
PERSPECTIVE OPEN

Representations of molecules and materials for interpolation of
quantum-mechanical simulations via machine learning
Marcel F. Langer 1,2, Alex Goeßmann1,3 and Matthias Rupp 1,4,5✉

Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science,
but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce
these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that
describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and
relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary
alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-
parameter optimization.
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INTRODUCTION
Quantitative modeling of atomic-scale phenomena is central for
scientific insights and technological innovations in many areas of
physics, chemistry, and materials science. Solving the equations
that govern quantum mechanics (QM), such as Schrödinger’s or
Dirac’s equation, allows accurate calculation of the properties of
molecules, clusters, bulk crystals, surfaces, and other polyatomic
systems. For this, numerical simulations of the electronic structure
of matter are used, with tremendous success in explaining
observations and quantitative predictions.
However, the high computational cost of these ab initio

simulations (Supplementary Note 1) often only allows investigat-
ing from tens of thousands of small systems with a few dozen
atoms to a few large systems with thousands of atoms, particularly
for periodic structures. In contrast, the number of possible
molecules and materials grows combinatorially with the number
of atoms: 13 or fewer C, N, O, S, Cl atoms can form a billion
possible molecules1, and for 5-component alloys, there are more
than a billion possible compositions when choosing from 30
elements (Supplementary Note 2). This limits systematic computa-
tional study and exploration of molecular and materials spaces.
Similar considerations hold for ab initio dynamics simulations,
which are typically restricted to systems with a few hundred
atoms and sub-nanosecond timescales.
Such situations require many simulations of systems correlated

in structure, implying a high degree of redundancy. Machine
learning2,3 (ML) exploits this redundancy to interpolate between
reference simulations4–7 (Fig. 1). This ansatz replaces most ab initio
simulations by ML predictions, based on a small set of reference
simulations. Effectively, it maps the problem of repeatedly solving
a QM equation for many related systems onto a regression
problem. This approach has been demonstrated in benchmark
settings4,8,9 and applications5,10,11, with reported speed-ups
between zero to six orders of magnitude12–15. It is currently
regarded as a highly promising avenue towards extending the
scope of ab initio methods.

The most relevant aspect of ML models for interpolation of QM
simulations (QM/ML models) after data quality (Supplementary
Note 3) is the definition of suitable input features, that is,
representations of atomistic systems. Representations define how
systems relate to each other for regression and are the subject of
this perspective.

Scope and structure
QM/ML models require a space in which interpolation takes place.
Such spaces can be defined explicitly, often as vector spaces, or
implicitly, for example, via a kernel function in kernel-based
machine learning16,17. This work reviews and compares explicit
Hilbert-space representations of finite and periodic polyatomic
systems for accurate interpolation of QM observables via ML,
focusing on representations that satisfy the requirements
discussed in section “Requirements” and energy predictions.
This excludes features that do not encode all input information,

such as atomic numbers and coordinates, for example, descriptors
or fingerprints used in cheminformatics and materials informatics
to interpolate between experimental outcomes18, and implicit
representations learned by end-to-end deep neural networks19–37

or defined via direct kernels between systems38–42 (Supplemen-
tary Notes 4 and 10).
Characteristics and requirements of representations are dis-

cussed in the sections “Role and types of representations” and
“Requirements” followed by a short description of a unified
mathematical framework for representations (“A unified frame-
work”). Specific representations are delineated (benchmarked
ones in “Selected representations”, others in “Other representa-
tions”), qualitatively compared (“Analysis”), and empirically bench-
marked (“Empirical comparison”). We conclude with an outlook on
open problems and possible directions for future research in
section “Conclusions and outlook”. See Table 1 for a glossary of
covered representations and technical terms.
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Related work
Studies of QM/ML models often compare their performance
estimates with those reported in the literature. While such
comparisons have value, they entertain considerable uncertainty
due to different datasets, learning algorithms, including choice of
hyperparameters (HPs, free parameters), sampling, validation
procedures, and reported quantities. Accurate, reliable performance

estimates require a systematic comparison that controls for the
above factors, which we perform in this work.
Several recent studies systematically measured and compared

prediction errors of representations (Table 2). We distinguish
between studies that automatically (as opposed to manually)
optimize numerical HPs of representations, for example, the width
of a normal distribution; structural HPs of representations, for
example, choice of basis functions; and HPs of the regression
method, for example, regularization strength. Supplementary Note
5 discusses the individual studies from Table 2.

ROLE AND TYPES OF REPRESENTATIONS
An N-atom system formally has 3N−6 degrees of freedom.
Covering those with M samples per dimension requires M3N−6

reference calculations, which is infeasible except for the smallest
systems. How then is it possible to learn high-dimensional energy
surfaces?
Part of the answer is that learning the whole energy surface is

unnecessary, as configurations high in energy become exponen-
tially unlikely—it is sufficient to learn low-energy regions. Another
reason is that the regression space’s formal dimensionality is less
important than the data distribution in this space. (Supplementary
Note 6) Representations can have thousands of dimensions, but
their effective dimensionality43 can be much lower if they are highly
correlated. The role of representations is, therefore, to map atomistic
systems to spaces amenable to regression. These spaces, together
with the data’s distribution, determine the efficiency of learning.
We distinguish between local representations that describe

parts of an atomistic system, such as atoms in their environ-
ment8,44, and global ones that describe the whole system. For
global representations, represented systems are either finite, such
as molecules and clusters, or periodic, such as bulk crystals and
surfaces (Table 3).
Local representations are directly suitable for local properties,

such as forces, nuclear magnetic resonance shifts, or core-level
excitations45, which depend only on a finite-size environment of
an atom. Extensive global properties (Supplementary Note 7) such
as energies can be modeled with local representations via additive
approximations, summing over atomic contributions (Supplemen-
tary Note 8). Since local representations require only finite
support, it does not matter whether the surrounding system is
finite or periodic. Global representations are suited for properties
of the whole system, such as energy, band gap, or the
polarizability tensor. Since periodic systems are infinitely large,

Fig. 1 Sketch illustrating the interpolation of quantum-
mechanical simulations by machine learning. The horizontal axis
represents chemical or materials space, the vertical axis the
predicted property. Instead of conducting many computationally
expensive ab initio simulations (solid line), machine learning
(dashed line) interpolates between reference simulations (dots).

Table 1. Glossary.

Acronym Meaning

Representations

ACE Atomic cluster expansion

BoB Bag of bonds

BS Bispectrum

CM Coulomb matrix

DECAF Density-encoded canonically-aligned fingerprint

FCHL Faber-Christensen-Huang-von Lilienfeld

GM Gaussian moments

HDAD Histograms of distances, angles, and dihedral angles

IDMBR Inverse-distance many-body representation

MBTR Many-body tensor representation

MILAD Moment invariants local atomic descriptors

MOB Molecular orbital basis

MTP Moment tensor potential

NICE N-body iterative contraction of equivariants

OMF Overlap matrix fingerprint

SF Symmetry function

SOAP Smooth overlap of atomic positions

WST Wavelet scattering transform

Methodology

GPR Gaussian process regression

HP Hyperparameter (free parameter)

KRR Kernel ridge regression

MAE Mean absolute error

ML Machine learning

QM Quantum mechanics

QM/ML ML model for accurate prediction of QM data

RMSE Root mean squared error

system Polyatomic system, e.g., a molecule or a crystal

Table 2. Related work. See Supplementary Note 5 for details.

Reference

91 84 150 65 111 151 152 153 104 122 68 here

Finite systems ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Periodic systems × ✓ ✓ × ✓ × ✓ × × × ✓ ✓

Other properties ✓ ✓ × × × ✓ ✓ ✓ ✓ × ✓ ×

Numerical HPs × ✓ ✓ × × ✓ × × × ✓ × ✓

Structural HPs × × × × × × × × × × × ✓

Regression HPs ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ × ✓

Timings × × ✓ ✓ × × × × × × × ✓

Finite systems: study uses datasets of finite systems, such as molecules or
clusters; Periodic systems: uses datasets of periodic systems, such as
crystalline materials; Other properties: evaluate properties other than
energy or its derivatives; numerical/structural/regression HPs: whether
numerical hyperparameters of representations, structural hyperparameters
of representations, or regression hyperparameters are optimized
automatically.
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global representations usually need to be designed for or adapted
to these. Trade-offs between local and global representations are
discussed in the section “Analysis”.
Historically, interpolation has been used to reduce the effort of

numerical solutions to quantum problems from the beginning.
Early works employing ML techniques such as Tikhonov regular-
ization and reproducing kernel Hilbert spaces in the late 1980s
and throughout the 1990s were limited to small systems46–49.
Representations for high-dimensional systems appeared a decade
later8,9,50, underwent rapid development, and constitute an active
area of research today. Table 4 presents an overview.

REQUIREMENTS
Figures of merit for QM/ML models include computational
efficiency, predictive accuracy, and sample efficiency, that is, the
number of reference simulations required to reach a given target
accuracy. Imposing physical constraints on representations
improves their sample efficiency by removing the need to learn
these constraints from the training data. The demands of speed,
accuracy, and sample efficiency give rise to specific requirements,
some of which depend on the predicted property:

(i) Invariance to transformations that preserve the predicted
property, including (a) changes in atom indexing (input
order, permutations of like atoms), and often (b) transla-
tions, (c) rotations, and (d) reflections. Predicting tensorial
properties requires (e) covariance (equivariance) with rota-
tions6,25,26,29,51–54. Dependence of the property on a global
frame of reference, for example, due to the presence of a
non-isotropic external field, can affect variance require-
ments.

(ii) Uniqueness, that is, variance against all transformations that
change the predicted property: Two systems that differ in
property should be mapped to different representations.
Systems with equal representation that differ in property
introduce errors55–57: Because the ML model cannot
distinguish them, it predicts the same value for both,
resulting in at least one erroneous prediction. Uniqueness is
necessary and sufficient for reconstruction, up to invariant
transformations, of an atomistic system from its representa-
tion44,58.

(iii) (a) Continuity, and ideally (b) differentiability, with respect to
atomic coordinates.
Discontinuities work against the regularity assumptions in

ML models, which try to find the least complex function
compatible with the training data. Intuitively, continuous
functions require less training data than functions with
jumps. Differentiable representations enable differentiable
ML models. If available, reference gradients can further
constrain the interpolation function ("force matching”),
improving sample efficiency59–61.

(iv) Computational efficiency relative to the reference simula-
tions. For an advantage over simulations alone (without ML),
overall computational costs should be reduced by one or
more orders of magnitude to justify the effort. The
difference between running reference simulations and
computing representations usually dominates costs. (Sup-
plementary Note 9) Therefore, the results of computationally
sufficiently cheaper simulations, for example, from a lower
level of theory, can be used to construct representations62,63

or to predict properties at a higher level of theory (“Δ-
learning”)63–65.

(v) Structure of representations and the resulting data distribu-
tion should be suitable for regression. (Supplementary Notes
6 and 10) It is useful if feature vectors always have the same
length66,67. Representations often have a Hilbert space
structure, featuring an inner product, completeness, projec-
tions, and other advantages. Besides the formal space
defined by the representation, the structure of the subspace
spanned by the data is critical57,68. This requirement is
currently less well understood than (i)–(iv) and evaluated
mostly empirically (see section “Empirical comparison”).

(vi) Generality, in the sense of being able to encode any
atomistic system. While current representations handle
finite and periodic systems, less work was done on charged
systems, excited states, continuous spin systems, isotopes,
and systems subjected to external fields.

Simplicity, both conceptually and in terms of implementation, is,
in our opinion, a desirable quality of representations, albeit hard to
quantify.
The above requirements preclude direct use of Cartesian

coordinates, which violate requirement (i), and internal coordinates,
which satisfy (i.b)–(i.d) but are still system-specific, violating (v) and
possibly (i.a) if not defined uniquely. Descriptors and fingerprints from
cheminformatics18 and materials informatics violate (ii) and (iii.a).

Table 3. Types of representations.

Category Representation

Local ACE, BS, DECAF, FCHL, GM, MILAD, MTP, NICE, OMF, SF,
SOAP, WST

Global (finite) BoB, CM, HDAD, IDMBR, MBTR, MOB, OMF, WST

(periodic) MBTR

We distinguish between local (atoms in their environment) and global
(holistic, whole system) representations, as well as between representa-
tions for finite (molecules, clusters) and periodic systems (bulk crystals,
surfaces). Local representations have finite support, and thus do not need
to distinguish between finite and periodic systems. See Glossary (Table 1)
for abbreviations.

Table 4. Overview of representations.

References

Year Repr. Orig. Dev. Avail.

2007 SF 8 66,77–80 84,154

2010 BS 9 82,155,156 157

2012 CM 4 45,55,64,86,87 84,158

2013 SOAP 44 6,9,15,58,83,85,108,155,156,159 84,160

2013 OMF 62 103,104 –

2015 BoB 88 89 161

2015 WST 94 95–100 162

2016 MTP 74 127,163–165 166

2017 MBTR 73 111 84,158

2017 HDAD 91 – –

2018 DECAF 106 – 167

2018 FCHL 92 93 161

2018 IDMBR 90 – 168

2018 MOB 63 105,169,170 –

2019 ACE 101 53,102 171,172

2020 NICE 71 – 173

2020 GM 75 – –

2021 MILAD 174 – 175

For each representation (Repr.), year of publication (Year), original
reference (Orig.), references for further methodological development
(Dev.), and availability of implementations (Avail.) are shown. See Glossary
(Table 1) for abbreviations.
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Simple representations such as the Coulomb matrix (section
“Other representations”) either suffer from coarse-graining, violat-
ing (ii), or from discontinuities, violating (iii.a). In practice,
representations do not satisfy all requirements exactly (section
“Analysis”) but can achieve high predictive accuracy regardless; for
example, for some datasets, modeling a fraction of higher-order
terms can be sufficiently unique already69. The optimal interaction
orders to utilize in a representation also depend on the type and
amount of data available42.

A UNIFIED FRAMEWORK
Based on recent work6,70–72 we describe concepts and notation
towards a unified treatment of representations in order to
highlight their common foundation. For this, we successively
build up Hilbert spaces of atoms, k-atom tuples, local environ-
ments, and global structures, using group averaging to ensure
physical invariants and tensor products to retain desired informa-
tion and construct invariant features.

Representing atoms, environments, and systems
Information about a single atom, such as position and proton
number, is represented as an abstract ket αj i in a Hilbert spaceHα.
Relations between k atoms, where their order can matter, are
encoded as k-body functions gk : H ´ k

α ! Hg . (Supplementary
Note 11) These functions can be purely geometric, such as
distances or angles, but could also be of (al)chemical or mixed
nature. Tuples of atoms and associated many-body properties are
thus elementary tensors of a space H � H�k

α �Hg ,

Aα1:::αkj i � α1j i � :::� αkj i � gkð α1j i; :::; αkj iÞ: (1)

A local environment of an atom αj i is represented via the relations
to its k−1 neighbors by keeping αj i fixed:
Aαj i �

X
α1;¼ ;αk�1

Aα;α1;¼ ;αk�1

�� �
: (2)

Weighting functions can reduce the influence of atoms far from
αj i; we include these in gk. An atomistic system as a whole is
represented by summing over the local environments of all its
atoms:

Aj i ¼
X
αi

Aαij i ¼
X

α1;¼ ;αk

Aα1;¼ ;αk

�� �
: (3)

For periodic systems, this sum diverges, which requires either
exploiting periodicity, for example, by working in reciprocal space,
or employing strong weighting functions and keeping one index
constrained to the unit cell73.

Symmetries, tensor products, and projections
Representations incorporate symmetry constraints (section
“Requirements”) by using invariant many-body functions gk, such
as distances or angles, or through explicit symmetrization via
group averaging70. Explicit symmetrization transforms a tensor Tj i
by integrating over a symmetry group S with right-invariant Haar
measure dS,

Tj iS �
Z
S
S Tj idS; (4)

where symmetry transformations S 2 S act separately on each
subspace of H or parts thereof. For example, for rotational
invariance, only the atomic positions in Hα change. Rotationally
invariant features can be derived from tensor contractions74, as
any full contraction of contravariant with covariant tensors yields
rotationally invariant scalars75.
Sometimes group averaging can integrate out desired informa-

tion encoded in Tj i. To counter this, one can perform tensor

products of Tj i with itself, effectively replacing H by H�ν .
Together, this results in a generalized transform

T νj iS �
Z
S
ðS Tj iÞ�νdS: (5)

To retain only part of the information in A, one can project onto
orthogonal elements f hlj igml¼1 of H via an associated projection
operator P ¼ P

l hlj i hlh j. Inner products and induced distances
between representations are then given by

AjPjA0� �
and dPð Aj i; A0�� �Þ ¼ jjP Aj i � P A0�� �jjH: (6)

SELECTED REPRESENTATIONS
We discuss three representations that fulfill the requirements in
section “Requirements” and for which an implementation not tied
to a specific regression algorithm and supporting finite and
periodic systems was openly available. These representations are
empirically compared in section “Empirical comparison”.

Symmetry functions
Symmetry functions8,66 (SFs) describe k-body relations between a
central atom and the atoms in a local environment around it.
(Supplementary Notes 11 and 12) They are typically based on
distances (radial SFs, k= 2) and angles (angular SFs, k= 3). Each
SF encodes a local feature of an atomic environment, for
example, the number of H atoms at a given distance from a
central C atom.
For each SF and k-tuple of chemical elements, contributions are

summed. Sufficient resolution is achieved by varying the HPs of an
SF. For continuity (and differentiability), a cut-off function ensures
that SFs decay to zero at the cut-off radius. Two examples of SFs
from ref. 66 (see Table 4 and Supplementary Note 22 for further
references and SFs) are

G2
i ¼

P
j
exp �ηðdij � μÞ2

� �
f cðdijÞ

G4
i ¼ 21�ζ

P
j;k≠i

ð1þ λ cos θijkÞζ �

exp �ηðd2ij þ d2ik þ d2jkÞ
� �

f cðdijÞ f cðdikÞ f cðdjkÞ

(7)

where η, μ, ζ, λ are numerical HPs controlling radial broadening,
shift, angular resolution, and angular direction, respectively, dij is a
distance, θijk is the angle between atoms i, j, k, and fc is a cut-off
function. Figure 2 illustrates the radial SFs in Eq. (7). The choice of
which SFs to use is a structural HP. Variants of SFs include partial
radial distribution functions76, SFs with improved angular resolu-
tion77 and reparametrizations for improved scaling with the
number of chemical species78–80.
In terms of the unified notation, SFs use invariant functions gk

based on distances and angles, multiplied by a cut-off function, to
describe local environments Aαj i. Projections P onto tuples of
atomic numbers Z then separate contributions from different
combinations of chemical elements. For instance, for G2

i in Eq. (7),
the representation of atom i is

Ai; ðμ; ηÞj i ¼
X
j

Zij i � Zj

�� �� �
G2ðdij; μ; ηÞ: (8)

with G2ðdij; μ; ηÞ ¼ exp �ηðdij � μÞ2
� �

f cðdijÞ.

Many-body tensor representation
The global many-body tensor representation73 (MBTR) consists of
broadened distributions of k-body terms, arranged by element
combination. For each k-body function and k-tuple of elements, all
corresponding terms (for example, all distances between C and H
atoms) are broadened and summed up (Fig. 3). The resulting
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distributions describe the geometric features of an atomistic
system:

f kðx; z1; ¼ ; zkÞ ¼
X

i1;¼ ;ik

wk Nðxjgk ; σÞ
Yk
j¼1

δzj ;Zij ; (9)

where wk is a weighting function that reduces the influence of
tuples with atoms far from each other, and gk is a k-body function;
both wk and gk depend on atoms i1,…, ik. Nðxjμ; σÞ denotes a
normal distribution with mean μ and variance σ2, evaluated at x.
The product of Kronecker δ-functions restricts to the given
element combination z1,…, zk.
Periodic systems can be treated by using strong weighting

functions and constraining one index to the unit cell. In practice,
Eq. (9) can be discretized. Structural HPs include the choice of wk

and gk; numerical HPs include variance σ of normal distributions.
Requiring one atom in each tuple to be the central atom results in
a local variant81.
In terms of the unified notation, MBTR uses distribution-valued

functions gk, including weighting, with distributions centered on
k-body terms such as (inverse) distances or angles. The outer-
product structure of Aj i corresponds to the product of δ-functions
in Eq. (9), which selects for specific k-tuples of chemical elements.
For k= 2, for example, the geometry and weighting functions

depend on pairwise distances dij:

A; xj i ¼
X
i

Ai; xj i

Ai; xj i /
X
j

Zij i � Zj

�� �� �
G2
i g2 dij

� �
; x;

1
2
σ�2

	 

:

(10)

Smooth overlap of atomic positions
Smooth overlap of atomic positions44 (SOAP) representations
expand a central atoms’ local neighborhood density, a scalar
function of position r, approximated by Gaussian functions
located at atom positions, in orthogonal radial and spherical
harmonics basis functions (Fig. 4):

ρðrÞ ¼
X
n;l;m

cnlm gnðrÞ YlmðrÞ; (11)

where cnlm are expansion coefficients, gn are radial, and Ylm are
(angular) spherical harmonics basis functions. From the coeffi-
cients, rotationally invariant quantities can be constructed, such as
the power spectrum

pnn0ℓ ¼
X
m

cnℓmc
�
n0ℓm (12)

Fig. 3 Many-body tensor representation. Shown are broadened distances (no weighting) arranged by element combination.

Fig. 2 Symmetry functions. Shown are radial functions G2
i ðμ; ηÞ (Eq. (7)) for increasing values of μ. The local environment of a central atom is

described by summing contributions from neighboring atoms separately by element.
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which is equivalent to a radial and angular distribution function15,
and therefore captures up to three-body interactions. Numerical
HPs are the maximal number of radial and angular basis functions,
the broadening width, and the cut-off radius.
An alternative to the power spectrum is the bispectrum9 (BS), a

set of invariants that couples multiple angular momentum and
radial channels. The Spectral Neighbor Analysis Potential (SNAP)
includes quadratic terms in the BS components82. Extensions of
the SOAP framework include recursion relations for faster
evaluation83 and alternative radial basis functions gn, such as
third- and higher-order polynomials83, Gaussian functions84, and
spherical Bessel functions of the first kind 58,85.
In terms of the unified notation, SOAP uses vector-valued gk to

compute the basis set coefficients in Eq. (11). Analytic group-
averaging (symmetry integration) then results in invariant features
such as the power spectrum (ν= 2, Eq. (5)) or bispectrum (ν= 3).
The SOAP (ν= 2) representation is therefore

Ai; nn
0lj i ¼

X
j

Zij i � Zj

�� �� �
pnn0 l : (13)

OTHER REPRESENTATIONS
Many other representations were proposed.
The Coulomb matrix4 (CM) globally describes a system via

inverse distances between atoms but does not contain higher-
order terms. It is fast to compute, easy to implement, and in the
commonly used sorted version (see footnote reference 25 in ref. 4)
allows reconstruction of an atomistic system via a least-squares
problem. However, its direct use of atomic numbers to encode
elements is problematic, and it suffers either from discontinuities
in the sorted version or from information loss in the diagonalized
version as its eigenspectrum is not unique55,86. A local variant
exists87.
The bag-of-bonds88 (BoB) representation uses the same inverse-

distance terms as the CM but arranges them by element pair
instead of by atom pair. The “BA-representation”89 extends this to
higher-order interactions by using bags of dressed atoms,
distances, angles, and torsions. The inverse-distance many-body
representation90 (IDMBR) employs higher powers of inverse
distances and separation by element combinations.
Histograms of distances, angles, and dihedral angles91 (HDAD)

are histograms of geometric features organized by element
combination. This global representation is similar to MBTR but
typically uses fewer bins, without broadening or explicit
weighting.

The Faber-Christensen-Huang-von Lilienfeld representation92,93

(FCHL) describes atomic environments with normal distributions
over row and column in the periodic table (k= 1), interatomic
distances (k= 2), and angles (k= 3), scaled by power laws. In the
FCHL18 variant92, the full continuous distributions are used,
requiring an integral kernel for regression. Among other
optimizations, FCHL1993 discretizes these distributions, similar to
the approach taken by SFs, and can be used with standard vector
kernels.
Wavelet scattering transforms94–100 (WST) use a convolutional

wavelet frame representation to describe variations of (local)
atomic density at different scales and orientations. Integrating
non-linear functions of the wavelet coefficients yields invariant
features, where second- and higher-order features couple two or
more length scales. Variations use different wavelets (Morlet94,95,
solid harmonic, or atomic orbital96–98,100) and radial basis
functions (exponential96, Laguerre polynomials97,100).
Moment-tensor potentials74 (MTP) describe local atomic envir-

onments using a spanning set of efficiently computable,
rotationally and permutationally invariant polynomials derived
from tensor contractions. Related representations include Gaus-
sian moments75 (GM), based on contractions of tensors from
(linear combinations of) Gaussian-type atomic orbitals; the N-body
iterative contraction of equivariants (NICE) framework71, which
uses recursion relations to compute higher-order terms efficiently;
atomic cluster expansion53,101,102 (ACE), which employs a basis of
isometry- and permutation-invariant polynomials from trigono-
metric functions and spherical harmonics; and, moment invariants
as (local) atomic descriptors (MILAD), which are non-redundant
invariants constructed from Zernike polynomials.
Overlap-matrix fingerprints62,103,104 (OMF) and related

approaches30,35 employ the sorted eigenvalues (and derived
quantities) of overlap matrices based on Gaussian-type orbitals as
representation. Eigenvalue crossings can cause derivative dis-
continuities, requiring post-processing104 to ensure continuity.
Using a molecular orbital basis (MOB63,105 and related
approaches36) adds the cost of computing the basis, for example,
localized molecular orbitals via a Hartree–Fock self-consistent field
calculation. Other matrices can be used, such as Fock, Coulomb,
and exchange matrices, or even the Hessian, for example, from a
computationally cheaper reference method. Density-encoded
canonically-aligned fingerprints106 (DECAF) represent the local
density in a canonical, invariant coordinate frame found by solving
an optimization problem related to kernel principal component
analysis.

Fig. 4 Smooth overlap of atomic positions. The local density around a central atom is modeled by atom-centered normal distributions and
expanded into radial and spherical harmonics basis functions.
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Tensor properties require covariance (equivariance). Proposed
solutions include local coordinates from eigendecompositions45,
which exhibit discontinuities when eigenvalues cross, related local
coordinate systems106, and internal vectors107 (IV), based on inner
products of summed neighbor vectors at different scales, as well
as covariant extensions of SOAP6,52 and ACE53.

ANALYSIS
We discuss relationships between specific representations, to
which degree they satisfy the requirements in section “Require-
ments”, trade-offs between local and global representations, and
relationships to other models and modeling techniques, including
systematic selection and generation of features.

Relationships between representations
Most representations in sections “Selected representations” and
“Other representations” are related through the concepts in
section “A unified framework”. We distinguish two primary
strategies to deal with invariances, the use of invariant k-body
functions (BoB, CM, FCHL, HDAD, IDMBR, MBTR, SF) and explicit
symmetrization (ACE, BS, GM, MILAD, MOB, MTP, NICE, OMF, SOAP,
WST). A similar distinction can be made for kernels40. Some
representations share specific connections:
Comparing Eqs. (8) and (10) reveals that for suitable choices of

hyperparameters, SFs can be identified with the local terms
of distance-based MBTR, as both can be seen as histograms of
geometric features, similar to HDAD. This suggests a local MBTR or
HDAD variant by restricting summation to atomic environments81,
and a global variant of SFs by summing over the whole system.
ACE, BS, GM, MILAD, MTP, NICE, and SOAP share the idea of

generating tensors that are then systematically contracted to
obtain rotationally invariant features. These tensors should form
an orthonormal basis, or at least a spanning set, for atomic
environments. Formally, expressing a local neighborhood density
in a suitable basis before generating derived features avoids
asymptotic scaling with the number of neighboring atoms101,
although HPs, and thus runtime, still depend on it. Within a
representation, recursive relationships can exist between many-
body terms of different orders71,83,102. References 53,101,102 discuss
technical details of the relationships between ACE and SFs, BS,
SNAP, SOAP, MTP.

Requirements
Some representations, in particular early ones such as the CM, do
not fulfill all requirements in section “Requirements”. Most
representations fulfill some requirements only in the limit, that
is, absent practical constraints such as truncation of infinite sums,
short cut-off radii, and restriction to low-order interaction terms.
The degree of fulfillment often depends on HPs, such as
truncation order, the length of a cut-off radius, or the highest
interaction order k used. Effects can be antagonistic; for example,
in Eq. (11), both (ii) uniqueness and (iv) computational effort
increase with n, l,m44. In addition, not all invariances of a property
might be known or require additional effort to model, for
example, symmetries51.
Mathematical proof or systematic empirical verification that a

representation satisfies a requirement or related property are
sometimes provided: The symmetrized invariant moment poly-
nomials of MTPs form a spanning set for all permutationally and
rotationally invariant polynomials74; basis sets can also be
constructed102. For SOAP, systematic reconstruction experiments
demonstrate the dependence of uniqueness on parametrization44.
While (ii) uniqueness guarantees that reconstruction of a system

up to invariances is possible in principle, accuracy and complexity
of this task vary with representation and parametrization. For
example, reconstruction is a simple least-squares problem for the

global CM as it comprises the whole distance matrix Dij= ∣∣ri−
rj∣∣2, whereas for local representations, (global) reconstruction is
more involved.
If a local representation comprises only up to 4-body terms then

there are degenerate environments that it cannot distinguish57,
but that can differ in property. Combining representations of
different environments in a system can break the degeneracy.
However, by distorting feature space (v) structure, these degen-
eracies degrade learning efficiency and limit achievable prediction
errors, even if the training set contains no degenerate systems57. It
is currently unknown whether degenerate environments exist for
representations with terms of order k > 4. The degree to which a
representation is unique can be numerically investigated through
the eigendecomposition of a sensitivity matrix based on a
representation’s derivatives with respect to atom coordinates104.

Global versus local representations
Local representations can be used to model global properties by
assuming that these decompose into atomic contributions. In
terms of prediction errors, this tends to work well for energies.
(Supplementary Note 7) Learning with atomic contributions adds
technical complexity to the regression model and is equivalent to
pairwise-sum kernels on whole systems, (Supplementary Note 8)
with favorable computational scaling for large systems (see
Supplementary Notes 9 and 27, and Table 5). Other approaches
to creating global kernels from local ones exist108.
Conversely, using global representations for local properties can

require modifying the representation to incorporate locality and
directionality of the property45,84. A general recipe for construct-
ing local representations from global ones is to require interac-
tions to include the central atom, starting from k= 2 81.

Relationships to other models and techniques
Two modeling aspects directly related to representations are
which subset of the features to use and the construction of
derived features. Both modulate feature space dimensionality and
(v) structure. Adding products of 2-body and 3-body terms as
features, for example, can improve performance69, as these
features relate to higher-order terms, (Supplementary Note 11)
but can also degrade performance if the features are unrelated to
the predicted property, or if there is insufficient data to infer the
relationship. Feature selection tailors a representation to a dataset
by selecting a small subset of features that still predict the target
property accurately enough. Optimal choices of features depend
on the data’s size and distribution.
In this work, we focus exclusively on representations. In kernel

regression, however, kernels can be defined directly between two
systems, without an explicit intermediate representation. For
example, n-body kernels between atomic environments can be

Table 5. Computational cost of calculating representations.

Time in ms Dataset

Representation qm9 ba10 nmd18

MBTR k= 2 0.76 ± 0.32 13 ± 5.1 340 ± 99

SF k= 2 1.4 ± 0.18 3.3 ± 1.4 8.2 ± 1.1

MBTR k= 2, 3 12 ± 6.9 290 ± 140 28k ± 4.4k

SF k= 2, 3 2.8 ± 0.85 27 ± 12 98 ± 89

SOAP 1.9 ± 0.54 9.1 ± 4.8 19 ± 8.6

Costs given in milliseconds of processor time. Shown are mean ± standard
deviation over all training set sizes of a dataset for the time to compute the
representation of a single molecule or unit cell. See Supplementary Note
27 for details.
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systematically constructed from a non-invariant Gaussian kernel
using Haar integration, or using invariant k-body functions
(Supplementary Note 11), yielding kernels of varying body-order
and degrees of freedom40,42. Similarly, while neural networks can
use representations as inputs, their architecture can also be
designed to learn implicit representations from the raw data (end-
to-end learning). In all cases, the requirements in section
“Requirements” apply.

EMPIRICAL COMPARISON
We benchmark prediction errors for all representations from
section “Selected representations” on three benchmark datasets.
Since our focus is exclusively on the representations, we control
for other factors, in particular for data distribution, regression
method, and HP optimization.

Datasets
The qm9 consensus benchmarking dataset109,110 comprises
133,885 organic molecules composed of H, C, N, O, F with up to
9 non-H atoms. (Supplementary Note 13) Ground state geometries
and properties are given at the DFT/B3LYP/6-31G(2df,p) level of
theory. We predict U0, the atomization energy at 0 K.
The ba10 dataset110,111 (Supplementary Note 14) contains the

ten binary alloys AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi,
FeV, and NbNi. For each alloy system, it comprises all structures
with up to 8 atoms for face-centered cubic (FCC), body-centered
cubic (BCC), and hexagonal close-packed (HCP) crystal types,
15,950 structures in total. Formation energies of unrelaxed
structures are given at the DFT/PBE level of theory.
The nmd18 challenge112 dataset113 (Supplementary Note 15)

contains 3000 ternary (Alx-Gay-Inz)2O3 oxides, x+ y+ z= 1, of
potential interest as transparent conducting oxides. Formation
and band-gap energies of relaxed structures are provided at the
DFT/PBE level of theory. The dataset contains both relaxed
(nmd18r, used here) and approximate (nmd18u) structures as
input. In the challenge, energies of relaxed structures were
predicted from approximate structures.
Together, these datasets cover finite and periodic systems,

organic and inorganic chemistry, and ground state as well as off-
equilibrium structures. See Supplementary Notes 13–15 for details.

Benchmarking method
We estimate prediction errors as a function of training set size
(learning curves, Supplementary Notes 16 and 17). To ensure that
subsets are representative, we control for the distribution of
elemental composition, size, and energy. (Supplementary Note 18)
This reduces the variance of performance estimates and ensures
the validity of the independent-and-identically-distributed data
assumption inherent in ML. All predictions are on data never seen
during training.
We use kernel ridge regression114 (KRR; predictions are

equivalent to those of Gaussian process regression115, GPR) with
a Gaussian kernel as an ML model. (Supplementary Note 19) KRR is
a widely-used non-parametric non-linear regression method.
There are two regression HPs, the length scale of the Gaussian
kernel and the amount of regularization. (Supplementary Note 21)
In this work, training is exclusively on energies; in particular,
derivatives are not used. All HPs, that is, regression HPs, numerical
HPs (e.g., a weight in a weighting function), and structural HPs
(e.g., which weighting function to use), are optimized with a
consistent and fully automatic scheme based on sequential
model-based optimization and tree-structured Parzen estima-
tors116,117. (Supplementary Note 20) This setup treats all repre-
sentations on equal footing. See Supplementary Notes 21–24 for
details on the optimized HPs.

Learning curves and compute times
Figure 5 presents learning curves for SF, MBTR, SOAP on datasets
qm9, ba10, nmd18r (see Supplementary Note 25 for tabulated
values). For each dataset, representation, and training set size, we
trained a KRR model and evaluated its predictions on a separate

Fig. 5 Learning curves for selected representations on datasets.
Datasets a qm9, b ba10, and c nmd18r. Shown is root mean squared
error (RMSE) of energy predictions on out-of-sample-data as a
function of training set size. Boxes, whiskers, bars, crosses show
interquartile range, total range, median, mean, respectively. Lines
are fits to theoretical asymptotic RMSE. (Supplementary Note16).
See Glossary (Table 1) for abbreviations.
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hold-out validation set of size 10k (qm9), 1k (ba10), and 0.6k
(nmd18r). This procedure was repeated 10 times to estimate the
variance of these experiments.
Boxes, whiskers, horizontal bars, and crosses show interquartile

ranges, minimum/maximum value, median, and mean, respectively,
of the root mean squared error (RMSE) of hold-out-set predictions
over repetitions. We show RMSE as it is the loss minimized by least-
squares regression such as KRR, and thus a natural choice. For other
loss functions, see Supplementary Note 26. From statistical learning
theory, RMSE decays as a negative power of training set size (a
reason why learning curves are preferably shown on log-log
plots)118–120. Lines show corresponding fits of mean RMSE,
weighted by the standard deviation for each training set size.
Figure 6 reveals dependencies between the time to compute

representations for a training set (horizontal axis) and RMSE
(vertical axis). When comparing observations in two dimensions,
here time t and error e, there is no unique ordering < , and we
resort to the usual notion of dominance: Let x; x0 2 Rd ; then x
dominates x0 if xi � x0i for all dimensions i and xi<x0i for some i. The
set of all non-dominated points is called the Pareto frontier, shown
by a line, with numbers indicating training set sizes. Table 5
presents compute times for representations (see Supplementary
Note 27 for kernel matrices).

Findings
Asymptotically, observed prediction errors for all representations
on all datasets relate as

SF-2; 3 � SF-2 ; MBTR-2; 3 ≼ MBTR-2 ;

SOAP � SF-2; 3 ; SOAP � MBTR-2; 3 ;

SF-2; 3 ≼ MBTR-2; 3 ; SF-2 � MBTR-2 ;

(14)

where A≺ B (A≼ B) indicates that A has lower (or equal) estimated
error than B asymptotically. Except for MBTR-2,3 ⋠ SF-2 on dataset
nmd18r,

SOAP � SF-2,3≼MBTR-2,3 � SF-2 � MBTR-2 : (15)

We conclude that, for energy predictions, accuracy improves with
modeled interaction order and for local representations over
global ones. The magnitude of, and between, these effects varies
across datasets.
Dependence of predictive accuracy on interaction order has

been observed by others82,84,90,92,121 and might be partially due to
a higher resolution of structural features57. The latter would only
show for sufficient training data, such as for dataset ba10 in Fig. 5.
We do not observe this for dataset qm9, possibly because angular
terms might be immediately relevant for characterizing organic
molecules’ carbon scaffolds90.
Better performance of local representations might be due to

higher resolution and better generalization (both from represent-
ing only a small part of the whole structure), and has also been
observed by others122,123. The impact of assuming additivity is
unclear but likely depends on the structure of the modeled
property. (Supplementary Note 7) Our comparison includes only a
single global representation (MBTR), warranting further study of
the locality aspect. For additional analysis details, see Supplemen-
tary Notes 28 and 29.
Computational costs tend to increase with predictive accuracy.

Representations should therefore be selected based on a target
accuracy, constrained by available computing resources.
Converged prediction errors are in reasonable agreement with

the literature (Supplementary Note 30) considering the lack of
standardized conditions such as sampling, regression method, HP
optimization, and reported performance statistics. In absolute
terms, prediction errors of models trained on 10k samples are
closer to the differences between DFT codes than the (systematic)
differences between the underlying DFT reference and experi-
mental measurements. (Supplementary Note 31).

CONCLUSIONS AND OUTLOOK
We review representations of atomistic systems, such as molecules
and crystalline materials, for machine learning of ab initio
quantum-mechanical simulations. For this, we distinguish between
local and global representations and between using invariant
k-body functions and explicit symmetrization to deal with
invariances. Despite their apparent diversity, many representations

Fig. 6 Compute times of selected representations for datasets.
Datasets a qm9, b ba10, and c nmd18r. Shown is root mean squared
error (RMSE) of energy predictions on out-of-sample-data as a
function of the time needed to compute all representations in a
training set. Lines indicate Pareto frontiers; inset numbers show
training set sizes. See Glossary (Table 1) for abbreviations.
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can be formulated in a single mathematical framework based on k-
atom terms, symmetrization, and tensor products. Empirically, we
observe that when controlling for other factors, including
distribution of training and validation data, regression method,
and HP optimization, both prediction errors and compute time of
SFs, MBTR and SOAP improve with interaction order, and for local
representations over global ones.
Our findings suggest the following guidance:

● If their prediction errors are sufficient for an application, we
recommend two-body versions of simple representations such
as SF and MBTR as they are fastest to compute.

● For large systems, local representations should be used.
● For strong noise or bias on input structures, as in dataset

nmd18u, performance differences between representations
vanish, (Supplementary Note 29) and computationally cheaper
features that do not satisfy the requirements in section
“Requirements” (descriptors) suffice.

We conclude by providing related current research directions,
grouped by topic.
Directly related to representations:

● Systematic development of representations via extending the
mathematical framework (section “A unified framework”) to
include more state-of-the-art representations. This would
enable deriving “missing” variants of representations (see
Table 3), such as a global SOAP108 and local MBTR81, on a
principled basis, as well as understanding and reformulating
existing representations in a joint framework, perhaps to the
extent of an efficient general implementation124.

● Representing more systems. Develop or extend representations
for atomistic systems currently not representable, or only to a
limited extent, such as charged atoms and systems28,53,79,125–129,
excited states130–134, spin systems, isotopes, and systems in an
applied external field135[,136.

● Alchemical learning. Further understand and develop alchemical
representations92,137,138 that incorporate similarity between
chemical species to improve sample efficiency. What are the
salient features of chemical elements that need to be considered,
also with respect to charges, excitations, spins, and isotopes?

● Analysis of representations to better understand structure and
data distribution in feature spaces and how they relate to physics
and chemistry concepts. Possible approaches include quantita-
tive measures of structure and distribution of datasets in these
spaces, dimensionality reduction methods, analysis of data-
driven representations from deep neural networks, and con-
struction, or proof of non-existence, of non-distinguishable
environments for representations employing terms of order
higher than four.

● Explicit complexity control. Different applications require different
trade-offs between computational cost and predictive accuracy.
This requires determination, and automatic adaptation as an HP,
of the capacity (complexity, dimensionality) and computational
cost of a representation to a dataset, for example, through
selection, combination139, or systematic construction of
features42,57.

Related to benchmarking of representations:

● Extended scope. We empirically compare one global and two
local representations on three datasets to predict energies
using KRR with a Gaussian kernel. For a more systematic
coverage, further representations and datasets, training with
forces60,61, and more properties should be included while
maintaining control over regression method, data distribution,
and HP optimization. Deep neural networks23,126,140,141 could
be included via representation learning. Comparison with
simple baseline models such as k-nearest neighbors142 would
be desirable.

● Improved optimization of HPs: The stochastic optimizer used in
this work required multiple restarts in practice to avoid sub-
optimal results, and reached its limits for large HP search
spaces. It would be desirable to reduce the influence and
computational cost of HP optimization. Possible means include
reducing the number of HPs in representations, employing
more systematic and thus more robust optimization methods,
and providing reliable heuristics for HP default values.

● Multi-objective optimization. We optimize HPs for predictive
accuracy on a single property. In practice, though, parame-
trizations of similar accuracy but lower computational cost
would be preferable, and more than one property can be of
interest. HPs should, therefore, be optimized for multiple
properties and criteria, including computational cost and
predictive uncertainties (see below). How to balance these is
part of the problem143.

● Predictive uncertainties. While prediction errors are frequently
analyzed, and reasonable guidelines exist, this is not the case
for predictive uncertainties. These are becoming increasingly
important as applications of ML mature, for example, for
human assessment and decisions, learning on the fly144, and
active learning. Beyond global analysis of uncertainty esti-
mates, local characterization (in input or feature space) of
prediction errors is relevant143,145.

Related through context:

● Long-range interactions. ML models appear to be well-suited
for short- and medium-ranged interactions, but problematic
for long-ranged interactions due to the increasing degrees of
freedom of larger systems and larger necessary cut-off radii of
atomic environments. Two approaches are to integrate ML
models with physical models for long-range interac-
tions125,128,146, and to adapt ML models to learn long-range
interactions directly147.

● Relationships between QM and ML. A deeper understanding of
the relationships between QM and kernel-based ML could
lead to insights and technical progress in both fields. As both
share concepts from linear algebra, such relationships could
be formal mathematical ones. For example, QM concepts such
as matrix product states can parameterize non-linear kernel
models148.

DATA AVAILABILITY
The data that support the findings of this study are publicly available. The benchmark
datasets qm9, ba10, nmd18 were obtained from qmml.org. The repository gitlab.
com/repbench/repbench-datasets contains the used data splits, the datasets in
cmlkit format, as well as the data underlying all plots and tables, including the
optimized models and the hyperparameter search spaces.

CODE AVAILABILITY
The code that was used to generate the results in this study is publicly available. It is
based on the the cmlkit python package, which can be found at github.com/
sirmarcel/cmlkit; a tutorial introduction to this package is part of the NOMAD
Analytics Toolkit149. The repository gitlab.com/repbench/repbench-project contains
all additional code specific to this project; an overview is available at marcel.science/
repbench.
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