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A multicenter proof-of-concept study on
deep learning-based intraoperative
discrimination of primary central nervous
system lymphoma

Xinke Zhang 1,7, Zihan Zhao1,7, Ruixuan Wang 2,7, Haohua Chen1,7,
Xueyi Zheng 1, Lili Liu1, Lilong Lan1, Peng Li1, Shuyang Wu1, Qinghua Cao3,
Rongzhen Luo1, Wanming Hu 1, Shanshan lyu4, Zhengyu Zhang5, Dan Xie 1 ,
Yaping Ye 5 , Yu Wang 6 & Muyan Cai 1

Accurate intraoperative differentiation of primary central nervous system
lymphoma (PCNSL) remains pivotal in guiding neurosurgical decisions. How-
ever, distinguishing PCNSL from other lesions, notably glioma, through frozen
sections challenges pathologists. Here we sought to develop and validate a
deep learning model capable of precisely distinguishing PCNSL from non-
PCNSL lesions, especially glioma, using hematoxylin and eosin (H&E)-stained
frozen whole-slide images. Also, we compared its performance against
pathologists of varying expertise. Additionally, a human-machine fusion
approach integrated both model and pathologic diagnostics. In external
cohorts, LGNet achieved AUROCs of 0.965 and 0.972 in distinguishing PCNSL
from glioma and AUROCs of 0.981 and 0.993 in differentiating PCNSL from
non-PCNSL lesions. Outperforming several pathologists, LGNet significantly
improved diagnostic performance, further augmented to some extent by
fusion approach. LGNet’s proficiency in frozen section analysis and its synergy
with pathologists indicate its valuable role in intraoperative diagnosis, parti-
cularly in discriminating PCNSL from glioma, alongside other lesions.

Accurate intraoperative diagnosis is crucial for decision-makingduring
tumor surgery. However, differentiating between diverse primary
central nervous system (CNS) tumors, including primary CNS lym-
phoma (PCNSL) andnon-PCNSL entities like glioma,metastatic cancer,
and other brain lesions, has always posed significant challenges1,2.
PCNSL and glioma, being among the most prevalent primary brain
malignancies encountered during surgeries, demand accurate and

timely diagnosis due to the substantial divergence in intraoperative
treatment options for these tumors within the realm of neuro-
oncology3–7.

While specific histomorphology features can aid in differential
diagnosis3–7, pathologists encounter challenges in distinguishing
between diverse brain tumors, including PCNSL and non-PCNSL enti-
ties like glioma, based on hematoxylin and eosin (H&E)-stained frozen
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sections in previous large-scale studies8–10. Neuroimaging provides
valuable insights into the distinction between these tumors; however,
it lacks the precision to differentiate them accurately11. Despite the
promising results of radiomics-based machine learning approaches in
discerning PCNSL and glioma, some models still exhibit room for
improvement in performance, as highlighted in pooled analyses12.
Therefore, given the intraoperative histopathological diagnosis as the
gold standard for brain tumors, accurate differentiation of PCNSL
remains crucial. However, pathologists lack access to immunohisto-
chemical and molecular assays that could assist in differential diag-
nosis, relyingmainly on interpreting cytologic andhistomorphological
characteristics from H&E frozen slides. Time constraints during
intraoperative diagnosis place substantial pressure on pathologists to
expedite diagnoses13, leading to ambiguous findings in a notable per-
centage of cases (approximately 10–20%), significantly influencing

neurosurgeons’ decision-making1,2. Hence, an urgent need persists for
an accessible and time-efficient tool capable of accurately distin-
guishing between PCNSL and other brain lesions, particularly glioma,
during surgical procedures.

Deep learning has demonstrated potential in assisting with various
aspects of tumor diagnosis, including histological classification14,
molecular typing15, therapeutic efficacy assessment16, and prognostic
prediction17 fromH&E-stained formalin-fixed paraffin-embedded (FFPE)
tissue slides. Similarly, in the context of CNS lesions, deep learning has
demonstrated success in classifying, grading, and risk stratification of
glioma based on histopathology18–20. However, the application of deep
learning to frozen samples is still limited and requires further explora-
tion, with most studies focusing on H&E-stained FFPE samples. Histo-
logical artifacts present in frozen sections can hinder rapid diagnostic
assessments during surgery21, but a deep learning algorithm may
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Fig. 1 | The workflow of the study. Four retrospective datasets were included in
this study. Each whole-slide image was preprocessed and tessellated into non-
overlapping tiles of 512 × 512 pixels at 10× magnification. From these tiles, two
random tiles of 224 × 224 pixels were extracted and inputted into the LGNet. The
LGNet generated tile-level probabilities, which were then averaged to obtain slide-
level probabilities for predicting glioma and primary central nervous system lym-
phoma (PCNSL). The LGNet was constructed by assembling five well-trained

individual classifiers at the output layer. The average probability outputs of these
five individual classifiers were used as the prediction of the ensembled model
LGNet. The performance of LGNet was developed and validated using an internal
dataset and further evaluated on two external retrospective datasets. Finally, the
proof-of-concept dataset was used to assess the performance of LGNet in guiding
neurosurgeons in decision-making during surgery. Some illustrations were gener-
ated with BioRender.com.

Article https://doi.org/10.1038/s41467-024-48171-x

Nature Communications |         (2024) 15:3768 2



improve the quality of whole-slide images (WSIs) from H&E-stained
frozen sections, leading to more accurate tumor classification by
pathologists22. Recent studies have also shown the ability of deep
learning models to diagnose thyroid nodules23 and determine the
metastatic status of sentinel lymph nodes in breast cancer24 from the
conventional intraoperative frozen sections, highlighting the potential
of frozen samples in developing deep learning models. Thus, we
hypothesize a deep learning approach can facilitate the intraoperative
diagnosis of brain tumors.

Our study aimed to train and validate a deep learning model
capable of accurately differentiating between PCNSL and glioma,
including distinguishing PCNSL from other non-PCNSL lesions, using
H&E-stained frozen WSIs. We also designed a human-machine fusion
approach to improve the diagnostic performance by integrating the
abilities of both deep learning models and pathologists. Finally, we
conducted a proof-of-concept study to simulate the real-world sce-
nario of frozen diagnosis and assess the practicality of the deep
learning model.

Results
Study design and patient cohorts
The LGNet, a deep learning model employed for precise prediction of
PCNSL and glioma, is detailed in Fig. 1, illustrating the comprehensive
workflow. This study encompassed four retrospective cohorts,
employing data from both internal and two external cohorts to
develop and validate the LGNet model’s proficiency in discriminating
between PCNSL and non-PCNSL lesions. A thorough description of
these datasets is provided in the Supplementary Methods along with
additional information in Supplementary Tables 1 and 2.

Deep learning model performance
To develop a deep learning model capable of predicting PCNSL and
glioma from frozen tissue samples, we initially trained ResNet50 using
the internal dataset. Subsequently, we assessed this model’s perfor-
mance across both the internal and external cohorts. In the internal
cohort, five-fold cross-validation resulted in AUROC value ranging
from 0.990 to 1.000, with a mean value of 0.992 at the patient level
(Supplementary Table 3). On external cohort 1, LGNet achieved an
AUROC of 0.965 (95% CI 0.95–0.98), along with a sensitivity of 0.857
(95% CI 0.73–0.94) and a specificity of 0.912 (95% CI 0.87–0.94)
(Table 1 and Fig. 2). On external cohort 2, LGNet obtained an AUROCof
0.972 (95%CI 0.94–1.00), a sensitivity of 0.955 (95%CI 0.77–1.00), and
a specificity of 0.868 (95% CI 0.83–0.90) (Table 1 and Fig. 2). Our
analysis, detailed in Supplementary Table 4, indicated no significant
difference in AUROC with or without color normalization for both
external cohorts 1 and 2. In addition, to assess model robustness, we
conducted 10 randomselections of slides in external cohort 2 basedon
real-world PCNSL and glioma proportions25. The resulting AUROCs
were consistent, averaging 0.972 (Supplementary Table 5). When
focusing solely on lesions categorized as ideally equivocal on pre-
operative imaging, LGNet achieved AUROCs of 0.965 (95% CI
0.93–1.00) and 0.959 (95% CI 0.91–1.01), with sensitivities of 0.875
(95% CI 0.73–0.96) and 0.938 (95% CI 0.70–1.00), and specificities of
0.903 (95% CI 0.81–0.96) and 0.841 (95% CI 0.73–0.92) on external
cohorts 1 and 2, respectively (Supplementary Table 6). Moreover,
LGNet yielded an AUROC of 0.938 (95% CI 0.88–0.99), a sensitivity of
0.903 (95% CI 0.74–0.98), and a specificity of 0.804 (95%CI 0.66–0.91)
in the stereotactic biopsy samples across both external cohorts (Sup-
plementary Table 7). Taken together, our data suggest that LGNet
demonstrates comparatively good diagnostic performance, even in
scenarios without color normalization or variations in slide selection.

Moreover, for the development and validation of the deep
learning model in differentiating PCNSL from non-PCNSL (encom-
passing glioma and other brain lesions) based on frozen tissue sam-
ples, we trained and assessed this model’s performance using both

internal and external datasets containing PCNSL and non-PCNSL cases.
The model exhibited an AUROC ranging from 0.989 to 1.000, with a
mean value of 0.996 at the slide level (data not shown). Subsequent
evaluation of the external test datasets 1 and 2 revealed promising
results. In the former, the model displayed an AUROC reached 0.981
(95% CI 0.97–0.99), along with a sensitivity of 0.980 (95% CI
0.89–1.00) and specificity of 0.847 (95% CI 0.81–0.88). Similarly, in the
latter, the model achieved an AUROC of 0.993 (95% CI 0.99–1.00),
exhibiting a sensitivity of 1.000 (95% CI 0.85–1.00) and specificity of
0.800 (95% CI 0.76–0.84) (Supplementary Table 8). These results
highlight the model’s capacity to distinguish PCNSL from non-PCNSL.

Performance comparison between deep learning model and
pathologist
A reader study involving pathologists was conducted on the external
datasets to compare the diagnostic performance of the deep learning
model with that of eight pathologists, each with varying years of
experience in intraoperative neuropathological diagnosis. The
pathologists reviewed H&E-stained frozen sections and made diag-
noses based on the morphological features. A positive correlation
between years of experience and diagnostic performance was
observed among the pathologists. In external cohort 1, LGNet had a
significantly higher AUROC than pathologists 1, 2, 4, and 5 (P <0.001).
Moreover, no statistically significant differences were observed
between the AUROC of LGNet and pathologist 3, 6–8, but the value of
LGNet’s AUROCwas higher than that of pathologist 3, 6–8 (Table 1). In
external cohort 2, LGNet displayed a significantly superior AUROC
compared to pathologists 1 (P =0.004) and 4 (P <0.001). Additionally,
although there were no significant differences when comparing the
AUROCofLGNetwithpathologists 2, 3, 5–8, theAUROCvalueof LGNet
was superior to pathologists 3, 6–8 (Table 1). Across both external
cohorts, LGNet consistently demonstrated a higher value of sensitivity
than the eight pathologists, especially significantly higher sensitivity
compared to pathologists 1, 2, 4, 5, and 7 in external cohort 1 (Table 1).
These findings indicate that LGNet’ performance significantly sur-
passed that of pathologists with one year and five years of experience
in intraoperative neuropathological diagnosis, andmatched or slightly
outperform pathologists with a decade years of experience. Focusing
solely on cases that were ideally equivocal on preoperative imaging,
LGNet exhibited a significantly higher AUROC than pathologists 1, 4
(P < 0.001), and 2 (P =0.008) (Supplementary Table 6) in external
cohort 1. In external cohort 2, LGNet achieved a significantly better
AUROCcompared to pathologist 4 (P < 0.05) (Supplementary Table 6).
When exclusively analyzing cases from the stereotactic biopsy across
both external cohorts, LGNet displayed a significantly higher AUROC
than pathologists 1 (P =0.004) and 4 (P <0.001) (Supplementary
Table 7). Notably, LGNet consistently exhibited higher values of sen-
sitivity than the eight pathologists, in particular, significantly higher
sensitivity compared topathologists 1, 4, 5, and 7 in the external cohort
1 (Supplementary Table 6). In the external test dataset 1 containing
PCNSL and non-PCNSL cases, the model showed a significantly higher
AUROC than pathologist 3 (P =0.012) (Supplementary Table 8). Col-
lectively, LGNet’s outperformance of some pathologists, even those
with years of experience, in distinguishing equivocal cases and ste-
reotactic biopsy samples signifies its utility in challenging diagnostic
scenarios.

Performance comparison between LGNet-assisted pathologists
and unassisted pathologists
To assess the impact of LGNet on pathologists’ diagnostic perfor-
mance, a re-examination of H&E-stained frozen sections and sub-
sequent re-diagnosis of PCNSL and glioma was conducted post-
analysis of LGNet’s predictions. Our data showed that LGNet improved
the sensitivity of each pathologist in external cohort 1 (Fig. 3). Notably,
the diagnostic proficiency of LGNet-assisted pathologists surpassed
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that of pathologists operating without LGNet support. In external
cohort 1, the AUROCs of eight LGNet-assisted pathologists ranged
between 0.900 (95% CI: 0.85–0.95) and 0.961 (95% CI: 0.94–0.99).
These LGNet-assisted pathologists displayed significantly higher
AUROCs than their unassisted counterparts (P < 0.05) (Fig. 3). Simi-
larly, in external cohort 2, eight LGNet-assisted pathologists demon-
strated AUROCs ranging from 0.952 (95%CI: 0.92–0.98) to 0.978 (95%
CI: 0.95–1.00), significantly surpassing the performance of patholo-
gists 1, 4, 5, and 8 working independently (Supplementary Fig. 1).
Focusing exclusively on cases with equivocal imaging diagnoses or
from stereotactic biopsy within both external cohorts, LGNet-assisted
pathologists also outperformed pathologists operating without LGNet
assistance (Supplementary Tables 9–11). Remarkably, within external
cohort 1, LGNet-assisted pathologists 1 and 4, labeled as less experi-
enced due to their one year of intraoperative neuropathological
expertise, exhibited comparable AUROCs to those of pathologists 2
and 5, characterized as experienced professionals with five years of
experience in diagnosing neuropathological frozen slides (Fig. 3).
Similarly, in external cohort 2, the AUROCs of LGNet-assisted pathol-
ogists 1 and 4 were comparable to not only pathologists 2 and 3 but
also pathologists 5–8, possessing a decade of experience (Supple-
mentaryFig. 1). Consistent trendswereobservedwhen analyzing solely
cases with equivocal imaging diagnosis or from the stereotactic biopsy
(Supplementary Tables 9–11). Thus, LGNet exhibits the potential to
provide expert-level assistance intraoperative diagnoses.

Human-machine fusion
To evaluate the effectiveness of deep learning model in intraoperative
diagnosis, we examined the human-machine fusion on two external
datasets. We presented both the original and modified fusion work-
flows in Supplementary Fig. 2. The original fusion of LGNet and
pathologists 1–8 on external cohort 1 yielded AUROCs ranging from
0.942 (95% CI: 0.91–0.97) to 0.983 (95% CI: 0.97–0.99), which were
comparable to or marginally higher than LGNet’s individual perfor-
mance (0.965) (Figs. 4 and 5). In contrast, the modified fusion, invol-
ving LGNet and pathologists 1–8, demonstrated AUROCs ranging from

0.965 (95% CI: 0.94–0.99) to 0.986 (95% CI: 0.98–1.00), equaling or
outperforming LGNet (0.965). Notably, the modified fusion predic-
tionsmade by pathologists 6–8 in conjunctionwith LGNet significantly
outperformed LGNet alone, and the performance of pathologist 8 in
the modified fusion approach distinctly surpassed that of the original
fusion (Figs. 4 and 5). On external cohort 2, the modified fusion pre-
dictionsmade by pathologists 3, and 5 through 8, in collaborationwith
LGNet, significantly outperformed LGNet alone. The AUROC value of
the modified fusion prediction of pathologist 1 and LGNet is higher
than LGNet, in spite of no significant difference (Fig. 4 and Supple-
mentary Fig. 3). Importantly, in external cohort 1, the modified fusion
approach achieved sensitivities ranging from 0.755 to 0.878 and spe-
cificities rangingbetween0.948 and0.976 (Fig. 5). In external cohort 2,
the corresponding sensitivity ranged from 0.909 to 0.955. Specificity
between 0.901 and 0.964 (Supplementary Fig. 3). The specificity of the
original andmodified fusion is significantly higher than themodel’s on
both two external cohorts (P <0.05). Specifically considering cases
with equivocal imaging diagnosis in external cohorts 1 and 2, the
modified fusion’s AUROC matched or outperformed the original
fusion’s (Supplementary Figs. 4 and 5). In external cohort 1, the mod-
ified fusion predictions made by pathologists 6 and 8, in collaboration
with LGNet, exceeded LGNet alone, and the performance of patholo-
gist 8, in conjunction with LGNet, in themodified fusion approach was
superior to that of the original fusion. Notably, the performance of
pathologist 4 in themodified fusion approachdistinctly surpassed that
of the original fusion and the specificity of modified fusion of pathol-
ogist 3 or 8, in combination with LGNet, is distinctly higher than
LGNet alone (Supplementary Fig. 4). Similarly, on external cohort 2,
the performance of pathologist 4, in conjunction with LGNet, in the
modified fusion approach was superior to that of the original fusion,
and the specificity of modified fusion combining pathologist 5 or 7
with LGNet significantly exceeded LGNet alone (Supplementary Fig. 5).
When specifically analyzing cases from stereotactic biopsy in both
external cohorts, themodified fusion predictionsmade by pathologist
3 or 6, in collaboration with LGNet, outperformed LGNet alone, and
modified fusion predictions made by pathologist 6, in combination
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Fig. 2 | The diagnostic performance of the LGNet and pathologists on two
external datasets. External cohort 1 (a); external cohort 2 (b). LGNet, a deep
learning model designed for distinguishing primary central nervous system lym-
phoma (PCNSL) fromglioma; Pathologists 1 and4, eachwith one yearof experience
in intraoperative neuropathological diagnosis; Pathologists 2 and 5, each posses-
sing five years of experience in intraoperative neuropathological diagnosis;

Pathologists 3, 6, 7, and 8, each exhibiting expertise up to ten years in intrao-
perative neuropathological diagnosis; The points at the base of each arrow repre-
sent the performance of each pathologist unassisted by LGNet, while the arrow
indicates the change in their performancewith LGNet’s assistance; AUROC the area
under the receiver operating characteristic curve.
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with LGNet, distinctly surpassed LGNet alone, and the performance of
pathologist 4, in conjunction with LGNet, in the modified fusion
approach was distinctly higher than that of the original fusion. Espe-
cially, the specificity of modified fusion combining pathologist 1 or 3
with LGNet significantly exceeded LGNet alone (Supplementary Fig. 6).
Overall, our data indicate that the modified human-machine fusion

approach holds promise for enhancing intraoperative differentiation
between PCNSL and glioma, potentially improving diagnostic perfor-
mance to some extent.

Additionally, concerning the external test datasets, the original
fusion with pathologist 3 yielded an AUROC of 0.988 (95% CI:
0.98–1.00; P =0.25), while the modified fusion reached an AUROC of
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Fig. 3 | Thediagnostic performanceof eachpathologistwas comparedwith and
without the assistance of LGNet on the external cohort 1. The performance was
measured using three parameters: Sensitivity (a), Specificity (b), and AUROC (c).
Pathologists 1 and 4, with one year of experience in intraoperative neuropatholo-
gical diagnosis; Pathologists 2 and 5, having five years of experience in intrao-
perative neuropathological diagnosis; Pathologists 3, 6, 7, and 8, having up to ten
years of experience in neuropathological intraoperative diagnosis; Pathologist
(unassisted), working without the aid of LGNet; Pathologist (assisted), assisted by

LGNet; AUROC, the area under the receiver operating characteristic; The error bars
are the 95% CI, with the measure of the histogram being the sensitivity, specificity
and AUROC of each variable. The sample size to derive statistics is n = 300 inde-
pendent patient samples for each variable. The difference comparison between
AUROCs was used in Delong’s test. The McNemar test was used to compare the
statistical differences in sensitivity and specificity. The P valuewas evaluated froma
two-sided test. Adjustments were made for multiple comparisons. The data have
been provided in the Source Data file.
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0.989 (95%CI: 0.98–1.00; P =0.16). Although no statistically significant
differences were found, the performance of the fusion approach
remains slightly higher than that of themodel in distinguishing PCNSL
from non-PCNSL (0.981). Comparable outcomes were observed in the
external test dataset 2. Additionally, no statistically significant differ-
ences were shownbetween the sensitivity of the fusion and themodel.

However, the specificity of the fusion approach is significantly higher
than that of the model (P <0.001) on two external test cohorts. (Sup-
plementary Table 8). These results suggest that the human-machine
fusion approach may also be suitable for distinguishing PCNSL from
non-PCNSL due to a significant increase in specificity during surgical
procedures.
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0.965 (0.95-0.98)

0.976 (0.96-0.99)

0.975 (0.96-0.99)

0.965 (0.95-0.98)

0.983 (0.97-0.99)

0.986 (0.98-1.00)

0.965 (0.95-0.98)

0.980 (0.97-0.99)

0.980 (0.97-0.99)

0.965 (0.95-0.98)

0.971 (0.95-0.99) 

0.980 (0.97-0.99)

P=0.74 P=0.11 P=0.009 P=0.24
P=0.71 P=0.74 P=0.73 P=0.09 P=0.81 P=0.012

P=0.72 P=0.18 P=0.95 P=0.14

P=0.003 P=0.003

P=0.005 P=0.006P=0.004
P<0.001

P=0.27
0.965 (0.95-0.98)

0.964 (0.94-0.98)
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Association between histological characteristics and LGNet
prediction of PCNSL
To delve deeper into the mechanisms of the deep learning model, we
conducted a logistic regression analysis to investigate the correlation
between LGNet’s predictions and histopathological features. Our uni-
variate analysis demonstrated significant associations between
LGNet’s prediction of PCNSL and several histopathological character-
istics, including monomorphic nuclei, prominent nucleoli, scant
cytoplasm, and poorly cohesive, across both external cohorts (All
P <0.001, Table 2). Furthermore, we employed prediction heatmaps
generated by LGNet to delineate regionswithin the slides that received
high or low prediction scores for PCNSL and glioma. Notably, regions
exhibiting histopathological attributes such as monomorphic nuclei,
prominent nucleoli, scant cytoplasm, poor cohesiveness, and peri-
vascular cuffing of tumor cells tended to obtain high scores for PCNSL.
Conversely, sections depicting features like a fibrillary background,
variations in nuclear shape and size with hyperchromasia, and micro-
vascular proliferation were more closely associated with lower scores
for glioma (Fig. 6). These findings provide valuable insights into the
underlying mechanisms of LGNet’s predictions, highlighting the his-
topathological features pivotal in accurately identifying PCNSL cases.

Misdiagnosis from LGNet
To gain a more comprehensive understanding of the deep learning
model’s performance, we analyzed the cases where LGNet mis-
classified instances of PCNSL and glioma. On two external cohorts, 54
out of 78 slidesmisdiagnosedbyLGNetwere correctlydiagnosedby all
pathologists. In external cohort 1, LGNet exhibited misdiagnoses in a
total of 29 slides, encompassing 7 PCNSLs and 22 gliomas. In external
cohort 2, LGNet misdiagnosed 49 slides, comprising 1 PCNSL and 48
gliomas (Supplementary Fig. 7). Among the 22 cases misdiagnosed as

PCNSL in external cohort 1 by LGNet, 4 (18.2%) and 3 (13.6%) displayed
PCNSL-like features, including monomorphic nuclei and prominent
nucleoli, respectively. In addition, among the 48 instances mis-
classified as PCNSL in external cohort 2, 2 (4.2%) cases exhibited the
feature of monomorphic nuclei (Supplementary Fig. 8). Supplemen-
tary Table 12 provided additional evidence, showing a significant
association between histomorphological attributes of glioma, mis-
diagnosed as PCNSL and PCNSL-like features, such as monomorphic
nuclei and prominent nucleoli (P <0.001). These observations shed
light on the specific characteristics contributing to LGNetmisdiagnosis
of PCNSL.

Performance on the proof-of-concept study
To gauge the practical use of LGNet in clinical settings, we conducted a
proof-of-concept study atour facility. Theprocessof predicting PCNSL
and glioma using the deep learning model through the online patho-
logical decision platform was elucidated in Supplementary Movie 1.
LGNet exhibited a significantly higher AUROC than pathologist A
(0.998 vs. 0.821, P =0.005). No statistically significant differenceswere
observed between the AUROC of LGNet and pathologist B (0.998 vs.
0.972, P = 0.251) (Table 3 and Fig. 7).When aided by LGNet, pathologist
A achieved an increasedAUROCof0.991 (95%CI: 0.98–1.01) compared
to working alone (P =0.003), while pathologist B obtained an elevated
AUROC of 0.991 (95% CI: 0.97–1.01), with no significant differences
between LGNet-assisted and unassisted AUROCs (P = 0.26) (Supple-
mentary Table 13 and Fig. 7). Although no statistical differences were
found between the performance of the combination of LGNet and
pathologist (L-P) prediction, or human-machine fusion and
LGNet alone (1.000 vs. 0.998, P =0.48; 1.000 vs. 0.998, P = 0.48)
(Table 3 and Fig. 7), these findings suggest that LGNet can assist
pathologist with less years of experience in improving diagnostic

Fig. 5 | The comparison of LGNet fusion prediction and pathologist prediction
on the external cohort 1.The performancewasmeasured using three parameters:
Sensitivity (a), Specificity (b), and AUROC (c). Pathologists 1 and 4, with one year of
experience in intraoperative neuropathological diagnosis; Pathologists 2 and 5,
having five years of experience in intraoperative neuropathological diagnosis;
Pathologists 3, 6, 7, and 8, having up to ten years of experience in intraoperative
neuropathological diagnosis; Pathologist (unassisted), working without the aid of
LGNet; Pathologist (assisted), assisted by LGNet; AUROC, the area under the
receiver operating characteristic; Original fusion, the fusion from LGNet’s predic-
tion and pathologist’s original diagnosis (pathologist’s diagnosis without the aid of

LGNet); Modified fusion, the fusion from LGNet’s prediction and pathologist’s
modified diagnosis (pathologist’s diagnosis with the aid of LGNet). The error bars
are the 95%CI, with the measure of the histogram being the sensitivity, specificity,
and AUROC of each variable. The sample size to derive statistics is n = 300 inde-
pendent patient samples for each variable. The difference comparison between
AUROCs was used in Delong’s test. The McNemar test was used to compare the
statistical differences in sensitivity and specificity. The P valuewas evaluated froma
two-sided test. Adjustments were made for multiple comparisons. The data have
been provided in the Source Data file.

Table 2 | The association between LGNet’s prediction and the morphological features on external cohorts by logistic
regression models

Features External cohort 1 External cohort 2

Univariate Univariate

OR (95% CI) P OR (95% CI) P

Perivascular cuffing of tumor cells 16.71 (3.45, 80.88) <0.001 7.88E9 (0.00, +∞) 1.00

Monomorphic nuclei 22.60 (10.15, 50.34) <0.001 6.71 (3.27, 13.77) <0.001

Prominent nucleoli 27.97 (10.82, 72.35) <0.001 11·66 (4.75, 28.60) <0.001

Scant cytoplasm 11.80 (6.23, 22.36) <0.001 2.70 (1.54, 4.75) 0.001

Poorly cohesive 12.24 (6.47, 23.17) <0.001 12.63 (5.18, 30.76) <0.001

Apoptosis 6.05E9 (0.00,+∞) 1.00 8.13E9 (0.00, +∞) 1.00

Fibrillary background 0.22 (0.12, 0.40) <0.001 0.40 (0.22, 0.75) 0.004

Variation in nuclear shape and size with accompanying hyperchromasia 0.06 (0.03, 0.13) <0.001 0.18 (0.09, 0.37) <0.001

Microvascular proliferation 0.19 (0.05, 0.82) 0.026 0.43 (0.22, 0.84) 0.013

Necrosis 0.35 (0.08, 1.53) 0.16 0.64 (0.26, 1.58) 0.33

The association between LGNet prediction andmorphological features was analyzed by logistic regression models. P value is two-sided. The sample size to derive statistics is n = 300 (external
cohort 1) and n = 386 (external cohort 2) independent patient samples for each variable. The data have been provided in the Source Data file.
95% CI 95% confidence intervals, OR odds ratio.
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Fig. 6 | The LGNetmodel successfully predicted cases of lymphomaandglioma
in internal cohort, external cohort 1, and external cohort 2. The histological
images of the patients with primary central nervous system lymphoma (PCNSL)
(a–c) and glioma (d–f) are shown in the left column. The heatmaps overlapped on
the whole-slide images (WSIs) in the middle column indicated the tissue tiles that
LGNet predicted as PCNSLwith a high score (reddish color) or as gliomawith a low
score (bluish color). The tiles with a high score for PCNSL were primarily localized

in areas of perivascular cuffing of tumor cells, monomorphic nuclei, prominent
nucleoli, scant cytoplasm, and poor cohesiveness (tiles at 10×magnification in the
right column). Similarly, the tiles with a low score for gliomaweremore likely to be
found in areas of fibrillary background, nuclear shape and size variation with
hyperchromasia, and microvascular proliferation (tiles at 10× magnification in the
right column). All results were reproducible and consistent, demonstrating the
reliability and stability of the LGNet model.

Article https://doi.org/10.1038/s41467-024-48171-x

Nature Communications |         (2024) 15:3768 10



performance. Moreover, regardless of diagnostic experience, the L-P
combination fusion remains a viable alternative to LGNet’s diagnosis.

Discussion
In this study, we devised a deep learning approach to aid the intrao-
perative diagnosis of brain tumors using conventional frozen H&E
slides. Our generated deep learning model, LGNet, presents sub-
stantial advantages in addressing challenges experienced by patholo-
gists when differentiating PCNSL fromglioma, alongside other lesions,
during surgical procedures. LGNet effectively predicts PCNSL directly
from conventional H&E-stained frozen WSIs, showcasing enhanced
performance validated across two external cohorts. Our study unveils
a promising approach for intraoperative brain tumor diagnosis
through AI technology.

Accurate identification of PCNSL in brain tumor patients holds the
potential to prevent unnecessary surgical resection, thus minimizing
the risk of brain tissue damage and improving patient care. Ourmodel
displayed robust predictive capabilities in accurately distinguishing

PCNSL from glioma and other CNS lesions, especially in cases with
ambiguous preoperative imaging and predominantly through stereo-
tactic biopsies, presenting notable challenges during intraoperative
diagnosis. Surprisingly, LGNet-assisted pathologists displayed sig-
nificantly higher diagnostic performance than their unassisted coun-
terparts. Furthermore, several pathologists, assisted by LGNet even
with just one year of experience, demonstrated comparable or slightly
superior performance compared to their unassisted counterparts with
five years of experience. Moreover, their performance could rival that
of pathologists with ten years of experience to some extent. This
assistance is particularly evident in lesions classified as ideally equi-
vocal on preoperative imaging or obtained via stereotactic biopsy,
suggesting that LGNet significantly enhances several pathologists’
performance during surgery. Thus, this approach holds promise for
delivering expert-level intraoperative diagnosis, particularly in settings
with limited neuropathology resources, while also enhancing diag-
nostic performance in well-equipped centers. Interestingly, analysis of
LGNet’s misdiagnosed slides revealed that 54 out of 78 slides were

Table 3 | The comparison of the performance of LGNet, pathologist, and LGNet-pathologist combination on the proof-of-
concept cohort

Category Diagnostic metrics

Sensitivity (95% CI) P* Pa Specificity (95% CI) P* Pa AUROC (95% CI) P* Pa

LGNet 0.857(0.42,1.00) NA NA 0.984 (0.91,1.00) NA NA 0.998 (0.99,1.01) NA NA

Pathologist A 0.571 (0.18,0.90) 0.63 1.00 0.836 (0.72,0.92) 0.012 0.036 0.821 (0.70,0.94) 0.005 0.020

Pathologist B 0.857 (0.42,1.00) 1.00 1.00 0.967 (0.89,1.00) 1.00 1.00 0.972 (0.92,1.02) 0.25 0.75

L-PA Combination 1.000 (0.59,1.00) NA NA 1.000 (0.94,1.00) NA NA 1.000 (1.00,1.00) 0.48 0.96

L-PB Combination 1.000 (0.59,1.00) NA NA 0.984 (0.91,1.00) 1.00 1.00 1.000 (1.00,1.00) 0.48 0.96

L-P combination, the combination of LGNet and Pathologist with the assistance of LGNet; Pathologist A, the pathologist with one year of experience in intraoperative diagnosis; Pathologist B, the
pathologist with up to 10 years of experience in intraoperative diagnosis; L-PA combination, the combination of LGNet and Pathologist A with the assistance of LGNet; L-PB combination, the
combination of LGNet and Pathologist Bwith the assistance of LGNet; Thedifference comparison between AUROCswas used to Delong’s test. TheMcNemar test was used to compare the statistical
differences in sensitivity and specificity. The sample size to derive statistics is n = 68 independentpatient samples for each variable. P value is two-sided.Pa adjustedP valuewith FDRmethodThedata
have been provided in the Source Data file.
95% CI 95% confidence intervals, AUROC the area under the receiver operating characteristic, NA not applicable.
*indicates the comparison of the difference between the LGNet and the other categories (pathologists and L-P combination).
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Fig. 7 | The proof-of-concept cohort was used to assess the performance of
LGNet, pathologist, and the LGNet-pathologist combination. Pathologist A (a)
and B (b) were involved in the evaluation process. Pathologist A was a pathologist
with one year of experience in intraoperative neuropathological diagnosis, whereas
Pathologist B hadup to 10 years of experience in thisfield. Twomodes of evaluation

were used: Pathologist (unassisted) and Pathologist (assisted), with the latter being
aided by LGNet. The performance was measured using AUROC (area under the
receiver operating characteristic). The LGNet-Pathologist A combination (L-PA) and
LGNet-Pathologist B combination (L-PB) were also evaluated.

Article https://doi.org/10.1038/s41467-024-48171-x

Nature Communications |         (2024) 15:3768 11



correctly diagnosed by all pathologists. Notably, 7 out of 49 PCNSL
cases were entirely corrected by different pathologists with five or ten
years of experience in intraoperative neuropathological diagnosis in
external cohort 1. Aligning with previous studies26, this underscores
complementary strengths between pathologists and the model in
intraoperative diagnosis of PCNSL and the potential for improving
diagnostic performance by integrating deep learning algorithms with
pathologists’ expertise.

To explore the deep learning mode’s efficacy in time-sensitive
intraoperative diagnosis, we employed a human-machine fusion
strategy, combining a deep learning model and a pathologist based
on their prediction uncertainties, as outlined in our previous study27.
Our findings indicate that the modified fusion approach could
improve the performance for several inexperienced and experi-
enced pathologists collaborating with LGNet in differentiating
PCNSL from glioma during surgery, even in complex scenarios for
experienced pathologists. Significantly, this fusion strategy could be
employed to distinguish PCNSL from non-PCNSL, resulting in a
noteworthy increase in specificity. Thus, the human-machine fusion
approach could emerge as a promising avenue, enhancing the cap-
abilities of several experienced pathologists and assisting inexper-
ienced ones during challenging cases.

Moreover, We devised an online pathological decision support
platform to evaluate LGNet’s real-world applicability. Our study
demonstrated LGNet’s robust performance in identifying PCNSL and
assisting pathologists in accurately improving diagnostic perfor-
mance. Furthermore, the LGNet-Pathologist combination, or human-
machine fusion, displayed potential in intraoperative diagnosis and
may be used as a viable alternative to LGNet’s diagnosis. More
importantly, we found that LGNet’s performance without color nor-
malization remained comparable to that with color normalization,
saving time while preserving the model’s favorable diagnostic perfor-
mance. Overall, our study suggests that our model is suitable for
intraoperative diagnosis within strict time constraints.

Deep learning models are often considered “black boxes” due to
the lack of transparency in their decision-making process28,29. To shed
light on LGNet’s interpretation, we conducted logistic regression
analysis to investigate the association between well-known morpho-
logical characteristics and LGNet’s predictions. While all ten char-
acteristics investigated have established connections with
differentiating PCNSL from glioma, only three characteristics (pre-
sence of monomorphic nuclei, prominent nucleoli, and scant cyto-
plasm) were significantly linked to LGNet’s prediction for PCNSL
through multivariable analysis. This indirect insight into LGNet’s
interpretability enhances pathologists’ confidence in the model’s
predictions. Our findings could contribute to improving the trans-
parency of deep neural networks before their integration into routine
clinical workflows.

However, our study has some limitations that merit attention30,31.
Firstly, both the proof-of-concept and internal cohorts were drawn
from the same medical center, potentially introducing bias in the
proof-of-concept study. Therefore, a prospective study encompassing
multiplemedical centers is warranted to further evaluate LGNet’s real-
world potential. Secondly, refinement of the online platform is
necessary before deployment for clinical use. Thirdly, we did not use
these modern tools, including radiomics12, genetic biomarkers32,
and cell-free DNA33 to select doubtful cases for analysis. Fourthly,
this is only a proof-of-concept study that needs for future analyses
on a suitable number of pathologists and on better-selected
cases (small biopsies and difficult neuroimaging interpretation) to
draw more reliable conclusions. Lastly, while the logistic regression
model provides biological interpretability for the deep learning
model, more advanced visual methods, such as high-resolution
class activation mapping34, could offer further insights into the
model functioning.

In summary, our study introduces the LGNet deep learningmodel
for differentiating PCNSL fromgliomaonH&E-stained frozenWSIs and
demonstrated its superior performance across two external cohorts.
LGNet significantly outperforms some board-certified pathologists
and supports pathologists, irrespective of their experience, in
improving diagnostic accuracy. Notably, the model also improves
diagnostic accuracy in discriminating PCNSL from non-PCNSL, espe-
cially glioma. Importantly, the human-machine fusion approach, par-
ticularly the modified fusion, further could enhance overall diagnostic
performance. These findings, validated with the proof-of-concept
cohort, provide guidance for neurosurgeons in informed decision-
making for managing patients with different malignant brain tumors
during surgery.

Methods
Study participants
All patient-related information obtained was ethically approved by the
Institutional Ethics Committee at Sun Yat-sen University Cancer Cen-
ter, and the reference number of the committee is SL-B2022-613-01.
The informed consent was waived because patients were not directly
recruited for this study. The gender of participants was considered in
the study design and reported in the characteristics of different
cohorts, and determined on self-report. A specific gender-based ana-
lysis a priori was not performed.

To develop and validate the LGNet model, we conducted a ret-
rospective study using three independent cohorts comprising frozen
section images acquired between January 1, 2014, and August 31, 2021.
These cohorts included an internal cohort fromSun Yat-sen University
Cancer Center, alongside two external cohorts: one from Zhujiang
Hospital (external cohort 1) and the other from Nanfang Hospital of
Southern Medical University and The First Affiliated Hospital of Sun
Yat-sen University (external cohort 2). Subsequently, to assess the
practicality of the LGNet in clinical settings, we recruited a proof-of-
concept cohort from September 1, 2021, to March 1, 2022, at Sun Yat-
sen University Cancer Center. In addition, to further expand and vali-
date the deep learning model’s capacity to differentiate PCNSL from
non-PCNSL (including glioma and other brain lesions), we broadened
our dataset to encompass frozen section images of various brain
lesions likemedulloblastoma, central neurocytoma,metastatic cancer,
and inflammation lesions (see the supplementarymethods for details).
Further details regarding dataset expansion and inclusion/exclusion
criteria for patients are outlined in the supplementary methods.

Slides scanning and WSIs preprocessing
In both the internal and external datasets, we gathered representative
H&E-stained frozen slides per patient, featuring specimen sizes ran-
ging from 0.2 cm×0.2 cm×0.1 cm to 1.5 cm× 1.5 cm×0.3 cm.
Employing the Aperio AT2 scanner (Leica Biosystems; Wetzlar, Ger-
many) at 40× magnification (0.25μm/pixel), WSIs, were acquired and
subsequently stored in SVS format. TheseWSIs were then divided into
non-overlapping 512 × 512 pixel windows using the openslide library.
To prepare inputs for the model, two tiles, each sized at 224 × 224
pixels, were randomly selected fromeachwindow. Further specifics on
the processing of WSIs are delineated in the Supplementary methods.

Deep learning model development
Following image preprocessing, we initiated training of the ensemble
binary deep learning model classifier using the internal dataset to
accurately distinguish between PCNSL or glioma, and PCNSL or non-
PCNSL. The cohort underwent a random division into three distinct
sets: a training set, a validation set, and an internal test set. Impor-
tantly, there was a complete absence of overlap among patients or
slides across these sets. Employing a five-fold cross-validation scheme,
we derived either slide-level or patient-level probability via the deep
learning model. This probability was subsequently dichotomized to
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achieve the definitive binary classification of patients as either PCNSL
or glioma and either PCNSL or non-PCNSL. For further details on
model development, refer to the Supplementary methods.

Deep learning model evaluation
To assess the efficacy of our deep learning model, we performed both
internal and external assessments on the respective datasets. Intern-
ally, the internal cohort underwent division into five folds. Four folds
were utilized to train an ensemble classifier, while the remaining fold
was dedicated to serve as the internal test set in each iteration. This
procedure involved further subdivision of the data into five new folds,
with each fold employed for training an individual classifier, as
described previously. The ensemble classifier thus constructed was
then evaluated at both slide and patient levels using the internal test
set. This process was repeated five times, ensuring a unique evaluation
set for each iteration to prevent repeated assessment of slides within
the internal dataset. For external evaluation, we utilized the LGNet-
developed ensemble classifier model-trained on the complete internal
dataset to discern PCNSL from non-PCNSL. The prediction involved
estimating the probability of classification for either PCNSL or glioma
and for either PCNSL or non-PCNSL at the slide level. The outcomes
obtained from both internal and external datasets were juxtaposed
against the corresponding ground-truth tumor status. The details of
these methodologies are provided in the Supplementary Methods
section.

Reader study
To evaluate the impact of the deep learning model on pathologists’
diagnostic performance, we enlisted eight pathologists specializing
in intraoperative neuropathological diagnosis. Pathologists 1–6
were affiliated with the Sun Yat-sen University Cancer Center, while
Pathologists 7 and 8 were associated with Guangdong Provincial
People’s Hospital and The First Affiliated Hospital of Sun Yat-sen
University. Their expertise levels varied: Pathologists 1 and 4 had
one year of experience, Pathologists 2 and 5 had approximately 5
years, and Pathologists 3, 6, 7, and 8 had accrued up to 10 years of
experience. Throughout the evaluation, these pathologists were
kept blind to clinical dataset particulars, such as the PCNSL-to-
glioma or PCNSL-to-non-PCNSL ratio, as well as the deep learning
model’s performance. For each WSI extracted from the external
datasets, the pathologists executed dichotomous predictions indi-
cating either PCNSL or glioma and either PCNSL or non-PCNSL. The
process included an original diagnosis where the pathologist eval-
uated the slide independently, and a modified diagnosis following
provision of the deep learning model’s prediction. This included
both predictive probability and binary classification for PCNSL or
glioma, and PCNSL or non-PCNSL. Additionally, pathologists
assigned self-confidence scores on a 6-scale for both original and
modified diagnoses. For the classification of PCNSL or non-PCNSL,
the scores ranged from ‘1’ indicating ‘surely non-PCNSL’ to ‘6’ sig-
nifying ‘surely PCNSL’. The scores for PCNSL or glioma ranged
similarly, representing the pathologists’ confidence levels in their
diagnoses. To better understand the association between specific
histopathological characteristics and LGNet’s predictions, we con-
structed a logistic regressionmodel using frozen slides. The detailed
description was shown in the supplementary methods.

Human-machine fusion
To improve the diagnostic performance, we applied the human-
machine fusion scheme, which is a simple extension of the fusion
method originally developed in our previous study27, further ela-
borated upon in the supplementary methods section. While the
human-machine fusion strategy was implemented across all cases in
the external datasets, only a select portion underwent this fusion
method by pathologists in the proof-of-concept study.

Consequently, we referred to the fusion in the proof-of-concept
study as the LGNet-Pathologist combination (L-P combination),
distinguishing it from the human-machine fusion applied in the
external cohorts.

Evaluation of the model on the proof-of-concept study
To simulate real-world frozendiagnosis scenarios for pathologistswith
varying levels of experience, we conducted a proof-of-concept study
using 68 frozen slides suspected of either PCNSL or glioma from our
center. Two pathologists participated in the study: Pathologist A, with
one year of experience in intraoperative neuropathological diagnosis,
and Pathologist B, with 10 years of experience in intraoperative neu-
ropathological diagnosis. Both pathologists were blinded to the pri-
mary intraoperative diagnosis and final postoperative diagnosis. To
facilitate their decision-making process and visually display their
decisions, we designed and developed an online pathological decision
support platform accessible only to intranet users. The pathologists
viewed the original and unprocessed H&E slides from the proof-of-
concept study and made diagnoses based on their selected strategies,
such as human-machine fusion or non-human-machine fusion. We
compared the time spent by each pathologist fromopening the frozen
section to making the original diagnosis with that of LGNet’s predic-
tion. Furthermore, we compared the performance of LGNet with that
of the two pathologists, as well as compared the performance of the
LGNet-Pathologist combination, or human-machine fusion, with that
of LGNet.

Statistical analysis
The clinicopathological data in the retrospective cohorts were ana-
lyzed using Chi-square test or variance analysis. To compare the area
under the receiver operating characteristic curves (AUROCs) between
different variables, Delong’s test was used. The cutoff threshold of
deep learning model’s ROC curve was determined by Youden’s J sta-
tistic to dichotomize the model’s probabilities into binary predictions.
The McNemar test was used to compare the statistical differences in
sensitivity and specificity. The association between LGNet prediction
and morphological features was analyzed by logistic regression mod-
els. The Clopper-Pearson method was used to calculate 95% CIs. We
considered a P value less than 0.05 as statistically significant. The
adjusted P value with False Discovery Rate (FDR) method was also
calculated when involving multiple testing. For statistical analysis, we
used SPSS Statistics (version 20.0), Medcalc (version 15.2.2), and R
(version 4.3.2). Python (version 3.9.6) and the deep learning platform
PyTorch (version 1.9) were used for data preprocessing and model
development. Some illustrations were generated with BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to patient privacy obligations and institutional regulations,
restrictions are imposed on access to the whole-slide images and
annotation data of both internal and external datasets used in this
study. These datasets were obtained with institutional permissions via
IRB (Institutional Review Board) approval and are therefore not pub-
licly available. Nonetheless, for non-commercial and academic pur-
poses, interestedpartiesmay request access to thedata supporting the
findings of this study directly from the corresponding author. Source
data have been provided as a zip file with this paper. Source data are
provided with this paper.

Code availability
The source codes for our LGNet model have been made publicly
accessible at https://github.com/Kepler1647b/LGNet/tree/main.
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