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Eye movements track prioritized auditory
features in selective attention to
natural speech

Quirin Gehmacher 1 , Juliane Schubert1, Fabian Schmidt 1,
Thomas Hartmann 1, Patrick Reisinger 1, Sebastian Rösch 2,
Konrad Schwarz3, Tzvetan Popov 4,5, Maria Chait 6 & Nathan Weisz1,7

Over the last decades, cognitive neuroscience has identified a distributed set
of brain regions that are critical for attention. Strong anatomical overlap with
brain regions critical for oculomotor processes suggests a joint network for
attention and eye movements. However, the role of this shared network in
complex, naturalistic environments remains understudied. Here, we investi-
gated eyemovements in relation to (un)attended sentences of natural speech.
Combining simultaneously recorded eye tracking and magnetoencephalo-
graphic data with temporal response functions, we show that gaze tracks
attended speech, a phenomenon we termed ocular speech tracking. Ocular
speech tracking even differentiates a target from a distractor in a multi-
speaker context and is further related to intelligibility. Moreover, we provide
evidence for its contribution to neural differences in speech processing,
emphasizing the necessity to consider oculomotor activity in future research
and in the interpretation of neural differences in auditory cognition.

The brain is highly efficient in processing a vast amount of information
in complex environments, thereby enabling adaptive behavior. A key
principle of adaptive behavior is the goal-directed prioritization and
selection of relevant events or objects by attention. From a neuro-
biological perspective, a distributed attention network extending from
relevant sensory cortices to temporal, parietal, and frontal regions1–4

shows a strong anatomical overlap with brain regions critical for
oculomotor processes, suggesting a joint network for attention and
eye movements5–7.

Just as eye movements are necessary for the goal-directed
exploration of the visual field, gathering and evaluating additional
information via omnidirectional hearing is an inevitable requirement
for action preparation and adaptive behavior. Studies onmonkeys and
cats suggest a midbrain level hub of the inferior colliculus (IC, an
obligatory station of the ascending auditory pathway) and superior

colliculus (SC, which controls ocular dynamics) to integrate sounds
and visual scenes via eyemovements8–10. This circuit has recently been
extended to the auditory periphery in humans11,12. Accordingly, several
studies in humans point towards interactions between eyemovements
and auditory cognition in sound localization13, spatial discrimination14,
and spatial attention15 with lateralized engagement of the posterior
parietal cortex in unisonwith lateralized gaze direction16. However, the
role of a shared network of auditory attention and eye movements in
more complex, naturalistic listening situations remains largely
unknown.

Speech represents a key component of social communication that
requires a highly selective allocation of spatial, temporal, and feature-
based attention. In a mixture of spatially distributed speakers (i.e.
“cocktail party scenario”), orienting the eyes towards the target source
seems to increase intelligibility17, and eye blinks are more likely to
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occur during pauses in target speech compared to distractor speech18.
In addition, Jin and colleagues19 showed that blink-related eye activity
aligned with higher-order syntactic structures of temporally pre-
dictable, artificial speech (i.e. monosyllabic words), similar to neural
activity. Their results suggest a global neural entrainment across sen-
sory and (oculo)motor areas which implements temporal attention,
supporting ideas that the motor system is actively engaged in speech
perception20,21. Taken together, the evidence strongly suggests an
engagement of the oculomotor system in auditory selective attention
even in more complex scenes involving speech, and this engagement
also seems to support adaptive behavior. However, several important
questions that are essential for a comprehensive understanding of a
joint network of auditory attention and eye movements remain
unanswered:

Firstly, it is unknown whether eye movements (aside from blink-
ing) continuously track ongoing acoustics of speech, especially in
naturalistic scenarios where features often overlap in a mixture of
target and distracting sources. This ocular speech tracking could be
sensitive to selective attention, for example by gaze reorientation in
concordance with relevant structures of attended speech streams.
Crucially, the absence of any spatial cues or discriminability could
additionally provide valuable information on the underlying principles
of oculomotor action in auditory selective attention. Secondly, it is
unknown whether ocular speech tracking is related to adaptive beha-
vior, as quantification of important markers like intelligibility or effort
is, to date, lacking. Thirdly, the contribution of eye movements to
neural processes and underlying computations in selective attention
to speech has been overlooked completely. In their aforementioned
study, Popov et al. 16 indicated that a partial contribution of goal-driven
oculomotor activity to typical cognitive effects in spatial auditory
attention was retained even after removing scalp signal variance (e.g.,
by means of independent component analysis, ICA) related to ocular
muscle activity. Based on their findings, it is important to address this
possible contribution when evaluating neural responses in selective
attention to speech.

To answer these questions, we analyzed simultaneously recorded
eye tracking and magnetoencephalographic (MEG) data from partici-
pants listening to short sentences of natural speech at the phantom
center. Critically, we manipulated attention within and across mod-
alities such that sentences were presented as distractors (Condition 1),
as targets (Condition 2), or as a mixture of target and distractor in a
multi-speaker scenario (Condition 3). Using temporal response func-
tions (TRF22,23), we show that attended features of speech (i.e. envelope
and acoustic onsets) are, in fact, tracked by eye movements. Crucially,
ocular speech tracking is stronger for a target compared to a distractor
speaker in the multi-speaker condition. Furthermore, this ocular
tracking of speech features is related to intelligibility. Finally, using a
mediation analysis approach, we show that eye movements and
selective attention to speech share neural mechanisms over left tem-
poroparietal sensors, suggesting a contribution of ocular speech
tracking to brain regions typically involved in speech processing (or
vice versa). Taken together, these results extend previous evidence for
a joint network of auditory selective attention and eye movements in
complex naturalistic environments. They provide implications on
adaptive behavior and moreover suggest a shared contribution of
oculomotor and neural activity in auditory selective attention that
should be taken into consideration by future research on auditory
cognition.

Results
Participants listened to short sentences of natural speech in different
conditions of selective attention. Sentences featured either a single
speaker as a distractor to visual attention, a single speaker as the target
of the auditory modality, a target in a multi-speaker condition, and
consequently a distractor in a multi-speaker condition (see Fig. 1).

Using TRFs, a regularized linear regression approach, we evaluated
ocular speech tracking based on themodel’s ability to predict held-out
eyemovement data in a nested cross-validation procedure (see Fig. 2).
Eye tracking and MEG data were simultaneously recorded. First, we
investigated spatial gaze characteristics during trials. Importantly,
densities confirm that participants kept their gaze on the visual sti-
mulus (i.e. Gabor patch) at the center of the screen (see Fig. 3a).
Additionally, we contrasted Conditions 2 & 3 (attend speech) against
Condition 1 (attend Gabor) using a cluster-based permutation test (see
Fig. 3b). For both contrasts, we observed a slight shift of gaze to the
top-right whenever the auditory modality is attended. Contrasting
Condition 2 (attend single speaker) against Condition 1 revealed one
positive cluster (t(29) = 7.72, p <0.001, Cohen’s d = 1.41), and one
negative cluster (t(29) = −11.34, p <0.001, Cohen’s d = −2.07). Similarly,
the cluster-based permutation test revealed one positive cluster
(t(29) = 6.26, p < 0.001, Cohen’s d = 1.14), and one negative cluster
(t(29) = −8.69, p < 0.001, Cohen’s d = −1.59) for the contrast Condition
3 (attend a target in a multi-speaker condition) vs. Condition 1.

Eye movements track prioritized acoustic features of
natural speech
We then answered the question as to whether eye movements track
natural speech, and how this tracking is modulated by selective
attention and subsequently provided evidence that ocular speech
tracking prioritizes acoustic features of a target speaker, even in the
presence of a simultaneously presented distractor. Bayesianmultilevel
models with Fisher z-transformed prediction accuracies of ocular
speech tracking as dependent variables (z’) revealed compelling evi-
dence that eye movements only track the envelope of a single speaker
when it was presented as the target of attention (β =0.032, 94%HDI =
[0.022, 0.041]), notwhen it served as a distractor to the visualmodality
(β =0.006, 94%HDI = [−0.004, 0.015]). We observed a similar effect
when using acoustic onsets as a predictor, indicating substantial evi-
dence for ocular tracking of the target (β =0.040, 94%HDI = [0.030,
0.050]) but not the distractor sentences (β =0.004, 94%HDI =
[−0.006, 0.015]). For the multi-speaker condition, direct post hoc
comparison between target and distractor speech revealed that
speech envelope tracking (β = -0.007, 94%HDI = [−0.013, −0.001]) was
weaker for the distractor speaker compared to the target speaker. The
same comparison for acoustic onset tracking points towards a similar
effect (β = −0.012, 94%HDI = [−0.020, −0.005]). Overall, the results
show stronger ocular speech tracking for attended speech compared
to ignored speech in a single speaker and in a multi-speaker context
(see Fig. 4a). They further indicate that in a multi-speaker context, eye
movements track a target speaker more strongly compared to a dis-
tractor speaker. A summary of the statistics can be found in Supple-
mentary Tables, Table 1.

TRFs revealed similar activation patterns for horizontal and
vertical eye movements in Conditions 2 & 3 where the auditory
modality is attended (see Fig. 4b). For the envelope, we observed
positive initial peaks already at ~ 0 lag, with a fairly rapid decrease
after ~ 200ms back. For acoustic onsets, we observed a slower
increase to a broader positive peak at ~ 200ms with a slower
decrease compared to the envelope TRFs. In general, TRF weights
show a temporally more pronounced pattern for the speech envel-
ope. We did not observe any meaningful weights to speech features
when they were ignored in Condition 1. It is important to note that in
this case TRFs can be interpreted not only based on their temporal
profile but also on their directionality. Eye tracking data delivers
positive and negative values on the horizontal and vertical plane
(horizontal: + right, − left; vertical: + up, − down) that were preserved
by the analysis. Thus, positive TRF peaks can be interpreted as shifts
of gaze in the respective direction. However, it is important to note
that TRF weights should be interpreted with great care. For one, our
models also included control features that could potentially bias the
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spatial interpretability of TRFs. For another, the simplistic single-trial
5-word structure of the task could bias the temporal interpretability.
In both cases, future studies with continuous unisensory designs are
required for replication and validation.

Ocular speech tracking is related to intelligibility
In response to a second question, we addressed the behavioral rele-
vance of ocular speech tracking in terms of intelligibility and sub-
jectively perceived listening effort. As intelligibility was probed for
attended speech, i.e. where it was the target in a single speaker and a
multi-speaker condition (see Fig. 1b, c), only these two conditions
(multi vs. single speaker) were included in the Bayesian multilevel
model. Fisher z-transformed prediction accuracies (z’) of ocular
speech tracking was included as the independent variable. We found a
positive effect for the encoding of the speech envelope (β = 19.113, 94%
HDI = [8.859, 29.223]) and acoustic onsets (β = 11.695, 94%HDI =
[0.5705, 23.110]) on intelligibility indicating that, in the single speaker
condition, higher intelligibility is reflected in stronger ocular speech
envelope and acoustic onset tracking (see Fig. 5a). While we found a
negative interaction with the condition of a multi vs. single speaker
(β = −13.224, 94%HDI = [−25.212, -0.586]) for ocular speech envelope
tracking, there was no substantial evidence for an interaction effect
when using acoustic onset tracking as independent variable
(β = −5.380, 94%HDI = [−17.822, 6.210]). This indicates that the link

between intelligibility and envelope tracking is decreased in a multi
speaker condition (see Fig. 5b). There was no compelling evidence for
an effect of neither ocular speech envelope (β = −8.048, 94%HDI =
[−19.252, 3.663]) nor acoustic onset tracking (β = 4.227, 94%HDI =
[−15.643, 7.834]) on subjectively perceived effort. A summary of the
statistics can be found in Supplementary Tables, Table 2 and 3.

Eye movements and neural activity share contributions to
speech tracking
Thirdly, we asked whether eye movements and auditory selective
attention share neural processes. As was shown by Popov et al. 16, a
partial contribution of goal-driven oculomotor activity to typical
cognitive effects in spatial auditory attention was retained even after
removing scalp signal variance (e.g. by means of independent com-
ponent analysis, ICA) related to ocular muscle activity. Based on their
findings, it is important to address this possible contribution when
evaluating neural responses in selective attention to speech, especially
sinceour design did not entail any spatial discriminability or cues.With
a mediation analysis approach (see Fig. 6a), we evaluated the rela-
tionship between eye movements and neural speech tracking with a
cluster-based permutation test, contrasting the plain (c) against the
direct (c’) effects, i.e. model weights of the speech envelope for pre-
dicting neural responses on the one hand with model weights from an
encoding model also including eye movements as an additional

Fig. 1 | The single-trial design formodulating selective attention to speech.The
task contained trials of short 5-word sentences of natural speech. Participants’
attention was modulated within and across modalities. a In Condition 1, a rotating
Gaborpatchwas attended in the visualmodality,while speechservedas adistractor
(dark purple). b This was reversed in Condition 2, where speech was the focus of
attention (bright purple). c In Condition 3, another speaker of the opposite sexwas

added to investigate the ocular speech tracking of a target speaker (red) with a
simultaneously presented distractor (yellow). After each trial, participants
responded to questions on the screen with a handheld button box (left button =
green, right button = red): to the Gabor rotations in Condition 1 and to the pre-
sented words in the target speaker in Conditions 2 and 3.
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predictor on the other hand (see Fig. 6c, also see Mediation Analysis
and Statistical Analysis). The tests revealed a significant difference (c’
< c) for all three conditions with a left temporoparietal topographic
pattern, partially overlapping with auditory processing areas. Eye
movements shared contributions to neural speech processing mostly
over left parietal sensors for the target in a single speaker condition
(t(29) = −4.40, p < 0.001, Cohen’s d = −0.80), the target in a multi-
speaker condition (t(29) = −4.90, p < 0.001, Cohen’s d = −0.90) as well
as the distractor in a multi-speaker condition (t(29) = −4.68, p <0.001,
Cohen’s d = −0.85, see Fig. 6c). In order to ensure that these effects did
not merely stem from feature scaling or the inclusion of an additional
predictor into the encoding model, we also compared the direct (c’)
effect against a model that included a shuffled version of eye move-
ment data (across time, within condition). This led to almost identical
results and therefore, crucially, the same conclusions (see Supple-
mentary Figs., Fig. 3c).

Discussion
Previous research established fundamental evidence for a joint net-
work of attention and eyemovements. In the auditory domain, several
studies point towards interactions of the oculomotor system and

selective processing. The generalizability and validity of such interac-
tions in complex, naturalistic environments have, to date, not been
quantified. Here, we aimed to establish a direct link between ocular
movements, selective attention to speech, and adaptive behavior. We
further investigated the contribution of this ocular speech tracking to
underlying neural processes. Using the sampled signal of continuous
horizontal and vertical gaze activity in combination with TRFs, we
show that eye movements track prioritized auditory features (i.e.
envelope and acoustic onsets) in selective attention to speech. Cru-
cially, ocular speech tracking differentiates between a simultaneously
presented target and distractor speaker in the absence of any spatial
discriminability and is further related to intelligibility. Moreover, using
simultaneously recorded MEG data, we demonstrate that ocular
speech envelope tracking contributes to the neural tracking effects of
speech over left temporoparietal sensors, suggestive of auditory pro-
cessing regions. Our findings provide insights into the encoding of
speech in a joint network of auditory selective attention and eye
movement control, as well as their contribution to the neural repre-
sentations of speech perception. The description of this phenomenon
raises several questions with regard to its underlying mechanisms as
well as its functional relevance. They will need to be pursued in further

Fig. 2 | The approach to establish the effects of ocular speech tracking.
a Example trials of twoparticipants (S5, S27) showhowtheirmeasured gaze (green)
on the horizontal and vertical plane follows envelope (grey) fluctuations (data was
rescaled between 0 - 1 for illustration). b A regularized linear regression approach
called temporal response functions (TRF) was used to predict how features of
speech are tracked by eye movements. The difference in prediction accuracy for a
control model (C) and combined models that additionally contained the speech
envelope (CE) or acoustic onsets (CO) was used to estimate ocular speech tracking
solely related to the acoustic features of interest, i.e. speech envelope and acoustic

onsets. Prediction accuracies were calculated by Fisher z-transformed Spearman’s
rank correlations (z’) between measured eye movements (mr) and predicted eye
movements (pr). c We expected ocular speech tracking to be modulated by task-
induced selective attention. The tracking difference between combined and con-
trol models (i.e. pure speech tracking) was expected to be higher whenever sen-
tences were the target in a single-speaker ormulti-speaker condition. For statistical
computations, we used Bayesian multilevel regression models and illustrated the
posterior distributions.
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studies. Nevertheless, we want to elaborate on a few possible princi-
ples that could be linked to ocular speech tracking.

In complex, naturalistic environments, gaze could aid the audi-
tory system in prioritizing spectrotemporal acoustic information that
reaches the ears. We argue that ocular speech tracking potentially
reflects a learned coupling between the ocular and auditory systems to
leverage precision in audiovisual perception. Changes in spectro-
temporal acoustic information are inferred based on object identity
and location and vice versa, where, in reference to an observer, the
same object causes different sounds at different locations and differ-
ent objects cause different sounds at the same location. In order to
enhance perception in noisy environments, attended objects could
inform the auditory system on spectrotemporal idiosyncrasies of the
same leading to adapted neural firing along the auditory hierarchy
while specific tonotopic activation alongside computations of inter-
aural time and level differences could inform the visual system on
redirections of gaze towards a target based on location and identity.
Recent evidence in humans suggests that eye movements contribute
to the computation of sound locations in relation to the visual scene at
the very first stages of sound processing11,12. Similar studies with
monkeys and cats suggest a midbrain hub of the inferior and superior
colliculus (IC, SC) that affects auditory processing based on eye
positions8–10. Barn owls engage the IC to create auditory space maps
based on frequency maps and interaural time and level differences,
integrating visual maps with cohesive sensory spacemaps in the optic
tectum (the avian homologue of the SC24,25) under top-down gaze
control26. The observed effect of ocular speech tracking could reflect
the evaluation of attended sound based on spectral features and tim-
ing leading to the redirections of gaze that we report as ocular speech
tracking. Based on TRFs, we see a systematic tracking of speech with a
spatial shift of gaze to a top-rightwards directionwithin theboundaries

of the visual stimulus. Future studies are needed to further investigate
whether this systematic shift is present also in other designs, especially
with continuous speech designs (audiobooks). It would be intriguing
to pursue the spatial dynamics of ocular speech tracking with spatially
distributed or even spatially moving speakers. Here, one could also
explore saccadic modulations of speech tracking (also on a neural
level, see ref. 27) and further detail different eye movements (e.g.
(micro)saccades and (micro)saccadic inhibition, slow-drift, smooth
pursuit, etc.) and their effects on auditory prioritization and proces-
sing. However, with regards to the current design it should be noted
that we used a non-spatial task without any meaningful visual stimu-
lation where speech was always presented at the phantom center for
both single and multi-speaker conditions. Ocular speech tracking
could therefore be interpreted as a ‘residual’ activity based on learned
associations between the spatiotemporal acoustics of speech and
respective speakers.

It has been shown that barn owls recalibrate sound localization
based on vision during their development28, suggesting a learned
alignment of auditory and visual stimuli based on a common source.
Natural gaze behavior under the control of auditory attention could
thus play an important role across species to navigate and interactwith
the environment, filtering and matching events or objects based on
shared audiovisual spectrotemporal information. In humans, gaze
activity could align to the acoustic features of attended speech to infer
information about speaker identity and location (e.g. azimuth and
distance) and match it with visual input. Speech, or verbal commu-
nication in general, has gained a central role as an advantageous sur-
vival strategy for social groups. Humans could exploit the ocular
system during development to associate certain sound patterns with
certain speakers, associating lip movements with sound and meaning,
and ultimately guiding the development of speech in infants. Possibly,

Fig. 3 | Gaze behavior during sound presentations and Gabor rotations. a An
Average gaze density for the three conditions (from left to right: Condition 1 (dark
purple), Condition 2 (bright purple), Condition 3 (red)). Screens are illustrated in
degrees of visual angle (DVA). Density distributions validate that participants
focused their gaze on the visual stimulus throughout all conditions of selective
attention. b Cluster-based permutation tests (two-sided) on gaze density dis-
tributions show a slight shift of gaze to the top-right whenever the auditory

modality is attended (Contrast Condition 2 vs 1: positive cluster t(29) = 7.72,
p <0.001, Cohen’s d = 1.41, negative cluster t(29) = −11.34, p <0.001, Cohen’s
d = −2.07. Contrast Condition 3 vs 1: positive cluster t(29) = 6.26, p <0.001, Cohen’s
d = 1.14, negative cluster t(29) = −8.69, p <0.001, Cohen’s d = −1.59). Note that the
‘widespread’ cluster distributions result from low-density values that are not visible
in a). N = 30.
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selective attention and gaze support the prioritization of relevant
acoustic information already at the cochlea via learned association of
specific spectrotemporal activation patterns (for top-down modula-
tion of the auditory periphery, see refs. 29–31). This could aid the
differentiation between speakers (e.g. a female compared to a male
voice) and support the temporal alignment observed in stronger
ocular speech tracking for a target in themulti-speaker condition even
in absence of visual or spatial discriminability. Further studies could
investigate potential effects/benefits ofmatching visual input (videos),
e.g. lip movements, on the phenomenon.

The idea of an active sampling strategy of spatiotemporal
information is further supported by the temporal dynamics of ocular
speech tracking. TRFs show a first, initial peak around zero lag (see
Fig. 4b), potentially indicative of a supportive mechanism of ocular
speech tracking at the very first stages of sound processing to aid
prioritization of overlapping spatiotemporal information. This would
also align with the results on the shared contribution of ocular and
neural activity to speech tracking at left temporoparietal sensors,
indicative of auditory processing areas (see Fig. 6c). Such an
immediate engagement of the ocular system would further suggest a
complementary predictive processing account. Anticipation and
accurate allocation of events in time have been found for language
processing32 and eye movements in motion perception33–36. Pre-
dictive mechanisms should lead to a reduction in processing costs,
thus interindividual differences in anticipatory TRF peaks could be
related to subjectively perceived listening effort. However, we would
like to point out that the presented study design limited the analysis
and interpretation of TRFs due to its short 5-word sentence

structure. For one, anticipatory effects could be biased by the highly
predictable syntactic structure of the sentences. This assumption is
further supported by neural TRFs (see Fig. 6b), also showing rela-
tively early (pre)activation patterns. Secondly, sentences were too
short to allow for wider TRF windows that could give more detailed
information about later dynamics > 500ms where a clear differ-
entiation of target and distractor in a dual speaker mixture seems to
take place. Future studies should investigate the precise temporal
dynamics of ocular speech tracking and potential predictive pro-
cesses in continuous designs (e.g. with audiobooks).

Ocular speech tracking could also relate to a more general
engagement of the motor system in support of speech perception.
Recent findings suggest a link between rates of eyemovements during
text reading and typical speech production/perception rates37. We
observed a general right lateralized bias of gazewhenever the auditory
modality (i.e. speech) was attended (see Fig. 3b). TRFs point towards a
successive top-rightwards shift of gaze with similar timing aspects
compared to a reading of ~ 200ms. Since ocular speech tracking
effects suggest a temporal alignment of this right lateralization with
speech features, it couldbe argued that our eyesmovewith the speech
streams as if the words were read as text. If this was the case, wewould
expect a shift of gaze towards the left side for cultures that read text
from right to left. This would render ocular tracking specific to (1)
humans, (2) speech, and (3) cultural context. Future studies should
further explore the spectrotemporal characteristics with regards to
reading by applying similar analyses to designs (1) with animals (that
also use verbal communication, e.g. birds), (2) tone sequences, (3)
across cultures.

Fig. 4 | The effect of selective attentiononocular speech tracking. aDifferences
in Fisher z-transformed prediction accuracies (Δ z’) between models that addi-
tionally included the speech envelope or acoustic onsets and a control model
indicate significant tracking whenever speech was attended in a single speaker
(bright purple) and multi-speaker (red) context. Post hoc comparison revealed
stronger tracking of a target speaker compared to a simultaneously presented
distractor (yellow) in the multi-speaker condition. No evidence for ocular speech

tracking was found when speech was presented as a distractor to the visual mod-
ality (dark purple) b The temporal response functions (TRF) for speech envelope
and acoustic onsets tracking. TRFs were resampled to 500Hz for visualization.
Center lines represent the mean, shaded areas represent 95% confidence intervals.
Statistics were performed using Bayesian regression models. A ‘*’ within posterior
distributions depicts a significant difference from zero (i.e. the 94%HDI does not
include zero). Curly brackets indicate post hoc comparisons: ‘*’ = significant.N = 30.
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Another explanation for the observed ocular speech tracking
effects could be a general push-pull process of task dis-/engagement,
i.e. gaze aversion of the visual modality to free up resources and
facilitate the processing of auditory information38–41. Thus, whenever
the task is to listen closely, or if listening becomes increasingly diffi-
cult, wemove our eyes away to attenuate interfering visual input (note
that complete eye closure seems to increase alpha modulations by
auditory attention, but does not, however, improve listening
behavior42. Also, internal attention in insight problem-solving seems to
relate to increased blinking and off-center gaze shifts43). Gazedensities
during stimulation periods (see Fig. 3a) show a slight shift off-center as
well as higher variance in conditions where participants had to attend
the auditory modality (see Fig. 3b). This supports the assumption of a
more general disengagement from the visual modality for auditory
processing, arguably to free up processing resources. However, par-
ticipants also could shift their gaze slightly away from the distracting
visual stimulus to free up resources for a more precise evaluation of

temporal speech features. This could support the processing of over-
lapping spatiotemporal features, especially in the multi-speaker con-
dition, since the visual stimulus was meaningless for auditory
processing. TRFs show positive weights peaking at ~ 200ms without
any pronounced negative weights within the analyzed time window.
This indicates a successive shift of gaze in a top-right directionality. In
addition, we verified that participants kept their gaze within the
boundaries of the distracting visual stimulus throughout the stimula-
tion period (see Fig. 3a). Altogether, the spatial dynamics of ocular
speech tracking seem to be too timing-specific for a general gaze
aversion process. Future studies could directly address the potential
principle of gaze aversion by implementing an eyes-closed condition.
It should be noted that EOG activity seems to align with attended
acoustics also in an eyes-closed condition19. In general, the post hoc
lateralization findings of ocular speech tracking during a non-spatial
task without any meaningful visual stimulation require further repli-
cation and validation. As of now, the mechanistic explanation of a

Fig. 5 | Ocular speech tracking and its relation to speech intelligibility and
subjective listening effort. Intelligibility was probed only for attended speech.We
therefore used intelligibility and subjective listening effort scores for targeted
speech in the single (dark purple) and multi-speaker (red) context to assess its
relation to ocular speech tracking. a Ocular speech tracking (differences in Fisher
z-transformed prediction accuracies (Δ z’)) was related to intelligibility with an
interaction effect only for the speech envelope. There was no substantial evidence
for a relation to subjective effort.bBothocular speechenvelopeand acoustic onset

tracking predict intelligibility (logit-transformed). The interaction effect for ocular
speech envelope tracking indicates that the link between intelligibility and envel-
ope tracking is decreased in amulti-speaker condition,while for acousticonsets the
effect seems to be similar in both conditions (center lines represent the mean,
shaded areas represent the 94%HDI, dots represent participants). Statistics were
performed using Bayesian regression models. A ‘*’ within posterior distributions
depicts a significant difference from zero (i.e. the 94%HDI does not include
zero). N = 30.
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residual activity based on learned association seems to be the most
applicable to the findings in the current study.

Taken together, we propose several potential principles of ocular
speech tracking that need to be evaluated in greater detail by future
research. Continuous speech designs (e.g. audiobooks) could be uti-
lized to replicate the present findings and further investigate the
precise temporal dynamics of the reported effects. In turn, potential
interactions with predictive processes as well as interactions with
behavioral markers like effort and intelligibility could be quantified.
Neurophysiological evidence in animals for similar interactions of eye
movements and auditory processing further urge the question of
whether ocular speech tracking displays a learned association in
beings with complex verbal communication structures like humans, or
whether it represents a general ocular tracking of the acoustic envir-
onment as adaptive behavior across species. It will thus be important

for future research to identify the underlying mechanisms of the
observed effects. Potential links to alpha modulations16,44–46 or arousal
states with regards to (sub)cortical neurotransmitter-dependent
modulations47 could be investigated. Along these lines, it will be
important to investigate how other measures of ocular activity could
be predicted by the speech envelope (and other features), including
blinks, pupil dilation, and (micro)saccades (also see ref. 19). However,
many trials did not include thementioned responses of interest (blinks
and (micro)saccades), which makes any analysis in this direction pro-
blematic (along with its interpretation). Additionally, the rotating
Gabor sequence on the screen during the stimulation period severely
influenced the pupil response. Any dilation measure would thus be so
heavily confounded by the visual stimulation that potential responses
to speech could not be interpreted with great confidence. We there-
fore strongly encourage replicating this study in a continuous design

Fig. 6 | The approach to establish shared contributions of eye movements and
neural activity to speech tracking. a With a mediation analysis approach, we
investigated the shared contribution of eye movements and neural responses to
the speech envelope encoding. For this, we compared the plain effect (c) of the
speech envelope on neural activity to its direct (residual) effect (c’) by including an
indirect effect via eye movements. The two models described above were calcu-
lated to predict neural responses of all 102 magnetometer channels separately.
b Exemplary temporal response functions (TRF) for the plain effect (c) and direct
(residual) effect (c’) and respective differences (c – c’) to visualize the mediation
effect over time. For illustration, we chose the channel that showed the highest
prediction accuracy for the plain effect (c) in the single-speaker target condition
(rs =0.12). TRFs were resampled to 500Hz for visualization. Center lines represent

the mean, shaded areas represent 95% confidence intervals c We used a cluster-
based permutation-dependent t-test to compare TRFs (using absolute values) of
bothmodels at each sensor and report effect size Cohen’s d averaged over sensors
within significant clusters. Cluster-based permutation tests (one-sided) for the
contrasts (c’ < c) revealed a small mediation effect by eye movements for the
relationship between the speech envelope and neural responses over left parietal
sensors in the single speaker condition (bright purple; t(29) = −4.40, p <0.001,
Cohen’s d = −0.80), in the multi-speaker condition for a target (t(29) = −4.90,
p <0.001, Cohen’s d = −0.90) as well as a distractor speaker(yellow; t(29) = −4.68,
p <0.001, Cohen’s d = −0.85). Marked sensors in topographies belong to sensor
clusters on the basis of which the null hypothesis of no difference was rejec-
ted. N = 30.
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without any visual stimulation. Future studies should take advantage
of the findings presented here and define a region of practical
equivalence (ROPE) to further infer support for any potential null-
hypothesis testing48.

In response to a second question, we addressed ocular speech
tracking and its relation to adaptive behavior. We did not find a rela-
tionship between ocular speech tracking and subjectively perceived
effort, which questions the previous assumption of gaze aversion for
the reallocation of processing resources. Either effort is not reflected
in the engagement of the ocular system in speech tracking, or the
measure of effort was not sensitive enough (alternatively, neural
measures of effort like alphamodulations49,50 or pupillometry could be
used to estimate effort in more detail, for dynamic modeling of pupil
data also see ref. 51). Also, no difference in general task engagement
was found (see Supplementary Methods). Instead, we found that
ocular speech tracking is related to intelligibility. Our results are sup-
ported by findings on increased intelligibility for a spatially dis-
criminable target speaker in a multi-speaker mixture when the eyes
point towards the target location17. It therefore seems likely that eye
movements and intelligibility of speech are, in fact, related. Taking the
possible interpretations for the ocular speech tracking effects into
consideration, (1) improved prioritization of relevant spectrotemporal
information could improve the intelligibility of a target speaker in the
multi-speaker condition, and (2) further supported by predictive pro-
cesses. (3) An engagement of the motor system could support pho-
nological transformation processes to increase speech perception,
and (4) disengagement from the visual modality, i.e. gaze aversion
could free resources for speech processing to improve intelligibility.
Further research on the topic is needed to get a better understanding
of the interaction between ocular speech tracking and intelligibility,
also on a neural level. In addition, we cannot entirely rule out a
potential contribution of individual differences in attention and
working memory to the behavioral measure of intelligibility. Future
studies should address this possibility in greater detail.

As a final step, we investigated the potential contribution of eye
movements to neural differences typically observed in selective
attention to speech. Our assumption that ocular speech tracking and
selective attention to speech share underlying neural computations
was based on recent findings by Popov et al. 16 who demonstrated a
partial contribution of goal-driven oculomotor activity to typical
cognitive effects in spatial auditory attention. It was therefore impor-
tant to address a possible contribution in the present work since we
previously established the effects of ocular speech tracking. Using a
mediation analysis approach (see TRF Model Estimation and Data
Analysis), we provide evidence for a shared contribution of eye
movements and neural activity to speech processing over left tem-
poroparietal areas in a single and multi-speaker context. We thus
observe a general contribution to sensors indicative of auditory pro-
cessing regions, which gains importance when considering recent
evidence on the ocular modulation of neural excitability of cortical
auditory regions27. To this end, we would like to specify that this
exploratory analysis needs to be confirmed by future studies in amore
detailed and methodologically tailored manner. Also, it should be
noted that the current findings do not imply a clear directionality or
causality - it is possible that the neural activity in question is used to
support sound-related ocular activity or vice versa. Following studies
that solely use continuous speech could focus on relating eye move-
ments and alpha oscillations in selective attention to speech and
establishing concrete evidence on the temporal dynamics of this
interaction on a source level. As we used a multisensory single-trial
design, we believe a continuous unisensory approach would be more
suitable for this kind of analysis. Here, we provide a first step in this
direction, highlighting a shared contribution on a sensor level that
needs to be taken into consideration in future research on auditory
cognition.

In summary, the present report establishes a hitherto unknown
phenomenon, ocular speech tracking,which enables themonitoringof
prioritized auditory features in selective attention to natural speech.
Crucially, ocular speech tracking is stronger for a target compared to a
distractor in a multi-speaker condition and is related to intelligibility.
Moreover, our results suggest a shared contribution of oculomotor
and neural activity to speech processing that needs to be taken into
consideration in future research on auditory cognition. The present
work extends previous findings of a joint network of attention and eye
movement control and offers research directions towards the neuro-
biological mechanisms of the phenomenon, its dependence on learn-
ing and plasticity, as well as its functional implications in social
communication.

Methods
Participants
30 healthy participants (19 female, Mage = 26.27, SDage = 9.08) were
recruited for this study. Participants were compensated either finan-
cially or via course credits. We set the sample size based on previous
publications from our lab with similar setups and designs (e.g.
refs. 52,53). All participants were German native speakers and reported
normal hearing, and (corrected to) normal vision. Participants gave
written self-reports on their sex and gender along with informed
consent and reported no previous neurological or psychiatric dis-
orders. The experimental procedure was approved by the ethics
committee of the University of Salzburg and was carried out in
accordance with the Declaration of Helsinki.

Experimental procedure
The experiment lasted ~ 3.5 hours. Five head position indicator (HPI)
coils were first applied to the participants’ scalp. Anatomical land-
marks (nasion and left/right pre-auricular points), HPI locations, and
around 300 additional head shape points were then sampled using a
Polhemus FASTTRAK. Recording sessions started with 5min of resting
state data (2.5min eyes open / closed), followed by two blocks of
passive listening to tone sequences of varying entropy levels (as in
ref. 52). Afterwards, one block of 10,000 clicks at 60 dB sound pres-
sure level was presented to determine individual auditory brainstem
responses (as in ref. 53) while participants watched a landscape movie
(LoungeV Films, 2017). As these parts of the experiment relate to
separate research questions, they are not explained in further detail
here. The main task (Fig. 1) consisted of three conditions split into six
blocks of 50 trials, i.e. 100 trials per condition. The order of the blocks
and trials was randomized across participants. The purpose of the
three conditions was to modulate attention within as well as across
modalities. Condition 1 (see Fig. 1a) tasked the participants with
attending to the visual modality (regularity of Gabor rotations) while
being distractedby a short sentence spokenby amale voice. Condition
2 (see Fig. 1b) reversed the task, requiring participants to allocate
attention to the auditory modality (natural spoken sentence) while
visual stimulation served as a distractor. In Condition 3 (see Fig. 1c), the
visual modality and the male speaker distracted the participants from
attending to an added female target speaker. Each trial started with a
silent 4 s prestimulus interval during which participants had to keep
their gaze on a Gabor patch presented in the center of the screen.
Then, a short sentence was played while simultaneously the Gabor
patch on the screen tilted to one of four perceptually different angles
(0°, 45°, 90°, 135°). For the duration of the sentence, the Gabor patch
was tilted with a fixed stimulation rate of 3Hz, each lasting for 100ms.
The tilting either followed a) an ordered, clockwise sequence where
the upcoming Gabor was tilted 45° with a probability of 75% or stayed
at the sameangleat 25%probability, or b)was randomly tilted tooneof
the four predefined angles, all equally likely with 25% (note that the
transitional probabilities and stimulation rates were the same as in the
passive listening task and chosen to not interfere/co-occurre with
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common syllable rates in language at ~ 4Hz). Ordered and random
sequences were pseudorandomized across trials. Stimulation offset
was followed by a 1 s silent poststimulus interval with the Gabor patch
at its original tilt at 0°. During the whole trial period, participants were
instructed to keep their gaze on the Gabor patch in the center of the
screen - regardless of condition - to allow for valid eye-tracking data
(also see Fig. 3a). Each trial was followed by a behavioral response with
a question on the stimulation period presented on the screen. In
Condition 1, the response required participants to successfully infer
whether the Gabor transitions followed an ordered or random
sequence. In Conditions 2 and 3 we assessed intelligibility scores,
probing participants on every word in the attended sentence. For this,
we randomly replaced up to all five words of the sentence during the
stimulation period (see Stimuli) and presented them on the screen.
Participants could thenmark everyword as ‘yes’, i.e. correct, or ‘no’, i.e.
false. Every word on the response screen could have potentially been
correct or false. At the end of each block, we additionally assessed task
engagement and subjectively perceived effort on a 5-point Likert scale.
All responsesweregivenon ahandheldbuttonbox. All auditory stimuli
were presented binaurally at the phantom center at a comfortable
loudness level. The experiment was coded and conducted with
Psychtoolbox-354,55 implemented in Matlab R2020b56 with an addi-
tional class-based library (‘Objective Psychophysics Toolbox’, o_ptb57).

Stimuli
The visual stimulation was a Gabor patch (spatial frequency: 0.01
cycles/pixel, sigma: 60pixels, phase: 90°). For auditory stimulation, we
used 100 sentences from the ‘Oldenburger Satztest’ (OLSA58) for the
male speaker. We created 100 additional ‘surrogate’ sentences in the
same style for the female speaker. Alongside randomization, this
ensured that any effects, especially in the multispeaker Condition 3,
could not be attributed tomemorization of previous trials. Often used
in studies on hearing impairment, the OLSA is a standardized audio-
metric test to assess speech intelligibility. It features lists of 5-word
sentences in a fixed form:Name - Verb - Number - Adjective - Noun (for
example “Peter verleiht vier kleine Bilder.”, in engl.:”Peter lends four
small pictures.”, also see Fig. 1). Ten words of each word type are used
to create 100unique sentences through randomcombinations. For the
‘surrogate’ sentence list, we substituted the ten words per word type
with ten other Names, Verbs, Numbers, Adjectives, and Nouns
respectively (for example “Karin bestellt zehn blaue Körbe”, in engl.
“Karin orders ten blue baskets”). This led to 100 unique sentences for
the male speaker (target in Condition 2, distractor in Conditions 1 & 3)
and 100 unique sentences for the female speaker (target in Condition
3). Unlike commonly used questions on general content or last words
in speech tracking designswith longer segments (e.g. audiobooks), the
fixed 5-word structure allowed us to probe speech intelligibility on a
word-by-word level. To synthesize the 200 extracted sentences into
natural-sounding speech, we used the IBM Watson text-to-speech
service (TextToSpeechV1 package). We synthesized German text-to-
speech at a sampling rate of 44.1 kHz using the implemented voices for
the male speaker (voice ‘de-DE_DieterV3Voice’) with adjusted prosody
rate to −10 % in order to match the female speaker’s (‘de-DE_Er-
ikaV3Voice’) syllable rate. This led to slightly different sentence dura-
tions for the male and female speaker (Mmale = 2.02 s, SDmale = 0.16,
Mfemale = 2.22 s, SDfemale = 0.13) due to the slightly longer surrogate
sentences (as the number of words was exhausted from 1−10 in the
original list, for surrogate sentences the number words included thir-
teen, fourteen,…). However, this was controlled for later in the analysis
by cropping the aligned data (see TRF Model Estimation and Data
Analysis) in all conditions to the respective shorter trials of the mul-
tispeaker Condition 3, resulting in equal durations for both speakers.
In addition, rare hardware buffer issues during the experiment led to
additional noise in the stimulation for some participants.We excluded
those trials from later analysis and randomly subsampled the same

amount of trials for all other participants. In sum, 98 trials per condi-
tion were retained for further analysis.

Data acquisition and preprocessing
MEG data were simultaneously acquired alongside ocular data at a
sampling frequency of 10 kHz (hardware filters: 0.1–3300Hz) with a
whole head system (102 magnetometers and 204 orthogonally placed
planar gradiometers at 102 different positions; Elekta NeuromagTriux,
Elekta Oy, Finland) that was placed within a standard passive magne-
tically shielded room (AK3b, Vacuumschmelze, Germany). For further
data processing, a signal space separation algorithm implemented in
the Maxfilter program (version 2.2.15) provided by the MEG manu-
facturer was used to remove external noise and realign data from
different blocks to a common standard head position. Afterwards, we
preprocessed the data usingMatlab and FieldTrip. At first, 10 kHz data
were resampled to 1000Hz for further computations using the default
implementation in FieldTrip (cutoff frequency = 500, kaiser window
FIR filter, order: 200). Then, a bandpass filter between 0.1–40Hz was
applied (zero-phase FIR filter, order: 16500, hamming window). To
remove ocular (horizontal and vertical) and cardiac artifacts, 50
components were identified from each experimental block using
runica-independent component analysis (ICA). Components originat-
ing from eye movements and heartbeat were then identified by visual
inspection and removed. Artifact-free brain data was then cut into
epochs from -1 to 4 s around stimulus (i.e. speech) onset and corrected
for a 16ms delay between trigger and stimulus onset generated by
sound traveling through pneumatic headphones into the shielded
MEG room. Eye-tracking data from both eyes were acquired at a
sampling rate of 2 kHz using a Trackpixx3 binocular tracking system
(Vpixx Technologies, Canada) with a 50mm lens. Participants were
seated in the MEG at a distance of 82 cm from the screen, with their
chin resting on a chinrest to reduce head movements. Each experi-
mental block started with a 13-point calibration and validation proce-
dure that was then used throughout the block. Blinks and saccades
were automatically detected by the Trackpixx3 system and excluded
from horizontal and vertical eye movement data. Subsequently, data
were preprocessed inMatlab R2020b. Position data from left and right
eyes were averaged to increase the accuracy of gaze estimation59. We
then converted data from pixel to visual angle in degrees. Gaps in the
data due to blink and saccade removal were interpolated using a pie-
cewise cubic Hermite interpolation. Artifact-free gaze data was then
imported into the FieldTrip Toolbox60, bandpass filtered between
0.1–40Hz (zero-phase finite impulse response (FIR) filter, order:
33000, hamming window), resampled to 1000Hz and cut into epochs
from -1 to 4 s around stimulus (i.e. speech) onset. Finally, we corrected
again for the 16ms delay between trigger onset and actual stimulation.

To further calculate gaze density during trial periods, we followed
the same analysis procedure as in ref. 16. In short, a 2D density histo-
gram was created after multiplying each sample point of gaze on the
horizontal and vertical plane with a Gaussian filter.

Predictor variables for TRF models
Controls. We included control predictors for eye responses to visual
(Gabor) onsets according to the fixed 3Hz presentation rate
throughout the sentence and pure auditory (speech) onsets by adding
intercepts (i.e. impulse trains) at respective timings.

Envelope. Both auditory predictors (Envelope & Acoustic Onsets)
were based on gamma tone spectrograms of the 200 natural-sounding
speech sentences. Spectrogramswerecalculatedover 256 frequencies,
covering a range of 20–5000Hz in equivalent rectangular bandwidth
space61, resampled to 1000Hz, and scaled with exponent 0.662 using
Eelbrain63. The 1-Band Envelope was then derived by taking the sum of
gamma tone spectrograms across all frequency bands63, thus reflect-
ing the broadband acoustic signal.
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Acoustic onsets. Additionally, we derived acoustic onsets by applying
a neurally inspired auditory edge detection transformation to the
gamma tone spectrogram64 using the publicly available ‘TRF-Tools”
(https://github.com/christianbrodbeck/TRF-Tools) edge detection
implementation for Python, with default settings and saturation scal-
ing factor of c = 30. Again, 1-band Acoustic Onset representations were
obtained by taking the sum across all frequency bands.

All predictors (see Fig. 2b) were resampled to 1000Hz for sub-
sequent alignment and analysis, tomatchwith the sampling frequency
of eye-tracking data.

Model comparisons
In order to estimate ocular tracking of the speech envelope and
acoustic onsets, we chose to include a controlmodel (C) in the analysis
that uses visual onsets and trial/speech onsets as predictors (see
Fig. 2b), as they confounded the responses to the speech features of
interest. Using the prediction accuracy of this controlmodel as a basis,
we then combined the control predictors with one of the speech fea-
tures, leading to two combined models controlling for visual and trial
onsets and entailing the speech envelope (CE) or acoustic onsets (CO)
as predictors. In order to obtain the predictive power solely related to
the speech features, we then subtracted the prediction accuracies of
the control model from those of the combined models. This was done
separately for every participant in each condition, resulting in a ‘pure’
prediction accuracy value Δ z’ (based on Fisher z-transformed Spear-
man rank coefficients, see TRFModel Estimation and Data Analysis) as
an estimate of ocular speech tracking (see Fig. 2c).

TRF Model Estimation and Data Analysis
Prior to model computations, preprocessed eye-tracking and MEG
data were temporally cut and aligned to the corresponding predictor
variables (the blink and saccade rate, and therefore the number of
samples that were interpolated for later analysis, was low: M = 5.00%,
SD = 4.27% for blinks and M = 1.13%, SD = 2.81% for saccades respec-
tively). Then, aligned trials were downsampled to 50Hz for TRFmodel
estimation after an antialiasing low-pass filter at 20Hz was applied
(zero-phase FIR filter, order: 662, hamming window). Impulse trains,
i.e. control predictors,were then restoredby adding “1 s” at the nearest
time points of original sampling rate onsets without applying any fil-
ters to avoid artifacts. We chose to downsample to 50Hz as the most
relevant power modulations of speech and attention do not exceed
20Hz (i.e. 2 ½ * the sampling rate).

To further probeocular speech trackingunder selective attention,
we used a system identification technique called temporal response
functions (TRF) as implemented in, and provided by, the open-source
mTRF-Toolbox22,23 forMatlab. In short, TRFs pose time-resolvedmodel
weights to describe a stimulus-response relationship (forward /
encoding models), e.g. how features of speech are transformed into
responses atmultiple time-lags.Whereas this technique is usually used
to model neural responses, here we exploited this approach and
appliedTRFmodels on eye trackingdata to investigate the relationship
between speech features and eye movements (see Fig. 2b). In the
present study,weused ridge regression, a regularized linear regression
approach, at a time-lagwindowof -100 to 550ms to compute encoding
models, following a leave-one-trial-out cross-validation procedure to
control for overfitting. This means we used all but one trial (of the 98
per condition) to estimate TRFs for a set of stimulus features (i.e.
predictors) thatwere in turn applied to thoseof the left-out test-trial to
obtain a predicted ocular response. Prediction accuracy was then
evaluated by calculating a Spearman’s rank correlation between the
originally measured, preprocessed response and the predicted
response by the model (note that forward models make predictions
independently for each channel, which here refers to horizontal and
vertical eye movement ‘channels’ in eye-tracking data, as well as 102
magnetometers in neural data in the next section). Before model

estimation, predictors and responseswere scaled by their respective ℓ1
norms. After each trial had been the test-trial once, prediction
accuracies were Fisher z-transformed and then averaged over trials.
This resulted in one Fisher z’ value, for horizontal and vertical eye
movements respectively, that describes howwell the TRFmodel could
predict an ocular response of a particular participant to speech in
differing conditions of attention, which renders prediction accuracy a
measure of ocular speech tracking (note that for statistical analysis we
averaged prediction accuracies for horizontal and vertical eye move-
ments once the difference between combined and controlmodels was
calculated, also see Model Comparison). The modeling procedure
described above was carried out for every condition of selective
attention to speech in the presented paradigm (see Fig. 1), i.e. when a
single speaker was the distractor in Condition 1, a single speaker was
the target in Condition 2, a speaker was the target in a dual speaker
mixture in Condition 3, a speaker of opposite sex was the distractor in
a dual speaker mixture in Condition 3.

To further control for overfitting, ridge regression includes a
regularization parameter λ that penalizes large model weights (for a
detailed explanation of the ridge parameter, see ref. 23). We empiri-
cally validated the optimal ridge parameter by using a nested cross-
validation procedure (i.e. within every n-1 training set another leave-
one-out cross-validationwas used to obtainmodel results for different
λ values). This procedure was carried out over a range of λ values of
10−5–105 (in steps of 101) for eachmodel (seeModel Comparisons) over
all participants and conditions. The final optimal lambda value for a
certainmodel was then obtained by averaging themean absolute error
of the cross-validation over all trials, channels, conditions, and parti-
cipants.Weconsequently chose the lambda value that led to the lowest
mean absolute error. Based on this procedure, a single optimal lambda
valueof λ = 10-3 was used to estimate speechencoding inocular activity
for all encoding models (see Model Comparisons) for all conditions of
selective attention.

Following this analysis of ocular speech tracking, we established
the behavioral relevanceof this effect. As relevant dependent variables
for the statistical analysis, we calculated individual intelligibility and
effort scores from participants’ behavioral responses. Intelligibility
scores were calculated as the sum of all correct responses (i.e. a word
on the response screen was correctly marked as yes, i.e. heard, during
the 5-word sentence of a trial) divided by the number of all presented
words in a condition (0–100%). Effort scores were calculated by aver-
aging a participant’s responses on the 5-point Likert scale at the end of
each block per condition (1 = low effort, 5 = high effort). Task
engagement scores were calculated in the same way as effort scores,
and served as a control variable to rule out bias from different task
engagements for conditions of selective attention (see Supplementary
Statistics).

Mediation analysis
To investigate whether the top-down control of eye movements could
partially contribute to neural differences in selective attention to
speech, we conducted an additional analysis based on the logic of a
mediation analysis, adapted to our time-resolved regression analyses
(i.e. encoding models). For this analysis approach, we favored the
boosting algorithm65 due to how it differently estimates TRFs. While
both ridge regression and boosting lead to comparable metrics with
regards to accuracy and error66, boosting begins with a sparsity-prior
and allows multiple predictors to compete to explain the dependent
variable63. In comparison, in order to achieve a similar effect, ridge
regression would require the possibility for different regularization
parameters for individual models (i.e. plain and direct effect models)
or even features (in the sense of banded ridge regression23,67). How-
ever, this could, by the definition of regularization (i.e. penalization of
weights), lead to decreased model weights even in the absence of a
mediation effect. Accordingly, we estimated TRFs using the Eelbrain
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toolkit63 using the same time-lags as in the ocular speech tracking
analysis from -100 - 550ms. As the boosting architecture requires
continuous input data, we first zero-padded the end of each trial by
700ms to exclude discontinuation artifacts, concatenated trials within
each condition to a continuous segment (similar to ref. 68), and finally
used a 4-fold cross-validation approach based on ℓ2 error minimiza-
tion to avoid overfitting (topographies of envelope encoding as well as
corresponding TRFs validated this approach and ruled out any spur-
ious effects due to zero-padding/trial concatenation, please see Sup-
plementary Figs., Fig. 3). The TRFs thatwe obtained fromour encoding
models can be interpreted as time-resolved weights for a predictor
variable that aims to explain a dependent variable (very similar to beta-
coefficients in classic regression analyses). Based on this assumption,
we can try to establish the different contributions in the triad rela-
tionship of speech, eye movements, and neural activity (see Fig. 6a). A
very well-established finding states that speech acoustics can predict
neural activity69–71. Given our hypothesis that ocular movements track
the speech envelope, we assume this finding to be mediated to some
extent by ocular speech tracking. To test this assumption, we simply
compared the plain effect of the speech envelope on neural activity to
its direct (residual) effect by including an indirect effect via eye
movements in our model. Thus the plain effect (i.e. speech envelope
predicting neural responses) is represented in the absolute weights
(i.e. TRFs) obtained from a simple model:

neural response =TRFðcÞ*speech envelope ð1Þ

The direct (residual) effect (not mediated by eye movements) is
obtained from a model including two predictors:

neural response=TRFðc’Þ*speech envelope+TRFðbÞ*eye movements

ð2Þ

and represented in the exclusive weights (c’) of the former predictor
(i.e. speech envelope).

Note that the evaluation of the effect of the speech envelope on
eye movements (termed “a” in Fig. 6a) preceded this analysis (see
previous section). The twomodels described above were calculated to
predict the neural responses of all 102 magnetometer channels sepa-
rately. Subsequently, we used a cluster-based permutation-dependent
t-test to compare TRFs (using absolute values) of both models at each
location (note that the polarity of neural responses is not of interest
here). Ifmodelweights are significantly reducedby the inclusion of eye
movements into the model (i.e. c’ < c), this indicates that a meaningful
part of the relationship between the speech envelope and neural
responses was mediated by eye movements (see Fig. 6a). Since no
effect of ocular speech tracking was found for the distractor in a single
speaker condition (Condition 1), we limited our TRF comparison to the
speech envelope encoding of the target speaker in a single speaker
(Condition 2), and the target and distractor speaker in a multi speaker
context (Condition 3). In order to account for a potential reduction in
modelweights simplydue to the inclusionof an additional predictor or
feature scaling, we repeated the same analysis with a shuffled version
of eye movements (over time, within conditions) to obtain the ‘plain-
control’ effect (cp), with the rationale that c’ < cp. Again, we used a
cluster-based permutation-dependent t-test to compare envelope
TRFs (using absolute values) of both (plain-control and direct) models
at each location (see Supplementary Figs., Fig. 3).

Statistical analysis
First, we quantified spatial distributions of gaze during stimulation
periods tomake sureparticipantswere not systematically shifting their
gaze away from the Gabor patch during attention to the auditory
modality (Conditions 2 and 3). To further investigate spatial differ-
ences in gaze distributions across conditions, we contrasted gaze

densities of Condition 1, where participants were instructed to focus
on the visualmodality (i.e. theGabor patch), with thoseof Conditions 2
& 3. For this, we performed a cluster-based randomization approach72,
computing the randomization distribution of t-values after 10,000
permutations with a cluster alpha threshold of 0.05 that was then
compared against the original contrast at an alpha level of 0.05, Bon-
ferroni corrected. This procedure was carried out for two two-sided
contrasts. We report p-values of clusters and t-values alongside
degrees of freedom, 95% confidence intervals (CI), and effect size
Cohen’s d as an average over sensors within a cluster.

To investigate acoustic speech tracking of eye movements under
different conditions of attention, we used Bayesian multilevel regres-
sionmodels with Bambi73, a Python package built on top of the PyMC3
package74, for probabilistic programming. First, the correlation
between predicted eye movements from the combined TRF-models,
including control predictors, acoustic features of interest (speech
envelope and acoustic onsets), and measured eye movements was
calculated (see Fig. 2b). We then subtracted the encoding results (i.e.
correlation between predicted and measured eye movements) from a
model which included only the control variables to isolate the effect of
acoustic tracking from potential confounds. This difference was then
averaged over horizontal and vertical channels and used as a depen-
dent variable according to the Wilkinson notation75:

envelope tracking∼0+condition+ ð1jsubjectÞ ð3Þ

acoustic onset tracking∼0+condition+ ð1jsubjectÞ ð4Þ

Note that by removing the Intercept from the model, all condi-
tions have been tested against a zero-effect of tracking.

To directly compare the tracking of the target and distractor
speech in the multi-speaker condition, a post hoc model was calcu-
lated including only these two encoding results.

To additionally investigate whether ocular speech tracking is
related to behavioral performance, we further included intelligibility
and subjectively rated listening effort (see TRF Model Estimation and
Data Analysis) as dependent variables in separatemodels. Intelligibility
scoreswere logit-transformed to account for left-skeweddata between
[0 1]. Independent variables (envelope and acoustic onset tracking)
were mean-centered across subjects within the condition before
entering the model:

intelligibility∼ condition*envelope tracking + ð1jsubjectÞ ð5Þ

intelligibility∼ condition*acoustic onset tracking + ð1jsubjectÞ ð6Þ

effort∼ condition*envelope tracking + ð1jsubjectÞ ð7Þ

effort∼ condition*acoustic onset tracking + ð1jsubjectÞ ð8Þ

Note that intelligibility was only probed for attended speech,
therefore only these two conditions (multi vs. single speaker) were
included in the behavioral models.

For all models, we used the weakly- or non-informative default
priors of Bambi73 and specified a more robust Student-T response
distribution insteadof thedefaultGaussiandistribution. To summarize
model parameters, we report regression coefficients and the 94%high-
density intervals (HDI) of the posterior distribution (the default HDI in
Bambi). Given the evidence provided by the data, the prior and the
model assumptions, we can conclude from theHDIs that there is a 94%
probability that a respective parameter falls within this interval. We
considered effects as significantly different from zero if the 94%HDI
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did not include zero. Furthermore, we ensured the absence of diver-
gent transitions (r ̂ <1.05 for all relevant parameters) and an effective
sample size > 400 for all models (an exhaustive summary of Bayesian
model diagnostics can be found in ref. 76).

After establishing ocular speech tracking effects and their rela-
tions to behavior, we further quantified the extent to which this
tracking and ICA-cleaned neural responses share contributions to
speech encoding. Using a mediation analysis approach, we compared
model weights of the speech envelope for predicting neural responses
with model weights from an encoding model, including eye move-
ments as an additional predictor (seeMediation Analysis). To establish
whether there is a significant difference we used a cluster-based ran-
domization approach72 on all 102magnetometers, averaging over time
lags (from −50 to 500ms to exclude possible regression edge arti-
facts). We computed the randomization distribution of t-values after
10000 permutations with a cluster alpha threshold of 0.05 that was
then compared against the original contrast at an alpha level of 0.05,
Bonferroni corrected. This procedure was carried out for three one-
sided contrasts (see Fig. 6c), where we compared the plain (c) and
direct (residual, c’) effects (i.e. absolute TRF weights) for target speech
in the single speaker condition (c’ < c), for target speech in the multi-
speaker condition (c’ < c), and finally where speech was the distractor
in the multi-speaker condition (c’ < c). Subsequently, we report p-
values of clusters and the effect size Cohen’s d as an average over
sensors within a cluster.

Data visualization
Individual plots were generated in python (3.9.12) using matplotlib77,
seaborn78, and mne-python79. Plots were then arranged as cohesive
figures with affinity designer (https://affinity.serif.com/en-us/
designer/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Preprocessed Data required to reproduce the analyses supporting this
work are publicly available in the Open Science Framework
repository80 (https://osf.io/m6rfq). Raw data (> 250 GB) will be shared
upon request.

Code availability
Code to analyze preprocessed data and further reproduce results and
figures from this manuscript is available at the Open Science Frame-
work repository80 (https://osf.io/m6rfq).
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