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Transition role of entangleddata in quantum
machine learning

Xinbiao Wang1,2,3, Yuxuan Du 3,4 , Zhuozhuo Tu5, Yong Luo 1,2 ,
Xiao Yuan 6,7 & Dacheng Tao 4

Entanglement serves as the resource to empower quantumcomputing. Recent
progress has highlighted its positive impact on learning quantum dynamics,
wherein the integration of entanglement into quantum operations or mea-
surements of quantum machine learning (QML) models leads to substantial
reductions in training data size, surpassing a specified prediction error
threshold. However, an analytical understanding of how the entanglement
degree in data affects model performance remains elusive. In this study, we
address this knowledge gap by establishing a quantum no-free-lunch (NFL)
theorem for learning quantum dynamics using entangled data. Contrary to
previous findings, we prove that the impact of entangled data on prediction
error exhibits a dual effect, depending on the number of permitted mea-
surements. With a sufficient number of measurements, increasing the entan-
glement of training data consistently reduces theprediction error or decreases
the required size of the training data to achieve the same prediction error.
Conversely, when fewmeasurements are allowed, employing highly entangled
data could lead to an increased prediction error. The achieved results provide
critical guidance for designing advanced QML protocols, especially for those
tailored for execution on early-stage quantum computers with limited access
to quantum resources.

Quantum entanglement, an extraordinary characteristic of the
quantum realm, drives the superiority of quantum computers
beyond classical computers1. Over the past decade, diverse quan-
tum algorithms leveraging entanglement have been designed to
advance cryptography2,3 and optimization4–8, delivering runtime
speedups over classical approaches. Motivated by the exceptional
abilities of quantum computers and the astonishing success in
machine learning, a nascent frontier known as quantum machine
learning (QML) has emerged9–15, seeking to outperform classical
models in specific learning tasks16–25. Substantial progress has been
made in this field, exemplified by the introduction of QML

protocols that offer provable advantages in terms of query or
sample complexity for learning quantum dynamics26–31, as a fun-
damental problem toward understanding the laws of nature. Most
of these protocols share a common strategy to gain advantages: the
incorporation of entanglement into quantum operations and mea-
surements, leading to reduced complexity. Nevertheless, an over-
looked aspect in prior works is the impact of incorporating
entanglement in quantum input states, or entangled data, on the
advancement of QML in learning quantum dynamics. Due to the
paramount role of data in learning32–37 as well as entanglement in
quantum computing, addressing this question will significantly
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enhance our comprehension of the capabilities and limitations of
QML models.

A fundamental concept inmachine learning that characterizes the
capabilities of learning models in relation to datasets is the no-free-
lunch (NFL) theorem38–41. The NFL theorem yields a key insight:
regardless of the optimization strategy employed, the ultimate per-
formance of models is contingent upon the size and types of training
data. This observation has spurred recent breakthroughs in large lan-
guage models, as extensive and meticulously curated training data
consistently yield superior results42–46. In this regard, establishing the
quantum NFL theorem enables us to elucidate the specific impact of
entangled data on the efficacy of QML models in learning quantum
dynamics.Concretely, the achieved theoremcanshed light onwhether
the utilization of entangled data empowers QML models to achieve
comparable or even superior performancecompared to low-entangled
or unentangled data, while simultaneously reducing the sample com-
plexity required. Although initial attempts47,48,49 have been made to
establish quantum NFL theorems, they have relied on infinite query
complexity, thus failing to address our concerns adequately (see
Supplementary Note 1 and Supplementary Note 2 for details). Building
upon prior findings on the role of entanglement and the classical NFL
theorem, a reasonable speculation is that high-entangled data con-
tributes to the improved performance of QMLmodels associated with
the reduced sample complexity, albeit at the cost of using extensive
quantum resources to prepare such data that may be unaffordable in
the early stages of quantum computing50.

In this study, we negate the above speculation and exhibit the
transition role of entangled data when QMLmodels incoherently learn
quantum dynamics, as shown in Fig. 1. In the incoherent learning
scenario, the quantum learner is restricted to utilizing datasets with
varying degrees of entanglement to operate on an unknown unitary
and inferring its dynamics using the finite measurement outcomes
collected under the projective measurement, differing from ref. 48 in
learning problems and training data. The entangled data refers to
quantum states that are entangled with a reference system, with the
degree of entanglement quantitatively characterized by the Schmidt
rank r. We rigorously show that within the context of NFL, the entan-
gled data has a dual effect on the prediction error according to the
number of measurements m allowed. Particularly, with sufficiently

large m, increasing r can consistently reduce the required size of
training data for achieving the same prediction error. On the other
hand, when m is small, the train data with large r not only requires a
significant volume of quantum resources for states preparation, but
also amplifies the prediction error. As a byproduct, we prove that the
lower bound of the query complexity for achieving a sufficiently small
prediction error matches the optimal lower bound for quantum state
tomography with nonadaptive measurements. To cover a more gen-
eric learning setting, we consider the problem of dynamic learning
under arbitrary observable by using ℓ-outcome positive-operator
valued measure (POVM) to collect the measurement output. This set-
ting covers the shadow-based learning models26,51,52. We show that the
transition role still holds for arbitrary POVM and increasing the pos-
sible outcomes ℓ could significantly reduce the query complexity.
Numerical simulations are conducted to support our theoretical find-
ings. In contrast to the previous understanding that entanglement
mostly confers benefits to QML in terms of sample complexity, the
transition role of entanglement identified in this work deepens our
comprehension of the relation between quantum information and
QML, which facilitates the design of QML models with provable
advantages.

Results
We first recap the task of learning quantum dynamics. Let U 2 SUð2nÞ
be the target unitary and O 2 C2n × 2n be the observable which is a
Hermitian matrix acting on an n-qubit quantum system. Here we spe-
cify the observable as the projective measurement O= ∣oi oh ∣ since any
observable reads out the classical information from the quantum
system via their eigenvectors. The goal of the quantum dynamics
learning is to predict the functions of the form

fU ðψÞ=TrðOU ∣ψ
�
ψ
�

∣UyÞ, ð1Þ

where ∣ψ
�
is ann-qubit quantum state living in a 2n-dimensionalHilbert

space HX . This task can be done by employing the training data S to
construct a unitary VS , i.e., the learned hypothesis has the form of
hSðψÞ=TrðOVS ∣ψ

�
ψ
�

∣V y
SÞ, which is expected to accurately approx-

imate fU(ψ) for the unseen data.While the learned unitary acts on an n-
qubit system HX , the input state could be entangled with a reference

Fig. 1 | Illustration of quantumNFL settingwith the entangled data.The goal of
the quantum learner is to learn a unitary VX that can accurately predict the output
of the target unitaryUX under a fixed observableO, where the subscriptX refers to
the quantum system in which the operator O act on. The learning process is as
follows. a A total number of N entangled bipartite quantum states living in Hilbert
space HX �HR (R denotes the reference system) are taken as inputs, dubbed
entangled data. b Quantum learner proceeds incoherent learning. The entangled
data separately interacts with the target unitary UX (agnostic) and the candidate
hypothesisVX extracted from the sameHypothesis setH. c The quantum learner is
restricted to leverage the finite measured outcomes of the observable O on the

output states ofUX andVX to conduct learning.dA classical computer is exploited
to infer V* that best estimates UX according to the measurement outcomes. For
example, in the case of variational quantum algorithms, the classical computer
serves as an optimizer to update the tunable parameters of the ansatz VX . e The
learned unitaryV* is used to predict the output of unseen quantum states inHilbert
spaceHX under the evolutionof the target unitaryUX and themeasurement ofO. A
large Schmidt rank r can enhance the prediction accuracy when combined with a
large number of measurementsm, but may lead to a decrease in accuracy whenm
is small.
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systemHR, i.e., ∣ψ
� 2 HX �HR. We suppose that all input states have

the same Schmidt rank r∈ {1,⋯ , 2n}. Then the response of the state
∣ψj

E
is given by the measurement output oj =

Pm
k = 1ojk=m, where m is

the number of measurements and ojk is the output of the k-th mea-
surement of the observable O on the output quantum state
ðU � IRÞ∣ψji. In this manner, the training data with N examples takes
the form S = fð∣ψji,ojÞ : ∣ψji 2 HX �HR,E½oj�=ujgNj = 1 with
uj =TrððUyOU � IRÞ∣ψjihψj ∣Þ being the expectation value of the
observable O on the state ðU � IRÞ∣ψji and N being the size of the
training data. Notably, in quantum dynamics learning, sample com-
plexity refers to the size of training dataN, or equivalently, the number
of quantum states in the training data; query complexity refers to the
total number of queries of the explored quantum system, i.e., the
production of sample complexity and the number of measure-
ments Nm.

The risk function is a crucial measure in statistical learning theory
to quantify howwell the hypothesis function hS performs inpredicting
fU, defined as

RU ðVSÞ=
Z

dψ fU ðψÞ � hSðψÞ� �2, ð2Þ

where the integral is over the uniform Haar measure dψ on the state
space. Intuitively, RU ðVSÞ amounts to the average square error dis-
tance between the true output f(ψ) and the hypothesis output hSðψÞ.
Moreover, we follow the treatments in ref. 48 choosing the Haar uni-
tary as the target unitary. Additionally, we construct a sampling rule of
the training input states which approximates the uniform distribution
of all entangled states with Schmidt rank r (refer to Supplemen-
tary Note 2).

Under the above setting, we prove the following quantum NFL
theorem in learning quantum dynamics, where the formal statement
and proof are deferred to Supplementary Note 3.

Theorem 1. (Quantum NFL theorem in learning quantum dynamics,
informal). Following the settings in Eq. (1), suppose that the training
error of the learned hypothesis on the training data S is less than
ε=Oð1=2nÞ. Then the lower bound of the averaged prediction error in
Eq. (2) yields

EU ,SRU ðVSÞ≥Ω
~ε2

4n 1� N �minfm=ð2nrc1Þ,rng
2nc2

� � !
,

where c1 = 128=~ε
2, c2 = minfð1� 2~εÞ2,ð64~ε2 � 1Þ2g, ~ε =Θð2nεÞ, and the

expectation is taken over all target unitaryU, entangled states ∣ψj

E
and

measurement outputs oj.
The achieved results indicate the transition role of the entangled

data in determining the prediction error. Particularly, when a sufficient
number of measurements m is allowed such that the Schmidt rank r
obeys r<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðc12nnÞ

p
, the minimum term in the achieved lower bound

refers to Nrn and hence increasing r can constantly decrease the pre-
diction error. Accordingly, in the two extreme cases of r = 1 and r = 2n,
achieving zero averaged risk requiresN = 2nc2/n andN = 1 training input
states, where the latter achieves an exponential reduction in the
number of training data compared with the former. This observation
implies that the entangled data empower QMLwith provable quantum
advantage, which accords with the achieved results of ref. 48 in the
ideal coherent learning protocol with infinite measurements.

By contrast, in the scenario with r ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðc12nnÞ

p
, increasing r

could enlarge the prediction error. This result indicates that the
entangled data can be harmful to achieving quantum advantages,
which contrasts with previous results where the entanglement (e.g.,
entangled operations or measurements) is believed to contribute to
the quantum advantage48,53–55. This counterintuitive phenomenon
stems from the fact that when incoherently learning quantum

dynamics, information obtained from each measurement decreases
with the increased r and hence a small m is incapable of extracting all
information of the target unitary carried by the entangled state.

Another implication of Theorem 1 is that although the number of
measurements m contributes to a small prediction error, it is not
decisive to the ultimate performance of the prediction error. Specifi-
cally, when m ≥ r2c12nn, further increasing m could not help decrease
the prediction error which is determined by the entanglement and the
size of the training data, i.e., r and N. Meanwhile, at least r2c12nn mea-
surements are required to fully utilize the power of entangled data.
These results suggest that the value of m should be adaptive to r to
pursue a low prediction error.

We next comprehend the scenario in which the lower bound of
averaged risk in Theorem 1 reaches zero and correlate with the results
in quantum state learning and quantum dynamics learning26,27,29,30,56,57.
In particular, the main focus of those studies is proving the minimum
query complexity of the target unitary to warrant zero risk. The results
in Theorem 1 indicate that the minimum query complexity is
Nm =Ω(4nrc1c2), implying the proportional relation between the
entanglement degree r and the query complexity. Notably, this lower
bound is tighter than that achieved in ref. 26 in the same setting. The
achieved results in terms of query complexity are also non-trivial, as
previous works show that query complexity can benefit from using
entanglement in quantum data58,59 and quantum measurements26,30.
The advance of our results stems from the fact that ref. 26 simply
employs Holevo’s theorem to give an upper bound on the extracted
information in a singlemeasurement, while our bound integratesmore
refined analysis such as the consideration of Schmidt rank r, the direct
use of a connection between the mutual information of the target
unitary U and the measurement outputs oj, and the KL-divergence of
related distributions (refer to Supplementary Note 3 for more details).
Moreover, the adopted projectivemeasurementO in Eqn. (1) hints that
the learning task explored in our study amounts to learning a pure
state U†OU. From the perspective of state learning, the derived lower
bound in Theorem 1 is optimal for the nonadaptivemeasurement with a
constant number of outcomes60. Taken together, while the entangled
data hold the promise of gaining advantages in terms of the sample
complexity for achieving the same level of prediction error, they may
be inferior to the training data without entanglement in terms of query
complexity.

The transition role of entanglement explained above leads to the
following construction rule of quantum learning models. First, when a
large number of measurements is allowed, the entangled data is
encouraged to be used for improving the prediction performance. To
this end, initial research efforts61–66, which develop effective methods
for preparing and storing entangled states, may contribute to QML.
Second, when the total number of measurements is limited, it is
advised to refrain from using entangled data for learning quantum
dynamics.

Remark. (i) The training error scaling ε=Oð1=2nÞ in Theorem 1 and
the factor of the achieved lower bound ~ε2=4n comes from the con-
sideration of average performance over Haar unitaries where the
expectation value of observable O scales as TrðOÞ=2n (Refer to Sup-
plementary Note 2). (ii) The results of the transition role for entangled
data achieved in Theorem 1 can be generalized to the mixed states
because themixed state can be produced by taking the partial trace of
a pure entangled state.

In amore generic learning setting, the observable used in the target
functiondefined in Eqn. (1) and themeasurement used for collecting the
response of training data o could be arbitrary and varied. In particular,
we consider that the observableO defined in Eqn. (1) could be arbitrary
Hermitian operator satisfying ∥O∥1≤∞. The response aj for given input
states ∣ψj

E
could be obtained from measuring the output states on

system X with ℓ-outcome POVM. The training dataset in this case refers
to S‘ = fð∣ψj

E
,ajÞ : ∣ψj

E
2 HXR,aj = ðaj1, � � � ,ajmÞ,ajk 2 fz1, � � � ,z‘gg

N

j = 1
,
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where ∣ψji refers to the entangled states with Schmidt rank r, aj is them-
measurement outputs with ℓ-outcome POVM, and fzig‘i= 1 is the ℓ pos-
sible outcomes of the employed POVM. In this case, denoting the
learned unitary as VS‘

, we get the following quantum NFL theorem in
learning quantum dynamics for generic measurements, where the for-
mal statement and proof are deferred to Supplementary Note 4.

Theorem2. (QuantumNFL theorem in learning quantumdynamics for
generic measurements, informal) Following the settings in Eq. (1) with
arbitrary O satisfying ∥O∥1≤∞, suppose the learned hypothesis is
learned from training data S‘. Then the lower bound of the averaged
prediction error in Eqn. (2) yields

EU ,S‘
RU ðVS‘

Þ≥ ε2 1� N �minf4m=r,6m‘=2nr,rng
logðjX2εðOÞjÞ

� �

where jX2εðOÞj refers to the model complexity and only depends on ε
and the employed observable O. For projective measurement
O= ∣oi oh ∣, logðjX2εðOÞjÞ=2nc2 is given in the denominator of the
achieve lower bound in Theorem 1.

The achieved results in Theorem 2 deliver three implications.
First, the transition role of entangled data still holds for arbitrary
observable and POVM. In particular, no matter how large the number
of possible outcomes of POVM ℓ is, increasing the Schmidt rank will
decrease the prediction error as long as the number of measurements
m satisfies minf4m=r,6m‘=2nrg≤ rn, and increase the prediction error
otherwise. Second, when the observable is projective measurement
and the number of possible outcomes ℓ is of constant order, the
achieved result in Theorem 2 reduces to the results achieved in The-
orem 1 for the case of employing projective measurement up to a
constant factor. Third, increasing the number of possible outcomes of
POVM ℓ can exponentially reduce the number of measurements
required to achieve the same level of prediction error. Particularly,
considering two extreme cases of the possible outcomes of POVM ℓ
being constant scaling Θ(1) and exponential scaling Θ(2n), achieving
the same level of prediction error requires the query complexity
scaling with the order of 2nr logðjX2εðOÞjÞ and r logðjX2εðOÞjÞ, where
the latter case achieves an exponential reduction in terms of the query
complexity.

Numerical results
We conduct numerical simulations to exhibit the transition role of
entangled data, the effect of the number of measurements, and the
training data size in determining the prediction error. The omitted
construction details and results are deferred to SupplementaryNote 5.

We focus on the task of learning an n-qubit unitary under a fixed
projective measurement O= ð∣0i 0h ∣Þ�n. The number of qubits is n = 4.
The target unitary UX is chosen uniformly from a discrete set fU igMi= 1,
whereM = 2n refers to the set size and the operators Uy

j OU j with Uj in
this set are orthogonal such that the operators Uy

j OU j are well dis-
tinguished. The entangled states inS is uniformly sampled from the set
fPr

j = 1
ffiffiffiffi
cj

p
U j ∣0i � ∣ξ j

E
j ð ffiffiffiffi

c1
p

, � � � , ffiffiffiffiffi
cr

p Þ> 2 SUðrÞ, ∣ξ j
E
2 SUð2nÞg. The

size of training data is N∈ {1, 2,⋯ , 16} and the Schmidt rank takes
r = {20,⋯ , 24}. The number of measurements takes
m∈ {10, 100, 300,⋯ , 5000, 20000}. We record the averaged predic-
tion error by learning four different 4-qubit unitaries for 10
training data.

The simulation results are displayed in Fig. 2. Particularly, Fig. 2a
shows that for both the cases of N = 2 and N = 8, the prediction error
constantly decreases with respect to an increased number of mea-
surements m and increased Schmidt rank r when the number of
measurements is large enough, namely m > 1000. On the other hand,
for a small number of measurements withm ≤ 100 in the case of N = 8,
as the Schmidt rank is continually increased, the averaged prediction
error initially decreases and then increases after the Schmidt rank
surpasses a critical point which is r = 3 form = 10 and r = 4 form = 100.
This phenomenon accords with the theoretical results in Theorem 1 in
the sense that the entangled data play a transition role in determining
the prediction error for a limited number of measurements. This
observation is also verified in Fig. 2b for the varied sizes of training
data, where for the small measurement times m = 10, increasing the
Schmidt rank could be not helpful for decreasing the prediction error.
By contrast, a large training data size consistently contributes to a
small prediction error, which echoes with Theorem 1.

Discussion
In this study, we exploited the effect of the Schmidt rank of entangled
data on the performance of learning quantum dynamics with a fixed
observable. Within the framework of the quantum NFL theorem, our
theoretical findings reveal the transition role of entanglement in
determining the ultimate model performance. Specifically, increasing
the Schmidt rank below a threshold controlled by the number of
measurements can enhance model performance, whereas surpassing
this threshold can lead to a deterioration in model performance. Our
analysis suggests that a large number of measurements is the pre-
condition to use entangleddata to gain potential quantumadvantages.
In addition, our results demystify the negative roleof entangleddata in
the measure of query complexity. Last, as with the classical NFL the-
orem, we prove that increasing the size of the training data always
contributes to a better performance in QML.

(a) N = 8N = 2
(× 2/4 ) (b)

Fig. 2 | Simulation resultsofquantumNFL theoremwhen incoherently learning
quantum dynamics. a The averaged prediction error with a varied number of
measurementsm and Schmidt rank r when N = 2 and N = 8. The z-axis refers to the
averaged prediction error defined in Eq (1). b The averaged prediction error with

the varied sizes of training data. The label “r = a&m = b” refers that the Schmidt rank
is a and the number of measurements is b. The label “( × 2/4n)” refers that the
plotted prediction error is normalized by a multiplier factor 2/4n.

Article https://doi.org/10.1038/s41467-024-47983-1

Nature Communications |         (2024) 15:3716 4



Our resultsmotivate several important issues and questions needed
to be further investigated. The first research direction is exploring whe-
ther the transition role of entangled data exists for other QML tasks such
as learning quantum unitaries or learning quantum channels with the
response being measurement output26,30,55,67–76. These questions can be
considered in both the coherent and incoherent learning protocols,
which are determined by whether the target and model system can
coherently interact and whether quantum information can be shared
between them.Obtainingsuch resultswouldhave important implications
for using QMLmodels to solve practical tasks with provable advantages.

A another research direction is inquiring whether there exists a
similar transition role when exploiting entanglement in quantum
dynamics and measurements through the use of an ancillary quantum
system. The answer for the case of entangled measurement has been
given under many specific learning tasks26,29,30,77 where the learning
protocols with entangled measurements are shown to achieve an
exponential advantage over thosewithout in terms the access times to
the target unitary. This quantum advantage arises from the powerful
information-extraction capabilities of entangledmeasurements. In this
regard, it is intriguing to investigate the effect of quantum entangle-
ment onmodel performancewhen entanglement is introduced in both
the training states and measurements, as entangled measurements
offer a potential solution to the negative impact of entangled data
resulting from insufficient information extraction via weak projective
measurements. A positive result could further enhance the quantum
advantage gained through entanglement exploitation.

Methods
Here we first outline the proof strategy that establishes the lower
bound of the averaged prediction error in Theorem 1. Thenwe present
an intuitive explanation of the transition role of entangled data
according to the achieved numerical results.

Proof sketch
The backbone of the proof refers to Fano’s method, which is widely
used to derive the lower bound of prediction error in classical learning
theory78. This method involves the following three parts. Part (I): The
space of the target dynamics U = fU 2 SUðdÞg is discretized into a 2ε-

packing M2ε = fUx0 gjM2ε j
x0 = 1 such that the dynamics within M2ε are suffi-

ciently distinguishable under a distance metric related to the target
function in Eq. (1). Part (II): The dynamics learning problem in Eq. (1) is
translated to the hypothesis testing problem related to the 2ε-packing
M2ε. Such a hypothesis testing problem amounts to a communication
protocol between twoparties, namely Alice and Bob. Particularly, Alice
chooses an element X of f1, � � � ,jM2εjg uniformly at random and
employs the corresponding unitary UX to construct the training data

S = f∣ψji,oðX Þ
j gN

j = 1
with ∣ψj

E
being the randomly sampled entangled

input state and oj being the associated measurement output of the

state ðUX � IÞ∣ψj

E
under the projective measurement O. Bob’s goal is

to retrieve the information of X from the discrete set f1, � � � ,jM2εjg
based on S. The inferred index by Bob is denoted by X̂ . This leads to

the hypothesis testing problem with the null hypothesis X̂≠X . In this
regard, we demonstrate that the averaged prediction error is greater

than a quantity related to the error probability PðX̂≠X Þ of the

hypothesis testing problem, namelyEU ,SRU ðVSÞ≥EX ,Sε
2PðX̂≠X Þ. This

provides the theoretical guarantee of reducing the learningproblem to
thehypothesis testingproblem.Part (III): Fano’s inequality is utilized to

establish an upper bound on the error probability PðX̂≠X Þ of the
hypothesis testing problem, i.e.,

PðX̂≠X Þ≥ 1� IðX ; X̂ Þ+ log 2
logðjM2εjÞ

, ð3Þ

which is dependent on two factors: the cardinality of the 2ε-packing
M2ε, and the mutual information IðX ,X̂ Þ between the target index X
and the estimated index X̂ .

To summarize, Fano’s method reduces the challenging problem
of lower bounding the prediction error to separately lower bounding
the packing cardinality and upper bounding the mutual information,
which we could develop techniques for tackling. In particular, we
obtain the lower bound of the 2ε-packing cardinality jM2εj by
employing the probabilistic argument to show the existence of a large
but well-separated collection of quantum dynamics (i.e., the 2ε-pack-
ing M2ε) under a metric dependent on the observable O.

We establish an upper bound for the mutual information IðX ; X̂ Þ
by considering two cases: one with a small number of measurements
and another with a sufficiently large number ofmeasurements. For the
former case, the mutual information IðX ; X̂ Þ is upper bounded by a
quantity involving the KL-divergence between the probability dis-
tributions of the measurement output oðxÞ

j related to various index x,
which has the order of OðNmdε2=rÞ in the average case. On the other
hand, while the mutual information IðX ; X̂ Þ cannot grow infinitely with
the number of measurements, we derive another upper bound of
IðX ; X̂ Þ with the mutual information IðX ; fðUX � IÞ∣ψjigNj = 1Þ for the case
of a sufficiently large number of measurements which could extract
the maximal amount of information from each output state. In this
regard, the mutual information is upper bounded by an m-indepen-
dent quantity with the order of OðrnÞ. This leads to the final upper
bound of the mutual information minfOðNmdε2=rÞ,OðrnÞg where the
Schmidt rank r plays the opposite role in the two scenarios with the
various number of measurements allowed, resulting in the transition
role of entangled data.

Taken all together, we canobtain the lower boundof the averaged
prediction error in Theorem 1.

Remark. While many similar pipelines involving the utilization of
Fano’s inequality have been used for obtaining the lower bound of
sample complexity in quantum state learning tasks, we give a detailed
explanation about how our results differ from previous studies in
Supplementary Note 1E.

Intuitive explanations based on numerical results
We now give an intuitive explanation about the transition role of the
entangled data based on the numerical simulations.

Before elucidating, we first detail the construction rule of the
target unitaries set and the entangled input states. Particularly, to
construct the set consisting of well-distinguished target unitaries
under the distancemetric related to the observableO= ð∣0i 0h ∣Þ�n, one
way is to choose the unitaries Uj in SUð2nÞ at uniformly random such

that the target operators Uy
j OU j = ∣ej

E
ej
D

∣ are mutually orthogonal. In

this regard, learning the target unitary under the observable O is
equivalent to identifying the unknown index k* corresponding to the

target operator Uy
k*OUk* = ∣ek*

�
ek*

�
∣. The entangled input states have

the form of ∣ψj

E
=
Pr

k = 1
ffiffiffiffiffiffi
cjk

p
∣ξ jk

E
X
∣ζ jk

E
R

where the Schmidt coeffi-

cients {cjk} satisfy
Pr

k = 1cjk = 1. As the target unitary Uk* acts on the
quantum system X , the identification of the corresponding index k*

solely depends on the partial trace of the entangled states, i.e.,

σj : =TrRð∣ψj

E
ψj

D
∣Þ=Pr

k = 1cjk ∣ξ jk

E
ξ jk

D
∣
X
. To this end, we consider

that the states ∣ξ jk
E
in the reduced states are sampled from the com-

putational basis f∣ei
�g2ni = 1 and the coefficient vector cj = ð

ffiffiffiffiffi
cj1

p
, � � � , ffiffiffiffiffiffi

cjr
p Þ

is sampled from the Haar distribution in the r-dimensional Hilbert

space Hr . In this manner, we construct S = f∣ψj

E
,ojg

N

j = 1
and use it to

learn the unknown index k* by solving the following minimization
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problem

k̂ = argmink2½2n�
XN

j = 1
oðkÞ
j � oj

	 
2
, ð4Þ

where [2n] refers to the set {1,⋯ , 2n} and oðkÞ
j is the collected mea-

surement outputs by applying the observable Uy
kOUk with Uk 2

fUk0 gk02½2n � to input states ∣ψj

E
.

The successful identification of the target index k* relies on the
satisfaction of two key conditions:

1. The states set f∣ξ ji

E
ξ ji

D
∣g
N,r

j,i= 1
contains the target opera-

tor Uy
k*OUk* = ∣ek*

�
ek*

�
∣.

2. The measurement outputs fojgNj = 1 closely approximate the corre-
sponding Schmidt coefficient ck* of the opera-

tor Uy
k*OUk* = ∣ek*

�
ek*

�
∣ 2 f∣ξ ji

E
ξ ji

D
∣g
N,r

j,i = 1
.

The first condition ensures that the measurement outputs fojgNj = 1
are non-zero, enabling the identification of the target index k*. More-

over, if the target operator Uy
k*OUk* is not included in f∣ξ ji

E
ξ ji

D
∣g
N,r

j,i= 1
,

measuring the output states with observable O will always yield zero
for all k∈ [2n] such that any k∈ [2n] is the solution of Eqn. (4).

The second condition ensures that the non-zero measurement
outcomes can closely approximate the ground truth to facilitate the
identification of the target index k*. In this regard, the states set

f∣ξ ji

E
ξ ji
D

∣g
N,r

j,i= 1
, which associates with highly entangled input states (a

large Schmidt rank r), is more likely to contain the unknown target

operator Uy
k*OUk* . Consequently, they exhibit a higher identifiability

with a greater probability of producing non-zero measurement out-
comes. On the other hand, the average magnitude of the Schmidt

coefficients fcjigri= 1 of a highly entangled state ∣ψj

E
decreases with the

Schmidt rank r. This leads to a small probability of the target operator

Uy
k*OUk* being measured according to the Born rule. As a result,

achieving a close approximation necessitates a larger number of
measurements. For instance, the entangled states with r = 2n could
always yield non-zero measurement outputs with a large number of

measurements. Conversely, if the unentangled state ∣ψj

E
ψj

D
∣with r = 1

is exactly identical to the target operatorUy
k*OUk* , onemeasurement is

sufficient to identify the target index k*. These observations provide an
intuitive indication about the transition role of entangled data from
the lens of quantum information that the entangled data could contain
more information than unentangled data, but at the same time
increase the difficulty of information extraction using projective
measurement.

Data availability
The entangled data generated in this study are available at the Github
repository.

Code availability
The code used in this study are available at the Github repository.
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