an assumption of homogeneity within these regions may not
always be appropriate. The white arrow, in particular, points to an area
of cortex where this spatial variance is amongst the highest, with the
outermost portion of cortex predominantly composed of ependymal
cells versus the innermost portion predominantly excitatory pyr-
amidal cells (see Supplementary Fig. 6B).

The spatial variance in cell type distribution within each atlas
region and the variance in distribution between replicates of a given
population both influence the statistical power needed to detect
biologically relevant differences in these distributions between
populations. Classically, they are accounted for in mixed effects
models47 aimed at detecting differences in group features. For
instance, we have looked at differences in atrophy rate of medial
temporal lobe structures between control and diseased cohorts in
Alzheimer’s disease19,48. Here, we observe greater spatial variance
across ventral regions than dorsal regions (Fig. 6i), with particularly
minimal variance in layers of cortex. Importantly, the use of non-rigid
geometric transformations (diffeomorphisms) to pull back targets
into CCFv3 coordinates reduces this spatial variance in distribution
across cortical layers (Fig. 6j, k) compared with rigid and scaling
transformations only in each of the three mice. Consequently, in

settings of comparing groups of replicates under different experi-
mental conditions, we would expect this reduction in variance to
facilitate detection of significant differences in cell type distribution
per CCFv3 region between them.

Here, the small sample size (n = 3) of replicates, which are all
produced under control conditions, precludes any definitive statistical
statement about variations in cell type distributions observed between
them and within CCFv3 regions. Nevertheless, summation across all
CCFv3 regions of the variance per individual cell type probability
between replicates and within each region (Fig. 7) elucidates the rela-
tive contribution of each cell (sub)type probability to the variances
observed in Fig. 6g, i. We observe, for instance, with both types of
variance, a large contribution from the variance in ependymal cell type
probabilities (Fig. 7a, b). Specifically between replicates, excitatory
neurons exhibit the second largest variance in cell type probabilities,
as evidenced in the area of the dentate gyrus (Fig. 7c–e).With regard to
spatial variance, we see specific astrocyte subtype probabilities with
large variance, exhibited particularly in the areas of CA1 (yellow arrow)
and the pons (orange arrow) both medially to laterally within the
regions andwhen considering left versus right hemispheres (Fig. 7f, g).
In contrast, other astrocyte subtype probabilities (Fig. 7h) are seen to
be consistent over space, in line with our assumption of homogeneity
within each CCFv3 region.

Extension to additional tissue modalities for within and across
species comparison
Constructed across institutions with varying combinations of mole-
cular, chemical, genetic, and electrophysiological signals, multiple
atlases per species now exist with different levels of granularity and
intended applications1,2,49–52. Given this plethora of atlases, each of
whichmight define a different partitioning scheme over the same area
of tissue, questions of comparison and relevance of each atlas to
emerging molecular and cellular signatures naturally arise53. While
some atlases have been defined in the same coordinate framework—
often achieved through existing methods of image registration or
manual alignment53—many exist in different coordinate frameworks.
Together with mismatches in the number, type, and positioning of
partitions, this poses a challenge not only to the evaluation of each
atlas ontology’s fit to a molecular target but also to the ready com-
parison of atlas to atlas and the establishment of a clear metric of
similarity between them. Hence, a second application of our method
rests in its use to map not just atlas to the molecular dataset, but one
atlas to another, with the geometric and functional correspondences
(φ, π) yielded by our method serving as an anchor for cross-
examination of existing ontologies both within and across species.

To map tissue-scale atlas to tissue-scale atlas, we model both
objects as image varifolds, as described in “Data model and optimi-
zation problem: image varifolds and transformations for molecular
scales based on varifold norms” section, but where both template and
target are constrained to be of constant density (wi = 1 for all xi in
foreground tissue). Both geometric transformations and latent feature
distributions, (φ, π) are estimated, with the latter giving distributions
over the target atlas features (labels) for each template atlas label,
following the assumption of spatial homogeneity with each template
atlas label presumed to map onto a single distribution of target atlas
labels.

The joint estimation of geometric transformation, φ and condi-
tional feature laws, ðπ‘Þ‘2L in xIV-LDDMM offers two modes of quan-
titative comparison between atlas ontologies. First, as in the classical
image setting of LDDMM, the determinant of the Jacobian, ∣Dφ∣, of the
estimated diffeomorphism, can be used as a metric of how similar the
atlas ontologies are, reflective of how much boundaries of partitions
move to maximize the overlap between homogeneous regions. How-
ever, unlike in classical image settings, the estimation of the additional
family of feature laws here,π, affords a secondmetric of similarity with
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the computation of the entropy of the estimated conditional feature
distributions.

The first panel in Fig. 8 shows the results of mapping one mouse
atlas ontology to another with the Z section 680 in the CCFv3mapped
to the corresponding section in the Kim Lab Developmental atlas,
termed Developmental Common Coordinate Framework (DevCCF)51,
(Fig. 8a–c and vice versa Fig. 8d–f). Allen CCFv3 and DevCCF anato-
mical delineations utilize two distinct ontologies based on cytoarchi-
tecture and genoarchitecture, respectively1,51,54. Fig. 8a, d depict the
geometry of the section under each ontology, with the CCFv3 section
hosting ≈140 independent regions and the DevCCF section ≈80. In this
setting, both atlases are published in the same coordinate framework,
giving φ = Id and thus, highlighting, instead, the estimated distribu-
tions over the other ontologies. Figure 8b, e depict the estimated
conditional probability distributions, p0

i, i 2 I, for each atlas section

over the other atlas section’s ontology. The label with the highest
probability in these distributions is plotted for each simplex in the
mesh and which is consistent across each partition of each original
atlas, given the homogeneity assumption in our model (i.e. a single πℓ

for each ‘ 2 L). The comparatively larger set of labels in the CCFv3
ontology results in labels being omitted from the corresponding esti-
mated set of labels on the DevCCF ontology section Fig. 8e in the
isocortex while multiple regions in the CCFv3 ontology carry the same
most probable region in the DevCCF ontology. The differences in
granularity with which each atlas segments the various areas of tissue
are captured by the entropy of the estimated conditional feature dis-
tributions, for each simplex of themesh (Fig. 8c, f). The entropy of the
distributions estimated for the DevCCF ontology over the CCFv3
ontology Fig. 8f is on average, higher, than that of the distributions
estimated for the CCFv3 ontology Fig. 8c, with probability mass
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Fig. 7 | Variance in individual cell subtype probabilities across replicates and
across space within individual CCFv3 regions. a Variance in estimated cell sub-
type probabilities per CCFv3 region across three replicates summed overall CCFv3
regions. b Spatial variance of cell subtype probabilities, estimated empirically from
three pulled-back MERFISH sections, per CCFv3 region and summed across all
regions. c–e Probability of excitatory neuron subtype 2 (star in a) for each of the
three mice in CCFv3 coordinates. Yellow arrow highlights the area of the dentate
gyrus with differences in excitatory neuron subtype 2 probabilities. f–h Probability

for astrocyte subtypes 1,2, and 3 (stars in b) in empirical distribution computed
from all three mice in CCFv3 coordinates (most likely cell type shown in Fig. 6h).
Yellow arrow highlights area of CA1 with differences in astrocyte probability
medially to laterally in subtypes 1 and 2 but not 3. Orange arrow highlights differ-
ences medially to laterally and left and right in areas of the pons in astrocyte
probability for subtypes 1 and 2 but not 3. Black lines indicate boundaries between
CCFv3 regions.
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distributed across ~5–7 different CCFv3 regions for each DevCCF
region of the isocortex. Nevertheless, we see close to 1:1 correspon-
dence between CCFv3 and DevCCF labels in the center section of the
slice, where the entropy of the estimated distributions is near 0.

Atlas comparison can be conducted both independently and
within the context of particular molecular targets. For example, here,
we compare corresponding sections of the CCFv3 and DevCCF
atlases51 via mapping each section to the same cell-segmented

MERFISH section and comparing both estimateddiffeomorphisms and
cell type distributions (Fig. 8g–l). Cell type distributions are compared
via visualization of the cell type with the highest probability within
each region (Fig. 8g, j) and the overall entropy of the estimated dis-
tribution per region (Fig. 8i, l). The areas of the hippocampus (dashed
circle) and striatum and amygdala (arrow) are partitioned with differ-
ent levels of granularity. This leads to different optimal geometric
transformations, as characterized by the determinant of the Jacobian
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Fig. 8 | Comparison of corresponding sections in CCFv3 and DevCCF atlases
both independently and in the context of being mapped to a cell-based MER-
FISH target. a, dOriginal CCFv3 and DevCCF ontologies at location Z = 680 out of
1320. b CCFv3 geometry with predicted DevCCF atlas ontology. Delineations of
original CCFv3 partitions are outlined in gray. e DevCCF atlas geometry with pre-
dicted CCFv3 ontology. Delineations of original DevCCF partitions are outlined in
gray. c, f Entropy of predicted ontologies, with higher entropy values (light) indi-
cating less 1:1 correspondence between ontologies. g Predicted cell type with
highest probability per simplex in CCFv3 atlas following mapping to MERFISH

target (shown in Fig. 3) with xIV-LDDMM. j Predicted cell type with a highest
probability per simplex inDevCCF atlas followingmapping to sameMERFISH target
with xIV-LDDMM. h, k Estimated geometric transformation, φ1, in each setting
applied to each atlas, with areas of expansion (red) and contraction (blue) as
measuredby the determinant of the Jacobian.White arrowhighlights differences in
ontologies in amygdala and striatum designation leading to different geometric
transformations. i, l Entropy of estimated cell type distribution per simplex in atlas.
Circled area of the hippocampus highlights differences in atlas ontologies leading
to differences in the estimated entropy of cell type distributions.
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(Fig. 8b, e), anddifferent predicted cell typedistributions (Fig. 8c, f). As
discussed above, though both atlases are published as geometrically
aligned51, the diffeomorphism solving the variational problem, here,
transforms geometrically the homogeneous regions between the atlas
and target. Hence, regions of the amygdala and striatum undergo
significant contraction in the optimal mapping of DevCCF but not
CCFv3 to MERFISH given the partitioning of this region into fewer and
thus larger presumed homogeneous regions in the DevCCF atlas. Just
as entropy in estimated distribution can be used to compare atlas to
atlas, directly, we examine it here comparatively between atlases as an
indication of which regions in which atlas achieve more or less
homogeneous cell type distributions (Fig. 8i, l). Here, the hippo-
campus is more finely partitioned in the Kim atlas, which yields lower
entropy distributions over cell types than in those estimated for
the CCFv3.

Atlas ontologies can be mapped not just within species but also
across them, where both geometric transformations and estimated
ontology distributions, together reflect metrics of comparison
between the two. As an example, we map a coronal section, Z = 537, in
the CCFv3 to a coronal section, Z = 628 in the Waxholm Rat Brain
Atlas52, with both sections chosen to correspond as sections through
the anterior commissure (Fig. 9). Here, the CCFv3 ontology is com-
prised of ≈ 120 regions (Fig. 9a)with ≈30 for theWaxholmatlas section
(Fig. 9d). Initial differences in size and shape exist between the two
tissue sections (Fig. 9b). After scaling the volumeof themousebrainby
1.5, additional deformation, with magnitude given by the determinant
of the Jacobian, ∣Dφ∣, distorts both internal and external tissue
boundaries to align homogeneous regions in each atlas, such as cin-
gulate area to cingulate area (white arrow). Estimated distributions
over the Waxholm ontology labels for each region in the CCFv3 are
shown in Fig. 9c, f, summarized by the maximum probability label
(Fig. 9f) and measures of entropy (Fig. 9c), which highlight in gray,

CCFv3 regions mapping to ≈3–4 Waxholm regions versus those in
black achieving 1:1 correspondence.

Extension to additional cellular-scale modalities for image
segmentation
With the computational constraints imposed by modeling spatial
transcriptomics datasets as classical images, this work has emphasized
themapping of tissue-scale atlases tomolecular datasets generated by
emerging image-based rather than the often regularized spot-based
spatial transcriptomics technologies. However, as exhibited through
the modeling of atlas sections as image varifolds, themselves, both as
template and target (see “Extension to additional tissue modalities for
within and across species comparison” section), the xIV-LDDMM is
equally capable of aligning tissue-scale atlases to alternativemolecular
and cellular-scale modalities. As an example, we take a DAPI-stained
tissue section (Fig. 10), digitized at 2.5μmresolution, corresponding to
the gene-based MERFISH section shown in Fig. 1. The DAPI image (~13
million pixels) is converted to an image-varifold particle representa-
tion by discretization of its image values into ~35 discrete bins, and
selection of foreground pixels with corresponding image values in the
later 30 of these bins. Approximately 250k particles are used to
represent these pixels, with each particle pertaining to a set of 25
neighboring pixels (5 × 5 square). Particles each carry the distribution
of bins into which the image values of these 25 pixels fall, retaining the
individual values of each foreground pixel at the highest resolution in
contrast to typical image downsampling, inwhich a pixel only captures
the single mean image value of its neighbors.

Figure 10 depicts this particle representation of the DAPI image
and its positioning before and after alignment with the corresponding
CCFv3 section. Similar to the BARseq mapping illustrated in Fig. 5, we
see areas of lower cell density (fewer foreground pixels) versus higher
cell density (greater andhigher intensity foregroundpixels) aligning to

Allen Mouse Z Section 537

Waxholm Rat Z Section 628

Initial Tissue Overlap
Entropy of Predicted 

Ontology Cross-Species

Diffeomorphism Cross-Species
Predicted Ontology 

Cross-Species
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Fig. 9 | Results of mapping coronal section Z = 537 of CCFv3 mouse atlas to
corresponding coronal section of Waxholm Rat Brain Atlas at Z =628, both
chosen to be through the anterior commissure. a CCFv3 section in CCFv3
coordinates. d Waxholm section in Waxholm atlas coordinates. b Initial tissue
overlapbetweenmouse and rat atlas sections shown inWaxholmatlas coordinates.
e Resulting overlap between rat section (blue) and mouse section following action
of estimated diffeomorphism on mouse section. The determinant of the Jacobian

highlights areas of expansion (red) and contraction (blue) in the mouse section
deforming tomatch the rat section, with white arrow highlighting expansion in the
cingulate area needed to match the region in the mouse to the corresponding
region in the rat. c Entropy for each mouse region’s predicted distribution of rat
labels. f Predicted rat label with the highest probability for each region in CCFv3
mouse ontology.
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expected CCFv3 regions (e.g. layer 1 (L1) especially between the
hemispheres, and substantia inominata (SI), respectively). Interest-
ingly, the area of the olfactory tubercle (OT) in the CCFv3 section
which is initially quite larger than that in the DAPI image remains large
following geometric transformation to the target space, with optimal
cost minimization favoring this alignment to one in which this area
would drastically contract.

Finally, while the estimated geometric transforms here could
equivalently pull back the DAPI image into the space of the
CCFv3 section, as done in the setting of atlas construction and cross-
replicate comparison (see “Cross-replicate comparison and atlas con-
struction” section), we show, instead, the CCFv3 section transformed
to the space of the DAPI target as an illustration of how our metho-
dology can be used in settings of image segmentation. This facilitates
the extraction ofmeasures in a particular subset of regions, that canbe
directly compared to other types of measures (e.g. gene expression,
cell type distributions) as detected by other types of technologies and
equivalently localized to these same CCFv3 regions throughmappings
computedwith xIV-LDDMM, as demonstrated here in “Generalizability
of xIV-LDDMMto settings of complete and incomplete gene-based and
cell-based data,” “Quantitative and comparative evaluation of xIV-
LDDMM,” and “Cross-replicate comparison and atlas construction”
sections. For instance, a comparison of the mean DAPI signal (Sup-
plementary Fig. 7) to the maximally expressed gene per CCFv3 region,
as shown in Fig. 1, illustrates a positive correlation between DAPI
intensity and Whrn expression, particularly in areas bordering the
corpus callosum versus negative correlation withMdga1 expression in
outer cortical layers. Finally, as described in the setting of resampling
image varifolds across scales34, we demonstrate the feasibility of
translating between particle and image representations in resampling

the deformedCCFv3 particles with Gaussian smoothing onto the same
2.5μm grid of the original DAPI image (Fig. 10b). Note that this
smoothing extends the borders of the atlas section slightly beyond
their respective positioning as particles, as seen in the difference in
overlay laterally within L1 between image and particle representations
(Fig. 10b, d, respectively).

Discussion
We have introduced, here, a universal method, xIV-LDDMM, for map-
ping tissue-scale, ‘cartoon’ atlases to molecular and cellular datasets
arising in the context of emerging transcriptomics technologies. We
root ourmethod in themodelingof eachobject as an image varifold, as
previously described35, and map across scale and modality by simul-
taneously estimating a geometric transformation with classical defor-
mation tools of LDDMM17 and latent distribution over target features
for each atlas region, under an assumption of homogeneity. Offering
multiple means of implementation and optimization schemes (see
“Alternating LDDMM and quadratic program algorithm for joint opti-
mization” section), we have used both point cloud and mesh-based
implementations of image-varifold objects, showcasing successful
estimation of geometric mappings and latent feature distributions in
both cases.

As presented, xIV-LDDMM fills a current need, as highlighted
previously55, for universal tools that can integrate the diverse types and
large quantities of data emerging from the evolution of both tran-
scriptomics and imaging technologies over the last decade. With each
technology generating a slightly different perspective and a different
set of animal or human samples to compare, a method that can stably
handle the format of past, current, and future datasets will be para-
mount to integrate both new findings with the vast number of

Fig. 10 | Application of image-varifold-based method for mapping
CCFv3 section to DAPI-stained image of tissue corresponding to MERFISH
section. a Original DAPI-stained image, digitized at 2.5 μm resolution for tissue
section measured with MERFISH technology (Fig. 1). c Image-varifold particle
representation (black points) of DAPI-stained image overlaying the corresponding
CCFv3 section in their respective initial coordinate spaces. Thresholded fore-
ground pixels from (a) converted to particle image-varifold representation over a
feature space of ~30 binned grayscale values.dAlignment of CCFv3 section toDAPI

particles following diffeomorphic transformation to the DAPI coordinate space.
b Alignment of CCFv3 section and DAPI particles in image format, with the
deformed CCFv3 section image generated by resampling the deformed CCFv3
particles onto a regular 2.5μm grid. White arrows highlight areas of alignment in
the area of the substantia inominata (SI) and layer 1 of the cortex whereas red
arrows highlight areas of questionable alignment in the area of the olfactory
tubercle (OT).
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datastores currently available across institutes. The image-varifold
framework used here is general enough to model classical tissue-scale
imaging data (as demonstrated in our atlas-to-atlas mappings), digital
pathology (as demonstrated in our example with the DAPI-stained
image) (“Extension to additional cellular-scale modalities for image
segmentation” section), and emerging transcriptional data from both
image-based and spot-resolution technologies that might generate
data complete or partial tissue captures, irregularly sampled across
space. Therefore, it provides a gateway for integrating data historically
curated through MRI, immunohistochemistry, and other staining and
imaging procedures in addition to the emerging transcriptomics
methods. Importantly, this spatial integration will enable the correla-
tion of disease signatures at different scales, as measured through
different technologies. For instance, we aim to correlate tau tangle and
amyloid-beta pathology in Alzheimer’s disease to gene expression and
imaging biomarkers, as vital for furthering our mechanistic under-
standing of the disease and developing early diagnostic strategies.
Additionally, the specific estimation of diffeomorphic mappings
compared with rigid+scale transformations decreases the spatial var-
iance in feature distributions across regions, increasing the statistical
power for detecting differences in feature distributions (e.g. gene
expression, cell composition) not just across replicates within a single
group, but between groups of replicates under different experimental
conditions. For instance, we are currently looking at differences in cell
type and genedistribution following neonatal binocular enucleation as
measured with BARseq in four cases versus control hemispheres56. As
presented, xIV-LDDMM fills a current need, as highlighted previously55,
for universal tools that can integrate the diverse types and large
quantities of data emerging from the evolution of both tran-
scriptomics and imaging technologies over the last decade. With each
technology generating a slightly different perspective and a different
set of animal or human samples to compare, a method that can stably
handle the format of past, current, and future datasets will be para-
mount to integrate both new findings with the vast number of datas-
tores currently available across institutes. The image-varifold
framework used here is general enough to model classical tissue-scale
imaging data (as demonstrated in our atlas-to-atlas mappings), digital
pathology (as demonstrated in our example with the DAPI-stained
image) (“Extension to additional cellular-scale modalities for image
segmentation” section), and emerging transcriptional data from both
image-based and spot-resolution technologies that might generate
data complete or partial tissue captures, irregularly sampled across
space. Therefore, it provides a gateway for integrating data historically
curated through MRI, immunohistochemistry, and other staining and
imaging procedures in addition to the emerging transcriptomics
methods. Importantly, this spatial integration will enable the correla-
tion of disease signatures at different scales, as measured through
different technologies. For instance, we aim to correlate tau tangle and
amyloid-beta pathology in Alzheimer’s disease to gene expression and
imaging biomarkers, as vital for furthering our mechanistic under-
standing of the disease and developing early diagnostic strategies.
Additionally, the specific estimation of diffeomorphic mappings
compared with rigid+scale transformations decreases the spatial var-
iance in feature distributions across regions, increasing the statistical
power for detecting differences in feature distributions (e.g. gene
expression, cell composition) not just across replicates within a single
group, but between groups of replicates under different experimental
conditions. For instance, we are currently looking at differences in cell
type and genedistribution following neonatal binocular enucleation as
measured with BARseq in four cases versus control hemispheres56. As
presented, xIV-LDDMM fills a current need, as highlighted previously55,
for universal tools that can integrate the diverse types and large
quantities of data emerging from the evolution of both tran-
scriptomics and imaging technologies over the last decade. With each
technology generating a slightly different perspective and a different

set of animal or human samples to compare, a method that can stably
handle the format of past, current, and future datasets will be para-
mount to integrate both new findings with the vast number of datas-
tores currently available across institutes. The image-varifold
framework used here is general enough to model classical tissue-scale
imaging data (as demonstrated in our atlas-to-atlas mappings), digital
pathology (as demonstrated in our example with the DAPI-stained
image) (“Extension to additional cellular-scale modalities for image
segmentation” section), and emerging transcriptional data from both
image-based and spot-resolution technologies that might generate
data complete or partial tissue captures, irregularly sampled across
space. Therefore, it provides a gateway for integrating data historically
curated through MRI, immunohistochemistry, and other staining and
imaging procedures in addition to the emerging transcriptomics
methods. Importantly, this spatial integration will enable the correla-
tion of disease signatures at different scales, as measured through
different technologies. For instance, we aim to correlate tau tangle and
amyloid-beta pathology in Alzheimer’s disease to gene expression and
imaging biomarkers, as vital for furthering our mechanistic under-
standing of the disease and developing early diagnostic strategies.
Additionally, the specific estimation of diffeomorphic mappings
compared with rigid+scale transformations decreases the spatial var-
iance in feature distributions across regions, increasing the statistical
power for detecting differences in feature distributions (e.g. gene
expression, cell composition) not just across replicates within a single
group, but between groups of replicates under different experimental
conditions. For instance, we are currently looking at differences in cell
type and genedistribution following neonatal binocular enucleation as
measured with BARseq in four cases versus control hemispheres56. As
presented, xIV-LDDMM fills a current need, as highlighted previously55,
for universal tools that can integrate the diverse types and large
quantities of data emerging from the evolution of both tran-
scriptomics and imaging technologies over the last decade. With each
technology generating a slightly different perspective and a different
set of animal or human samples to compare, a method that can stably
handle the format of past, current, and future datasets will be para-
mount to integrate both new findings with the vast number of datas-
tores currently available across institutes. The image-varifold
framework used here is general enough to model classical tissue-scale
imaging data (as demonstrated in our atlas-to-atlas mappings), digital
pathology (as demonstrated in our example with the DAPI-stained
image) (“Extension to additional cellular-scale modalities for image
segmentation” section), and emerging transcriptional data from both
image-based and spot-resolution technologies that might generate
data complete or partial tissue captures, irregularly sampled across
space. Therefore, it provides a gateway for integrating data historically
curated through MRI, immunohistochemistry, and other staining and
imaging procedures in addition to the emerging transcriptomics
methods. Importantly, this spatial integration will enable the correla-
tion of disease signatures at different scales, as measured through
different technologies. For instance, we aim to correlate tau tangle and
amyloid-beta pathology in Alzheimer’s disease to gene expression and
imaging biomarkers, as vital for furthering our mechanistic under-
standing of the disease and developing early diagnostic strategies.
Additionally, the specific estimation of diffeomorphic mappings
compared with rigid+scale transformations decreases the spatial var-
iance in feature distributions across regions, increasing the statistical
power for detecting differences in feature distributions (e.g. gene
expression, cell composition) not just across replicates within a single
group, but between groups of replicates under different experimental
conditions. For instance, we are currently looking at differences in cell
type and genedistribution following neonatal binocular enucleation as
measured with BARseq in four cases versus control hemispheres56.

In parallel to the development and dispersion of diverse mole-
cular datasets, there has been continued development on the side of
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reference atlases to reflect trends in these newmeasures and integrate
these trends across even more samples of particular species. With
regard to atlas refinement and creation, as shown in “Cross-replicate
comparison and atlas construction” section and the second panel of
Fig. 1, the invertibility of the estimated diffeomorphism in the setting
of mapping atlas to molecular target, enables the carrying of each
target into the samecoordinate space of the atlas. Thoughwe illustrate
an example of atlas creation from samples of a single modality, each
target to which the same atlas section is mapped can be pulled back
into the same coordinate space. This effectively allows different
molecular modalities to be indirectly mapped to one another, where
the challenge of matching different molecular features as needed to
maponemodality directly to another is facilitated through the scaffold
of the presumed homogeneous regions in the atlas that anchor the
estimated feature distributions for alignment to each respective
molecular modality. Furthermore, this enables the construction of a
composite set ofmolecular and cellular-scale data across technologies
and modalities (e.g. digital pathology and spatial transcriptomics, as
seen in the comparative mappings of the same CCFv3 section to
MERFISH (Fig. 1) and DAPI images (Fig. 10)), that can be integrated
into a multi-factorial atlas with defined segmentation schemes
according to homogeneous regions across these features. Ourmethod
also offers a tool for re-examining and comparing existing atlas
ontologies in the context of new data55, and serves as a means for
developing new atlases in the future. As described in “Extension to
additional tissuemodalities for within and across species comparison”
section, examination of the mappings achieved between different
atlases and the same molecular target offers an indirect comparison
between atlases in the context of a particular molecular setting.
However, this comparison can also be made directly in a context-
independent setting by harnessing ourmethod tomap atlas to atlas. In
the field of evolutionary biology, for instance, our method could aid in
the mapping and comparison of atlases across species57,58 and in the
field of developmental neurobiology, the available atlases of the brain
at different stages of development49–51,54,59. Finally, as shown in
“Extension to additional cellular-scale modalities for image segmen-
tation” section, xIV-LDDMM can be applied across molecular and cel-
lularmodalities, not just for incorporating them into atlas creation, but
also as a means of segmentation in the classical image sense.

While the results presented here survey awide variety of potential
applications of xIV-LDDMM to mapping atlas modalities to diverse
targets, there remain uncertainties and potential modes of improve-
ment that are the subject of current and future work. First, we have
presented results mapping 2D sections of 3D atlases to corresponding
2D sections of MERFISH data. Both the Allen MERFISH and BARseq
data showcased here are part of an entire set of serial sections that
span the whole brain. While we have approximated these sections as
strictly coronal in pairing them to respective coronal slices of the
CCFv3 here, typically such datasets are generated by sectioning on an
angled plane, which would be best approximated by the mapping of
the entire set of sections as a 3Dobject to the 3DCCFv3. Consequently,
we are optimizing our method to compute mappings of atlas to
molecular targets in 3D, where both added dimensions and added
magnitudes of data contribute to the theoretical and computational
complexity of the problem. Indeed, with ≈6 billion individual tran-
scriptsmeasured across the spanof the brain, treatment of this data as
a regular lattice image would require on the order of 1000 billion
voxels at 1 μm resolution, which is coarser than that needed even to
resolve twomolecules of mRNA. Hence, it becomes even more vital to
treat such data in the particle setting, as presented here, where we
capture the sparsity and irregularity of the data in modeling it effec-
tively in its lowest dimension, as 6 billion individual particle measures.
Second, though we have highlighted a range of gene-based and cell-
based, whole and hemi-brain datasets achieved with image-based
technologies, here, the future investigation includes the use of our

method tomap data fromadditional types of technologies, such as the
spot-resolution SlideSeq44, and in additional biological settings, where
we might see further disruptions of tissue architecture (e.g. with
tumors) and tissue types with varying levels of the organization and
therefore varying levels to which homogeneous distributions over
molecular features can be seen over physical space (e.g. in heart,
breast, and lung).

Indeed, we finally emphasize that central to themodel posed here
is the underlying assumption that each compartment has a homo-
geneous distribution over molecular features that is stationary with
respect to space.Wemake this assumption to govern the estimation of
latent feature distributions for each atlas compartment to take the
atlas into both the physical and feature space of the target. This is in
contrast to learning-based approaches that estimate features inde-
pendent of such assumptions tomapatlas to target across feature (e.g.
imaging) modalities but often require extensive training datasets and
computationalpower to learn such features18,26. This assumption stems
from the inherent construction of atlases often to delineate regions of
particular cell types or with a particular function, and thus, where we
see a set of predominant cell types or gene types consistently across
the region in the molecular scale data, as in Fig. 3. The successful
alignment of tissue-scale atlas to varying molecular scale data
demonstrated through the examples shown here supports the benefit
of such an assumption in jointly estimating geometric transformations
and latent feature distributions. However, as manifest in Fig. 2, where
the expression ofTrp53i11 appears to bedistributed along a decreasing
gradient medial to lateral within the striatum, or explicitly through the
spatial variance in empirical distribution shown for each CCFv3 region
in Fig. 6, this assumption of spatial homogeneity does not always hold.
The subsequent construction of empirical distributions from the
pulling back of different molecular targets, as shown in Fig. 6 enables
the estimation of feature distributions at a finer scale without the
assumption of homogeneity and simultaneously, an evaluation of
where and to what extent it holds, with notably, the use of diffeo-
morphic mappings achieving a further reduction in this spatial var-
iance than rigid+scale transformations alone. Furthermore, the results
presented here reflect a particular balance between expected defor-
mation and this homogeneity assumption, imposed by the relative
weighting of the separate terms in the cost function. Current work at
controlling this balance further includes the addition of a term con-
trolling the divergence of the vector field to the energy defined in the
variational problem (10), which leads to solutions more robust to
deformation within the interior of the tissue. Future work will also
include a more rigorous evaluation of how well this homogeneity
assumption holds across different tissue contexts and the effect the
given balance between the two terms might have in different settings.

Methods
Construction of image-varifold representation for different
modalities
As introduced in “Data model and optimization problem: image vari-
folds and transformations for molecular scales based on varifold
norms” section, we can represent each image-varifold object as a point
cloud (particles) or a triangulated mesh. In the first case, data is
modeled as a collection of particles, each with a center xi 2 R2, and a
measure over its feature space, wipi 2 MðF Þ. Particles may be indivi-
dual mRNA detections, cell centers, or image pixels at the highest
resolution, with thresholding or exclusion of particular image values
done in the latter case to extract foreground pixels only. Sets of par-
ticles can be downsampled to a smaller set of discrete particles by
capturing neighboring particle distributions together into one parti-
cle, as used in the implementation of the DAPI image (“Extension to
additional cellular-scale modalities for image segmentation” section).
We refer to the resolution of the rendering to indicate the span of the
neighborhood each individual particle captures with the coarser the
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resolution corresponding to larger and larger neighborhoods of
measurements encapsulated in a single particle.

In the case of meshes, each mesh is built from a collection of
vertices indexed by the set I, x= ðxiÞi2I with each xi 2 R2. Each sim-
plex in the mesh is defined from the vertices denoted as γ(x) and
is paired with a 3-tuple with components that index the vertices of
the simplex, (γ(x), c = (c1, c2, c3)∈ I3) and determine the center
mðxÞ= 1

3 ðxc1 + xc2 + xc3 Þ. Each triangle simplex is defined by

γðxÞ= y 2 R2 : y=
X3
k = 1

akxck ,ak ≥0,
X3
k = 1

ak = 1

( )
, ð5Þ

with positive orientation and volume jγcðxÞj : = 1
2 k ðxc2 � xc1 Þ×

ðxc3 � xc1 Þ k >0.
The total mesh τ is the collection of vertices x, and simplices and

centers ðγjðxÞ,cj = ðc1j ,c2j ,c3j Þ,mjðxÞÞj2J , with the simplices indexed by the

set J, and with the resolution determining the complexity as total
numbers of vertices ∣I∣ and the number of simplices ∣J∣ in the mesh. To
complete the image varifoldwe append to themesh the spatial density
defined over the area of each simplex: α = ðαjÞj2J and the field of

probability laws p= ðpjÞj2J on F . Hence, we denote an image varifold

implemented as a mesh similar to the normalized definition of (1) as:

μτ =
X
j2J

wjðδmj
� pjÞ ð6Þ

withwj = αj∣γj∣ giving the assumed constant density over the area of the
simplex. Notably, diffeomorphisms act directly on the vertices, with
the center mj of each simplex shifted according to the movement of
each of its vertices. The determinant of the Jacobian is introduced to
retain the same spatial density of the object before and after trans-
formation, as in (2) but with it evaluated at the center of each simplex,
and again assumed constant over the area of each simplex, approxi-
mated as the ratio in the simplex area after and before transformation:

φ � μτ =
X
j2J

αjjDφjmj
jγjjðδφðmj Þ � pjÞ : ð7Þ

Additionally, in the setting of meshes, it is convenient to approximate
the product jDφjmj

jγj j by the new area of each simplex following
transformation, ∣γj(φ1(x))∣.

Meshes mapped in this work were constructed using Delauney
triangulation60 on a grid defined over the support of the starting
dataset with the size of each square dictated by the input resolution.
Spatial density and conditional featuremeasures, α, p, were associated
with the simplices of the mesh following the assignment of each
individual data point (e.g. mRNA or cell read) into its single nearest
simplex. Meshes were pruned of simplices that both contained fewer
than 1 data point and existed outside the largest connected compo-
nent of simplices containing at least one data point. In this manner,
both for atlas images and transcriptomics datasets, resulting simplex
meshes spanned the entire tissue foreground.

Molecular scale varifold norm
We define the space of image varifolds μ∈W * to have a norm k �k2

W * ,
and transform the atlas coordinates onto the targets to minimize the
norm. The space of varifold norms is associated to a reproducing
kernel Hilbert space34,61 (see (8) below) defined by the inner product of
the space as hμ,νiW * , k μk2

W * = hμ,μiW * . To specify the image-varifold
norm for μ 2 W *, k �k2

W * , it suffices to provide the inner product
between Diracs hδx � δf ,δx0 � δf 0 iW * =Kððx,f Þ,ðx0,f 0ÞÞ. For any μ in (1)

then

k μk2
W * =

X
i,j2J

X
f ,f 02F

wipiðf Þwjpjðf 0ÞKððxi,f Þ,ðxj,f 0ÞÞ : ð8Þ

Throughout we use the kernel product Kððx,f Þ,ðx0,f 0ÞÞ=
K1ðx,x0ÞK2ðf ,f 0Þ chosen as a Gaussian over physical space
K1ðx,yÞ= expð� kx�x0k2

2σ2 Þ with K2ðf ,f 0Þ= 1 iff = f 0, 0 otherwise giving:

k μk2
W * =

X
j,k2J

K1ðxj ,xkÞ
X
f2F

wjpjðf Þwkpkðf Þ ð9Þ

for the image-varifold object, as defined in (1) in “Data model and
optimization problem: image varifolds and transformations for
molecular scales based on varifold norms” section.

Variational problems
As described in “Data model and optimization problem: image vari-
folds and transformations for molecular scales based on varifold
norms” section, the mapping variational problem constructs a diffeo-
morphismφ : R2 ! R2 and feature laws ðπ‘Þ‘2L onF to carry the atlas
image varifold onto the target, minimizing the varifold normed dif-
ference between them, with norm defined as in “Molecular scale vari-
fold norm” section.We followLDDMMasdescribed in the image case17,
parameterizing the diffeomorphism with the smooth time-varying
velocity field, vt, t∈ [0, 1], as _φt = vt � φt . This gives the variational
problembetween the atlas image varifold, μA, with indexed locations, I,
and the target image varifold, μT, with indexed locations, J:

inf
v 2 L2ð½0,1�,V Þ,

π‘,‘ 2 L

1
2

Z 1

0
k vtk2Vdt + k φ1 � μπ

A � μTk2W *

with _φt = vt � φt , φ0 = Id ,

ð10Þ

with μπ
A depicting the feature-transformed atlas image varifold, as

described in “Data model and optimization problem: image varifolds
and transformations for molecular scales based on varifold norms”
section, as

P
i2Iδxi

�w0
ip

0
i with w0

ip
0
i =

P
‘2Lwipið‘Þπ‘, the estimated

distribution over target features for indexed location i in the atlas
image varifold. The space of smooth time-varying velocity fields giving
the flow, φ, is defined as a reproducing kernel Hilbert space, equipped
with norm, k �k2V , ensuring smoothness and invertibility of φ as a
diffeomorphism62.

We solve (10) for optimal φ,π through either single or alternating
algorithms as described in “Alternating LDDMM and quadratic pro-
gramalgorithm for joint optimization” section,with the opportunity to
impose priors on the estimated distributions, π, appropriate to the
specific setting. For instance, we typically impose positivity on all
values in estimateddistributions:πℓ(f) ≥0 for all f 2 F and ‘ 2 L. Given
prior knowledge of the spatial density of cells or mRNA of a target, we
may also specify a range of values for the resulting spatial density to
take through constraints on the total measures of features estimated:

wmin ≤w0
i ≤w

max , i 2 I: ð11Þ

This prior can be easily incorporated as a constraint in the setting of
the quadratic program used in the alternating algorithmic approach
for estimating optimal distributions π (see “Alternating LDDMM and
quadratic program algorithm for joint optimization” section). In the
examples shown here, we typically takewmin to be the 5th percentile of
values wj, j∈ J of the target image varifold. Additionally, in the setting
of mapping tissue-scale atlases to each other, as discussed in
“Extension to additional tissuemodalities forwithin and across species
comparison” section, we impose the greater constraint of ensuring
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constant spatial density of 1, as we use for modeling both atlas and
target image varifolds in this case. Finally, in other settings without
prior knowledge or wish to impose any on the specific densities
prescribed to each indexed location, we can add a general regulariza-
tion term to (10), such as the Kullback–Liebler divergence between the
normalized estimated π probability distribution and a uniform
distribution across target features:

dl ’
X
f2F

�π‘ðf Þ log
�π‘ðf Þ

ð1=jF jÞ

� �
, ‘ 2 L ð12Þ

where jF j gives the number of discrete feature values in the target
feature space and the probability distribution, �π‘ =

1P
f2Fπ‘ðf Þ

π‘. We use

this approach in the examples with BARseq data shown and in the
context of a simultaneous rather than alternating optimization
algorithm.

Alternating LDDMM and quadratic program algorithm for joint
optimization
For solving the variational problem of (10), optimal φ,π are jointly
estimated through either a single or alternating optimization scheme.
In both cases, the template and target can be initially aligned through
separate estimation of rigid transformations (translation and rotation)
and a single isotropic scaling applied to the template to bring the total
area of the template to equal that of the target. In this setting, rigid
transformations are estimated by minimizing the varifold normed
difference between the rotated and translated template atlas trans-
formed to the target with L-BFGS.

Additionally, in both cases, a gradient-based optimization is per-
formed until convergence or a specified number of iterations. We use
L-BFGS optimization combined with a line search using the Wolf con-
dition. In the single scheme, geometric parameters, vt, and feature
parameters, π are optimized as a joint set of parameters in the
gradient-based optimization. In contrast, an alternating scheme sepa-
rates the estimation of geometric parameters and feature parameters
with a gradient-based optimization for the former and the use of
quadratic programming in the latter case.

The alternating scheme specifically follows35, fixing the laws ðπ‘Þ‘2L
andoptimizingover the control v(t), t∈ [0, 1] and integrating it, with the
initial condition at the identity element,φ0 = Id (e.g.φ0ðxÞ= x,8x 2 R2),
to generate the diffeomorphism φ1. The diffeomorphism is then fixed
and quadratic programming, such as OSQP63, used to estimate the
feature laws. We outline this scheme explicitly below.

Algorithm 1.
Initialize: π‘ðf Þ= 1

jF j ,f 2 F
A: Solve for v:
1. Update and fix ðπ‘Þ‘2L.
2. Solve LDDMM, optimizing (10) with respect to vector
field vt, t∈ [0, 1].
3. Solve for φ1, integrating O.D.E φ1 =

R 1
0 vt � φtdt + Id.

4. Flow μπ
A according to φ1, giving φ1 � μπ

A .
B: Solve for ðπ‘Þ‘2L:
1. Fix spatial positions in the deformed template, φ(xi), i∈ I.
2. Optimize quadratic program (13) with respect to ðπ‘Þ‘2L.
Return to A

For the atlas, we define the form of the image varifold:
μA =

P
i2Iδxi

�wipi, with, wipi 2 MðLÞ, a measure over the atlas fea-
ture values (partitions). The estimated feature distributions are given
via π as the mixture distribution, w0

ip
0
i =

P
‘2Lwipið‘Þπ‘. We specify the

target over the index set, J, as: μT =
P

j2Jδxj
�wjpj with each wjpj and

estimated w0
ip

0
i 2 MðF Þ. We use this notation in defining the general

form of the quadratic program, with constraint given as described in
“Variational problems” section:

inf
π‘ ,‘2L

k φ1 � μπ
A � μTk2W *

= inf
π‘ ,‘2L

P
i,i02I2

jDφ1jxi jDφ1jxi0 K1ðφðxiÞ,φðxi0 ÞÞ
P
f2F

w0
ip

0
iðf Þw0

ip
0
i0 ðf Þ

�2
P

i2I,j2J
jDφ1jxi

K1ðφðxiÞ,xjÞ
P
f2F

wjpjðf Þwip
0
iðf Þ

subject towmin ≤w0
i ≤w

max ,i 2 I :

ð13Þ

Remark 1. In the algorithm, under the assumptionof a constant density
withwi = 1 for all i∈ I, we can approximate the estimated distributions,
w0

ip
0
i,i 2 I, by the single πℓ at each location (e.g. particle or simplex) for

the ℓ with the largest mass. Defining the greedy maximizer map

‘*ðiÞ= argmax
‘2L

pið‘Þ 2 L, we can simplify the computations by using the

approximation w0
ip

0
i ’ pið‘*ðiÞÞπ‘*ðiÞ. This is particularly relevant for

tissue-scale atlases where most particles or simplices in the image-
varifold object are interior to a single atlas region and therefore carry a
conditional feature distribution, pi = δ‘i

, with all mass attributed to a

single feature value, ℓi. For these indexed locations, the above
approximation becomes an equality: w0

ip
0
i =π‘*ðiÞ =π‘i

.

Both single and alternating optimization schemes were uti-
lized in the examples shown in this work and are available with
respective Python git repositories: https://github.com/kstouff4/
xIV-LDDMM-Particle v1.0.064 and https://github.com/kstouff4/
MeshLDDMMQP v1.0.065. The single optimization scheme is pro-
vided in the context of point cloud image-varifold implementa-
tions, whereas the alternating scheme is provided in the context
of mesh-based image-varifold implementations. The quadratic
program solver used in the context of the alternating scheme is
OSQP as implemented in the Python qpsolvers library. Both
schemes were developed and tested on a 12 GB TITAN V GPU with
CUDA 10.2 and NVIDIA-SMI and Driver 440.33.01, with expected
runtime varying by the size of the dataset, but on the order of
2–4 h for most examples highlighted in this work.

Empirical distribution estimation and cross-replicate statistical
comparison
For empirical atlas construction from single or multiple MERFISH sec-
tions (“Cross-replicate comparison and atlas construction” section), we
used a 50μmparticle rendering (~20k particles) of the CCFv3 section as
a scaffold. We assigned each mapped MERFISH cell to its nearest
neighbor in the CCFv3 section, giving a distribution over cell types per
particle in the CCFv3 section. As described in “Cross-replicate com-
parison and atlas construction” section, we computed variance in
probability distribution within a region by modeling the probability
distributions per particle, pi, as vectors in RC , with the number of cell
(sub)types C = 33, and ∣pi∣ = 1. We computed mean cell type probability
distributions per CCFv3 region, denoted p‘ for ‘ 2 L by selecting the
subset of particles, Iℓ⊂ I, for each region with at least half of their mass
in that region.Under ourmodel of spatial homogeneity per atlas region,
we assume the conditional cell type probabilities per location (particle)
within each atlas region are consistent. For a given cell (sub)type, c, and
replicate, k, we computed spatial variance within a region, ‘ 2 L as:

1
N‘ � 1

X
i2I‘

jpiðcÞ � p‘ðcÞj2 ð14Þ

with Nℓ, the number of particles in Iℓ. Total variance per region was
computed by summing (14) over cell types (Fig. 6i) and per cell type
was computed by summing (14) over regions (Fig. 7b).
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To assess differences in cell type distribution between replicates
(Figs. 6g and 7a), we similarly constructed empirical cell type dis-
tributions for each replicate independently, giving for the same
indexed particle set, I, in the CCFv3 section, three separate image-
varifold measures:

μ0 =
P
i2I

w0
i δxi

� p0
i

μ1 =
P
i2I

w1
iδxi

� p1
i

μ2 =
P
i2I

w2
i δxi

� p2
i

ð15Þ

with wk
i for k =0, 1, 2 denoting the cell density (cells per 50μm2 area)

for each of the three targets over the CCFv3 space and pk
i for k =0, 1, 2.

We computed spatial variance within each region for each replicate
with (14) (Fig. 6j, k). We compared mean cell type probability dis-
tributions across replicates for a given cell type, c, and in a region, ℓ, as:

1
2

X2
k =0

jpk
‘ ðcÞ �

1
3
ðp0

‘ ðcÞ+p1
‘ðcÞ+p2

‘ ðcÞÞj2 ð16Þ

with total variance between replicates for a given cell type, c computed
by summing (16) across regions (Fig. 7a) and total variance between
replicates for a given region computed by summing (16) over cell
types (Fig. 6g).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Serial MERFISH sections from the Allen Institute were produced under
the BRAIN Initiative Cell Census Network (BICCN, www.biccn.org,
RRID:SCR_015820) and are available at the Brain Image Library (BIL,
https://www.brainimagelibrary.org/index.html) under https://doi.org/
10.35077/g.610. Cell-segmented MERFISH sections with cell type
annotations are available at Zenodo (https://doi.org/10.5281/zenodo.
8384018) from Clifton et al.66. Serial BARseq sections with cell-level
data are available at Mendeley data (https://doi.org/10.17632/
8bhhk7c5n9.1). The Waxholm rat brain atlas used in this study is
available at https://www.nitrc.org/projects/whs-sd-atlas. The Allen
CCFv3 used in this study is available at https://download.alleninstitute.
org/informatics-archive/current-release/mouse_ccf/annotation/ccf_
2022/. The DevCCF used in this study is available at https://kimlab.io/
brain-map/DevCCF/.

Code availability
Implementations of the algorithms described here can be found at:
https://github.com/kstouff4/MeshLDDMMQP (triangulated mesh
implementation) v1.0.065 and https://github.com/kstouff4/xIV-
LDDMM-Particle (point cloud implementation) v1.0.064.
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