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TransPolymer: a Transformer-based language model for
polymer property predictions
Changwen Xu 1,2, Yuyang Wang 2,3 and Amir Barati Farimani 1,2,3,4✉

Accurate and efficient prediction of polymer properties is of great significance in polymer design. Conventionally, expensive and
time-consuming experiments or simulations are required to evaluate polymer functions. Recently, Transformer models, equipped
with self-attention mechanisms, have exhibited superior performance in natural language processing. However, such methods have
not been investigated in polymer sciences. Herein, we report TransPolymer, a Transformer-based language model for polymer
property prediction. Our proposed polymer tokenizer with chemical awareness enables learning representations from polymer
sequences. Rigorous experiments on ten polymer property prediction benchmarks demonstrate the superior performance of
TransPolymer. Moreover, we show that TransPolymer benefits from pretraining on large unlabeled dataset via Masked Language
Modeling. Experimental results further manifest the important role of self-attention in modeling polymer sequences. We highlight
this model as a promising computational tool for promoting rational polymer design and understanding structure-property
relationships from a data science view.

npj Computational Materials            (2023) 9:64 ; https://doi.org/10.1038/s41524-023-01016-5

INTRODUCTION
The accurate and efficient property prediction is essential to the
design of polymers in various applications, including polymer
electrolytes1,2, organic optoelectronics3,4, energy storage5,6, and
many others7,8. Rational representations which map polymers to
continuous vector space are crucial to applying machine learning
tools in polymer property prediction. Fingerprints (FPs), which
have been proven to be effective in molecular machine learning
models, are introduced for polymer-related tasks9. Recently, deep
neural networks (DNNs) have revolutionized polymer property
prediction by directly learning expressive representations from
data to generate deep fingerprints, instead of relying on manually
engineered descriptors10. Rahman et al. used convolutional neural
networks (CNNs) for the prediction of mechanical properties of
polymer-carbon nanotube surfaces11, whereas CNNs suffered from
failure to consider molecular structure and interactions between
atoms. Graph neural networks (GNNs)12, which have outperformed
many other models on several molecules and polymer bench-
marks13–17, are capable of learning representations from graphs
and finding optimal fingerprints based on downstream tasks10. For
example, Park et al.18 trained graph convolutional neural networks
(GCNN) for predictions of thermal and mechanical properties of
polymers and discovered that the GCNN representations for
polymers resulted in comparable model performance to the
popular extended-connectivity circular fingerprint (ECFP)19,20

representation. Recently, Aldeghi et al. adapted a graph repre-
sentation of molecular ensembles along with a GNN architecture
to capture pivotal features and accomplish accurate predictions of
electron affinity and ionization potential of conjugated poly-
mers21. However, GNN-based models require explicitly known
structural and conformational information, which would be
computationally or experimentally expensive to obtain. Plus, the
degree of polymerization varies for each polymer, which makes it
even harder to accurately represent polymers as graphs. Using the

repeating unit only as graph is likely to result in missing structural
information. Therefore, the optimal method of graph representa-
tion for polymers is still obscure.
Meanwhile, language models, like recurrent neural networks

(RNNs) based models22–25, treat polymers as character sequences
for featurization. Chemistry sequences have the same structure as
a natural language like English, as suggested by Cadeddu et al., in
terms of the distribution of text fragments and molecular
fragments26. This elucidates the development of sequence models
similar to those in computational linguistics for extracting
information from chemical sequences and realizing the intuition
of understanding chemical texts just like understanding natural
languages. Multiple works have investigated the development of
deep language models for polymer science. Simine et al. managed
to predict spectra of conjugated polymers by long short-term
memory (LSTM) from coarse-grained representations of poly-
mers27. Webb et al. proposed coarse-grained polymer genomes as
sequences and applied LSTM to predict the properties of different
polymer classes28. Patel et al. further extended the coarse-grained
string featurization to copolymer systems and developed GNN,
CNN, as well as LSTM to model encoded copolymer sequences29.
Bhattacharya et al. leveraged RNNs with sequence embedding to
predict aggregate morphology of macromolecules30. Plus,
sequence models could represent molecules and polymers with
Simplified Molecular-Input Line-Entry system (SMILES)31 and
convert the strings to embeddings for vectorization. Some works,
like BigSMILES32, have also investigated the string-based encoding
of macromolecules. Goswami et al. created encodings from
polymer SMILES as input for the LSTM model for polymer glass
transition temperature prediction33. However, RNN-based models
are generally not competitive enough to encode chemical
knowledge from polymer sequences because they rely on
previous hidden states for dependencies between words and
tend to lose information when they reach deeper steps. In recent
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years, the exceptionally superior performance demonstrated by
Transformer34 on numerous natural language processing (NLP)
tasks has shed light on studying chemistry and materials science
by language models. Since proposed, Transformer and its variants
have soon brought about significant changes in NLP tasks over
the past few years. Transformer is featured with using attention
mechanism only so that it can capture relationships between
tokens in a sentence without relying on past hidden states. Many
Transformer-based models like BERT35, RoBERTa36, GPT37, ELMo38,
and XLM39 have emerged as effective pretraining methods by self-
supervised learning of representations from unlabeled texts,
leading to performance enhancement on various downstream
tasks. On this account, many works have already applied
Transformer on property predictions of small organic mole-
cules40–43. SMILES-BERT was proposed to pretrain the model of
BERT-like architecture through a masked SMILES recovery task and
then generalize into different molecular property prediction
tasks44. Similarly, ChemBERTa45, a RoBERTa-like model for mole-
cular property prediction, was also introduced, following the
pretrain-finetune pipeline. ChemBERTa demonstrated competitive
performance on multiple downstream tasks and scaled well with
the size of pretraining datasets. Transformer-based models could
even be used for processing reactions. Schwaller et al. mimicked
machine translation tasks and trained Transformer on reaction
sequences represented by SMILES for reaction prediction with
high accuracy46. Recently, Transformer has been further proven to
be effective as a structure-agnostic model in material science
tasks, for example, predicting MOF properties based on a text
string representation47. Despite the wide investigation of Trans-
former for molecules and materials, such models have not yet
been leveraged to learn representations of polymers. Compared
with small molecules, designing Transformer-based models for
polymers is more challenging because the standard SMILES
encoding fails to model the polymer structure and misses
fundamental factors influencing polymer properties like degree
of polymerization and temperature of measurement. Moreover,
the polymer sequences used as input should contain information
on not only the definition of monomers but also the arrangement
of monomers in polymers48. In addition, sequence models for
polymers are confronted with an inherent scarcity of handy, well-
labeled data, considering the hard work in the characterization
process in the laboratory. The situation becomes even worse
when some of the polymer data sources are not fully
accessible49,50.
Herein, we propose TransPolymer, a Transformer-based language

model for polymer property predictions. To the best of our
knowledge, it is the first work to introduce the Transformer-based
model to polymer sciences. Polymers are represented by sequences
based on SMILES of their repeating units as well as structural
descriptors and then tokenized by a chemically-aware tokenizer as
the input of TransPolymer, shown in Fig. 1a. Even though there is still
information which cannot be explicitly obtained from input
sequences, like bond angles or overall polymer chain configuration,
such information can still be learned implicitly by the model.
TransPolymer consists of a RoBERTa architecture and a multi-layer
perceptron (MLP) regressor head, for predictions of various polymer
properties. In the pretraining phase, TransPolymer is trained through
Masked Language Modeling (MLM) with approximately 5M aug-
mented unlabeled polymers from the PI1M database51. In MLM,
tokens in sequences are randomly masked and the objective is to
recover the original tokens based on the contexts. Afterward,
TransPolymer is finetuned and evaluated on ten datasets of polymers
concerning various properties, covering polymer electrolyte con-
ductivity, band gap, electron affinity, ionization energy, crystallization
tendency, dielectric constant, refractive index, and p-type polymer
OPV power conversion efficiency52–55. For each entry in the datasets,
the corresponding polymer sequence, containing polymer SMILES as
well as useful descriptors like temperature and special tokens are

tokenized as input of TransPolymer. The pretraining and finetuning
processes are illustrated in Fig. 1b and d. Data augmentation is also
implemented for better learning of features from polymer sequences.
TransPolymer achieves state-of-the-art (SOTA) results on all ten
benchmarks and surpasses other baseline models by large margins
in most cases. Ablation studies provide further evidence of what
contributes to the superior performance of TransPolymer by
investigating the roles of MLM pretraining on large unlabeled data,
finetuning both Transformer encoders and the regressor head, and
data augmentation. The evidence from visualization of attention
scores illustrates that TransPolymer can encode chemical information
about internal interactions of polymers and influential factors of
polymer properties. Such a method learns generalizable features that
can be transferred to property prediction of polymers, which is of
great significance in polymer design.

RESULTS
TransPolymer framework
Our TransPolymer framework consists of tokenization, Transformer
encoder, pretraining, and finetuning. Each polymer data is first
converted to a string of tokens through tokenization. Polymer
sequences are more challenging to design than molecule or
protein sequences as polymers contain complex hierarchical
structures and compositions. For instance, two polymers that
have the same repeating units can vary in terms of the degree of
polymerization. Therefore, we propose a chemical-aware polymer
tokenization method as shown in Fig. 1a. The repeating units of
polymers are embedded using SMILES and additional descriptors
(e.g., degree of polymerization, polydispersity, and chain con-
formation) are included to model the polymer system. Plus,
copolymers are modeled by combining the SMILES of each
constituting repeating unit along with the ratios and the
arrangements of those repeating units. Moreover, materials
consisting of mixtures of polymers are represented by concate-
nating the sequences for each component as well as the
descriptors for the materials. Besides, each token represents
either an element, the value of a polymer descriptor, or a special
separator. Therefore, the tokenization strategy is chemical-aware
and thus has an edge over the tokenizer trained for natural
languages which tokenizes based on single letters. More details
about the design of our chemical-aware tokenization strategy
could be found in the Methods section.
Transformer encoders are built upon stacked self-attention and

point-wise, fully connected layers34, shown in Fig. 1c. Unlike RNN
or CNN models, Transformer depends on the self-attention
mechanism that relates tokens at different positions in a sequence
to learn representations. Scaled dot-product attention across
tokens is applied which relies on the query, key, and value
matrices. More details about self-attention can be found in the
Methods section. In our case, the Transformer encoder is made up
of 6 hidden layers and each hidden layer contains 12 attention
heads. The hyperparameters of TransPolymer are chosen by
starting from the common setting of RoBERTa36 and then tuned
according to model performance.
To learn better representations from large unlabeled polymer

data, the Transformer encoder is pretrained via Masked Language
Modeling (MLM), a universal and effective pretraining method for
various NLP tasks56–58. As shown in Fig. 1d (left), 15% of tokens of
a sequence are randomly chosen for possible replacement, and
the pretraining objective is to predict the original tokens by
learning from the contexts. The pretrained model is then
finetuned for predicting polymer properties with labeled data.
Particularly, the final hidden vector of the special token ‘〈s〉’ at the
beginning of the sequence is fed into a regressor head which is
made up of one hidden layer with SiLU as the activation function
for prediction as illustrated in Fig. 1d (right).
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Experimental settings
PI1M, the benchmark of polymer informatics, is used for pretraining.
The benchmark, whose size is around 1M, was built by Ma et al. by
training a generative model on polymer data collected from the
PolyInfo database51,59. The generated sequences consist of monomer
SMILES and ‘*’ signs representing the polymerization points. The ~1M

database was demonstrated to cover similar chemical space as
PolyInfo but populate space where data in PolyInfo are sparse.
Therefore, the database can serve as an important benchmark for
multiple tasks in polymer informatics.
To finetune the pretrained TransPolymer, ten datasets are used

in our experiments which cover various properties of different

Fig. 1 Overview of TransPolymer. (a) Polymer tokenization. Illustrated by the example, the sequence which comprises components with
polymer SMILES and other descriptors is tokenized with chemical awareness. b The whole TransPolymer framework with a pretrain-finetune
pipeline. c Sketch of Transformer encoder and multi-head attention. d Illustration of the pretraining (left) and finetuning (right) phases of
TransPolymer. The model is pretrained with Masked Language Modeling to recover original tokens, while the feature vector corresponding to
the special token ‘〈s〉’ of the last hidden layer is used for prediction when finetuning. Within the TransPolymer block, lines of deeper color and
larger width stand for higher attention scores.
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polymer materials, and the distributions of polymer sequence
lengths vary from each other (shown in Supplementary Fig. 1).
Plus, data in all the datasets are of different types: sequences from
Egc, Egb, Eea, Ei, Xc, EPS, and Nc datasets are about polymers only
so that the inputs are just polymer SMILES; while PE-I, PE-II, and
OPV datasets describe polymer-based materials so that the
sequences contain additional descriptors. In particular, PE-I which
is about polymer electrolytes involves mixtures of multiple
components in polymer materials. Hence, these datasets provide
challenging and comprehensive benchmarks to evaluate the
performance of TransPolymer. A summary of the ten datasets for
downstream tasks is shown in Table 1.
We apply data augmentation to each dataset that we use by

removing canonicalization from SMILES and generating non-
canonical SMILES which correspond to the same structure as the
canonical ones. For PI1M database, each data entry is augmented
to five so that the augmented dataset with the size of ~5M is used
for pretraining. For downstream datasets, we limit the numbers of
augmented SMILES for large datasets with long SMILES for the
following reasons: long SMILES tend to generate more non-
canonical SMILES which might alter the original data distribution;
we are not able to use all the augmented data for finetuning given
the limited computation resources. We include the number of
data points after augmentation in Table 1 and summarize the
augmentation strategy for each downstream dataset in Supple-
mentary Table 1.

Polymer property prediction results
The performance of our pretrained TransPolymer model on ten
property prediction tasks is illustrated below. We use root mean
square error (RMSE) and R2 as metrics for evaluation. For each
benchmark, the baseline models and data splitting are adopted
from the original literature. Except for PE-I which is trained on
data from the year 2018 and evaluated on data from the year
2019, all other datasets are split by five-fold cross-validation.
When cross-validation is used, the metrics are calculated by
taking the average of those by each fold. We also train Random
Forest models using Extended Connectivity Fingerprint
(ECFP)19,20, one of the state-of-the-art fingerprint approaches,
to compare with TransPolymer. Besides, we develop long short-
term memory (LSTM), another widely used language model, as
well as unpretrained TransPolymer trained purely via super-
vised learning as baseline models in all the benchmarks.
TransPolymerunpretrained and TransPolymerpretrained denote
unpretrained and pretrained TransPolymer, respectively.
The results of TransPolymer and baselines on PE-I are illustrated

in Table 2. The original literature used gated GNN to generate
fingerprints for the prediction of polymer electrolyte conductivity
by Gaussian Process53. The fingerprints are also passed to random
forest and supporting vector machine (SVM) for comparison.

Another random forest is trained based on ECFP fingerprints. The
results of most baseline models indicate strong overfitting which
is attributed to the introduction of unconventional conductors
consisting of conjugated polybenzimidazole and ionic liquid. For
instance, Gaussian Process trained on GNN fingerprints achieves a
R2 of 0.90 on the training set but only 0.16 on the test set, and
Random Forest trained on GNN FP gets a negative test R2 even the
train R2 is 0.91. Random Forest trained on ECFP stands out among
all the baseline models, whereas its performance on test dataset is
still poor. However, TransPolymerpretrained not only achieves the
highest scores on the training set but also improves the
performance on the test set significantly, which is illustrated by
the R2 of 0.69 on the test set. Such information demonstrates that
TransPolymer is capable of learning the intrinsic relationship
between polymers and their properties and suffers less from
overfitting. Notably, TransPolymerunpretrained also achieves compe-
titive results and shows mild overfitting compared with other
baseline models. This indicates the effectiveness of the attention
mechanism of Transformer-based models. The scatter plots of
ground truth vs. predicted values for PE-I by TransPolymerpretrained
are illustrated in Fig. 2a and Supplementary Fig. 2a.
As is shown in Table 3, the results of TransPolymer and

baselines including Ridge, Random Forest, Gradient Boosting, and
Extra Trees which were trained on chemical descriptors generated
from polymers from PE-II in the original paper52 are listed, as well
as Random Forest trained on ECFP. Although Gradient Boosting
surpasses other models on training sets by obtaining nearly
perfect regression outcomes, its performance on test sets drops
significantly. In contrast, TransPolymerpretrained, which achieves the
lowest RMSE of 0.61 and highest R2 of 0.73 on the average of
cross-validation sets, exhibits better generalization. The scatter

Table 1. Summary of datasets for downstream tasks.

Dataset Property # Data # Augmented train data # Test data Data split

PE-I53 conductivity 9185 34803 146 train-test split by year

PE-II52 conductivity 271 8864 55 5-fold cross-validation

Egc54 bandgap (chain) 3380 5408 676 5-fold cross-validation

Egb54 bandgap (bulk) 561 6443 113 5-fold cross-validation

Eea54 electron affinity 368 3993 74 5-fold cross-validation

Ei54 ionization energy 370 4000 74 5-fold cross-validation

Xc54 crystallization tendency 432 8837 87 5-fold cross-validation

EPS54 dielectric constant 382 4188 77 5-fold cross-validation

Nc54 refractive index 382 4188 77 5-fold cross-validation

OPV55 power conversion efficiency 1203 4810 241 5-fold cross-validation

Table 2. Performance of TransPolymer and baseline models on PE-I.

Model Train RMSE
(S ⋅ cm−1*) (↓)

Test RMSE
(S ⋅ cm−1*) (↓)

Train
R2 (↑)

Test
R2 (↑)

Gaussian Process
(GNN FP)

0.55 0.97 0.90 0.16

Random Forest
(GNN FP)

0.50 2.23 0.91 −2.64

SVM (GNN FP) 1.34 2.12 0.04 −1.94

Random Forest (ECFP) 0.15 1.00 0.99 0.32

LSTM 1.03 1.36 0.67 −0.25

TransPolymerunpretrained 0.88 1.02 0.70 0.30

TransPolymerpretrained 0.20 0.67 0.98 0.69

*The units are in logarithm scale.
The bold values indicate the best results in terms of the metrics we use.
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Fig. 2 Ground truth vs. predicted values by TransPolymerpretrained. Scatter plots of ground truth vs. predicted values for downstream tasks:
a PE-I, b PE-II, c Egc, d Egb, e Eea, f Ei, g Xc, h EPS, i Nc, and j OPV. The dashed lines on diagonals stand for perfect regression.
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plots of ground truth vs. predicted values for PE-II by TransPoly-
merpretrained are illustrated in Fig. 2b and Supplementary Fig. 2b.
Table 4 summarizes the performance of TransPolymer and

baselines on Egc, Egb, Eea, Ei, Xc, EPS, and Nc datasets from
Kuenneth et al.54. In the original literature, both Gaussian process and
neural networks were trained on each dataset with polymer genome
(PG) fingerprints60 as input, some of which resulted in desirable
performance while some of which did not. Meanwhile, PG
fingerprints are demonstrated to surpass ECFP on the datasets used
by Kuenneth et al. For Egc, Egb, and Eea, despite the high scores by
other models, TransPolymerpretrained is still able to enhance the
performance, lowering RMSE and enhancing R2. In contrast, baseline
models perform poorly on Xc whose test R2 scores are less than 0.
However, TransPolymerpretrained significantly lowers test RMSE and
increases R2 to 0.50. Notably, The authors of the original paper used
multi-task learning to enhance model performance and achieved
higher scores than TransPolymerpretrained on some of the datasets,
like Egb, EPS, and Nc (the average test RMSE and R2 are 0.43 and 0.95

for Egb, 0.39 and 0.86 for EPS, and 0.07 and 0.91 for Nc, respectively).
Access to multiple properties of one polymer, however, may not be
available from time to time, which limits the application of multi-task
learning. In addition, the TransPolymerpretrained still outperforms
multi-task learning models on four out of the seven chosen datasets.
Hence the improvement by TransPolymer compared with single-task
baselines should still be highly valued. The scatter plots of ground
truth vs. predicted values for Egc, Egb, Eea, Ei, Xc, EPS, and Nc
datasets by TransPolymerpretrained are depicted in Fig. 2c–i and
Supplementary Fig. 2c–i, respectively.

Table 3. Performance of TransPolymer and baseline models on PE-II.

Model Train RMSE(S ⋅ cm−1*) (↓) Test RMSE (S ⋅ cm−1*) (↓) Train R2 (↑) Test R2 (↑)

Ridge (Chemical descriptors) 0.58 0.67 0.77 0.58

Random Forest (Chemical descriptors) 0.26 0.64 0.96 0.71

Gradient Boosting (Chemical descriptors) 0.00 0.66 0.99 0.68

Extra Trees (Chemical descriptors) 0.10 0.63 0.98 0.72

Random Forest (ECFP) 0.22 0.94 0.96 0.27

LSTM 1.16 1.18 0.05 0.00

TransPolymerunpretrained 0.18 0.80 0.97 0.54

TransPolymerpretrained 0.18 0.61 0.96 0.73

*The units are in logarithm scale.
The bold values indicate the best results in terms of the metrics we use.

Table 4. Performance of TransPolymer and baseline models on datasets from literature by Kuenneth et al.54.

Model Test RMSE (↓) Test R2 (↑)

Egc (eV) Egb (eV) Eea (eV) Ei (eV) Xc (%) EPS Nc Egc Egb Eea Ei Xc EPS Nc

Gaussian Process (PG) 0.48 0.55 0.32 0.42 24.42 0.53 0.10 0.90 0.91 0.90 0.77 <0 0.68 0.79

Neural Network (PG) 0.49 0.57 0.32 0.45 20.74 0.54 0.10 0.89 0.89 0.87 0.74 <0 0.71 0.78

Random Forest (ECFP) 0.81 0.88 0.56 0.58 25.61 0.75 0.14 0.65 0.66 0.70 0.57 −0.29 0.50 0.56

LSTM 0.58 1.94 1.04 0.94 23.67 1.11 0.23 0.86 0.00 0.06 0.10 0.00 −0.02 0.02

TransPolymerunpretrained 0.63 0.61 0.36 0.46 20.11 0.59 0.10 0.84 0.90 0.89 0.78 0.27 0.70 0.80

TransPolymerpretrained 0.44 0.52 0.32 0.39 16.57 0.52 0.10 0.92 0.93 0.91 0.84 0.50 0.76 0.82

The bold values indicate the best results in terms of the metrics we use.

Table 5. Performance of TransPolymer and baseline models on p-type
polymer OPV.

Model Train RMSE
(%) (↓)

Test RMSE
(%) (↓)

Train R2

(↑)
Test R2

(↑)

Random Forest (ECFP) 0.66 1.92 0.92 0.27

ANN (ECFP) 1.58 2.03 0.55 0.20

LSTM 2.35 2.34 −0.01 0.00

TransPolymerunpretrained 1.91 2.10 0.33 0.19

TransPolymerpretrained 1.19 1.92 0.74 0.32

The bold values indicate the best results in terms of the metrics we use.

Table 6. Improvement of performance of TransPolymerpretrained
compared with baselines and TransPolymerunpretrained in terms of
decrease of test RMSE (in percentage) and increase of test R2 (in
absolute value).

Dataset vs. best baselines vs. TransPolymerunpretrained

RMSE (↓) R2 (↑) RMSE (↓) R2 (↑)

PE-I −30.9% +0.37 −52.2% +0.39

PE-II −3.17% +0.01 −23.8% +0.19

Egc −8.33% +0.02 −30.2% +0.08

Egb −5.45% +0.02 14.8% +0.03

Eea 0.00% +0.01 −11.1% +0.02

Ei −7.14% +0.07 −15.2% +0.06

Xc −20.1% +0.50 −17.6% +0.23

EPS −1.89% +0.05 −11.9% +0.06

Nc 0.00% +0.03 0.00% +0.02

OPV 0.00% +0.05 −8.57% +0.13

Average −7.70% +0.11 −18.5% +0.12

C. Xu et al.

6

npj Computational Materials (2023)    64 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



TransPolymer and baselines are trained on p-type polymer OPV
dataset whose results are shown in Table 5. The original paper
trained random forest and artificial neural network (ANN) on the
dataset using ECFP55. TransPolymerpretrained, in comparison with
baselines, gives a slightly better performance as the average RMSE
is the same as that of random forest, and the average test R2 is
increased by 0.05. Although all the model performance is not
satisfying enough, possibly attributed to the noise in data,
TransPolymerpretrained still outperforms baselines. The scatter plots
of ground truth vs. predicted values for OPV by TransPolymerpre-
trained are depicted in Fig. 2j and Supplementary Fig. 2j.

Table 6 summarizes the improvement of TransPolymerpretrained
over the best baseline models as well as TransPolymerunpretrained
on each dataset. TransPolymerpretrained has outperformed all other
models on all ten datasets, further providing evidence for the
generalization of TransPolymer. TransPolymerpretrained exhibits an
average decrease of evaluation RMSE by 7.70% (in percentage)
and an increase of evaluation R2 by 0.11 (in absolute value)
compared with the best baseline models, and the two values
become 18.5% and 0.12, respectively, when it comes to
comparison with TransPolymerunpretrained. Therefore, the pre-
trained TransPolymer could hopefully be a universal pretrained
model for polymer property prediction tasks and applied to other
tasks by finetuning. Besides, TransPolymer equipped with MLM
pretraining technique shows significant advantages over other
models in dealing with complicated polymer systems. Specifically,
on PE-I benchmark, TransPolymerpretrained improves R2 by 0.37
comparing with the previous best baseline model and by 0.39
comparing with TransPolymerunpretrained. PE-I contains not only
polymer SMILES but also key descriptors of the materials like
temperature and component ratios within the materials. The data
in PE-I is noisy due to the existence of different types of
components in the polymer materials, for instance, copolymers,
anions, and ionic liquids. Also, models are trained on data from the
year 2018 and evaluated on data from the year 2019, which gives
a more challenging setting. Therefore it is reasonable to infer that
TransPolymer is better at learning features out of noisy data and
giving a robust performance. It is noticeable that LSTM becomes
the least competitive model in almost every downstream task,
such evidence demonstrates the significance of attention
mechanisms in understanding chemical knowledge from polymer
sequences.

Abaltion studies
The effects of pretraining could be further demonstrated by the
chemical space taken up by polymer SMILES from the pretraining
and downstream datasets visualized by t-SNE61, shown in Fig. 3.
Each polymer SMILES is converted to TransPolymer embedding
with the size of sequence length × embedding size. Max pooling is
implemented to convert the embedding matrices to vectors so
that the strong characteristics in embeddings could be preserved
in the input of t-SNE. We use openTSNE library62 to create 2D
embeddings via pretraining data and map downstream data to
the same 2D space. As illustrated in Fig. 3a, almost every
downstream data point lies in the space covered by the original
~1M pretraining data points, indicating the effectiveness of
pretraining in better representation learning of TransPolymer.
Data points from datasets like Xc which exhibit minor evidence of
clustering in the chemical space cover a wide range of polymers,
explaining the phenomenon that other models struggle on Xc
while pretrained TransPolymer learns reasonable representations.
Meanwhile, for datasets that cluster in the chemical space, other
models can obtain reasonable results whereas TransPolymer
achieves better results. Additionally, it should be pointed out that
the numbers of unique polymer SMILES in PE-I and PE-II are much
smaller than the sizes of the datasets as many instances share the
same polymer SMILES while differing in descriptors like molecular

weight and temperature, hence the visualization of polymer
SMILES cannot fully reflect the chemical space taken up by the
polymers from these datasets.
Besides, we have also investigated how the size of the

pretraining dataset affects the downstream performance. We
randomly pick up 5K, 50K, 500K, and 1M (original size) data points
from the initial pretraining dataset without augmentation, and
pretrain TransPolymer with them and compare the results with
those by TransPolymer trained with 5M augmented data. The
results are summarized in Supplementary Table 5. Plus, Fig. 4
presents the bar plot of R2 for each experiment we have
performed. Error bars are included in the figure if cross-
validation is implemented in experiments. As shown in the table
and the figure, the results demonstrate a clear trend of enhanced
downstream performance (decreasing RMSE and increasing R2)
with increasing pretraining size. In particular, the model perfor-
mance on some datasets, for example, PE-I, Nc, and OPV, are even
worse than training TransPolymer from scratch (the results by
TransPolymerunpretrained in Tables 2–5). A possible explanation is
that the small amount of pretraining size results in the limited
data space covered by pretraining data, thus making some
downstream data points out of the distribution of pretraining
data. Figure 3b, c visualize the data space by fitting on 50K and 5K
pretraining data, respectively, in which a lot of space taken up
downstream data points is not covered by pretraining data.
Therefore, the results emphasize the effects of pretraining with a
large number of unlabeled sequences.
The results from TransPolymerpretrained so far are all derived by

pretraining first and then finetuning the whole model on the
downstream datasets. Besides, we also consider another setting
where in downstream tasks only the regressor head is finetuned
while the pretrained Transformer encoder is frozen. The compar-
ison of the performance of TransPolymerpretrained between
finetuning the regressor head only and finetuning the whole
model is presented in Table 7. Standard deviation is included in
the results if cross-validation is applied for downstream tasks.
Reasonable results could be obtained by freezing the pretrained
encoders and training the regressor head only. For instance, the
model performance on Xc dataset already surpasses the baseline
models, and the model performance on Ei, Nc, and OPV datasets is
slightly worse than the corresponding best baselines. However,
the performance on all the downstream tasks increases signifi-
cantly if both the Transformer encoders and the regressor head
are finetuned, which indicates that the regressor head only is not
enough to learn task-specific information. In fact, the attention
mechanism plays a key role in learning not only generalizable but
also task-specific information. Even though the pretrained
TransPolymer is transferable to various downstream tasks and
more efficient, it is necessary to finetune the Transformer
encoders with task-related data points for better performance.
Data augmentation is implemented not only in pretraining but

also in finetuning. The comparison between the model perfor-
mance on downstream tasks with pretraining on the original ~1M
dataset and the augmented ~5M dataset (shown in Supplemen-
tary Table 5) has already demonstrated the significance of data
augmentation in model performance enhancement. In this part,
we use the model pretrained on the ~5M augmented pretraining
dataset but finetune TransPolymer without augmenting the
downstream datasets to investigate to what extent the TransPo-
lymer model can improve the best baseline models for down-
stream tasks. The model performance enhancement with or
without data augmentation compared with best baseline models
is summarized in Table 8. For most downstream tasks, TransPo-
lymerpretrained can improve model performance without data
augmentation, while such improvement would become more
significant if data augmentation is applied. For PE-II dataset,
however, TransPolymerpretrained is not comparable to the best
baseline model without data augmentation since the original
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dataset contains only 271 data points in total. Because of the data-
greedy characteristics of Transformer, data augmentation could be
a crucial factor in finetuning, especially when data are scarce
(which is very common in chemical and materials science
regimes). Therefore, data augmentation can help generalize the
model to sequences unseen in training data.

Self-attention visualization
Attention scores, serving as an indicator of how closely two
tokens align with each other, could be used for understanding
how much chemical knowledge TransPolymer learns from
pretraining and how each token contributes to the prediction
results. Take poly(ethylene oxide) (*CCO*), which is one of the
most prevailing polymer electrolytes, as an example. The
attention scores between each token in the first and last
hidden layer are shown in Fig. 5a and b, respectively. The
attention score matrices of 12 attention heads generated from
the first hidden layer indicate strong relationships between
tokens in the neighborhood, which could be inferred from the

emergence of high attention scores around the diagonals of
matrices. This trend makes sense because the nearby tokens in
polymer SMILES usually represent atoms bonded to each other
in the polymer, and atoms are most significantly affected by
their local environments. Therefore,i the first hidden layer,
which is the closest layer to inputs, could capture such chemical
information. In contrast, the attention scores from the last
hidden layer tend to be more uniform, thus lacking an
interpretable pattern. Such phenomenon has also been
observed by Abnar et al. who discovered that the embeddings
of tokens would become contextualized for deeper hidden
layers and might carry similar information63.
When finetuning TransPolymer, the vector of the special token

‘〈s〉’ from the last hidden state is used for prediction. Hence, to
check the impacts of tokens on prediction results, the attention
scores between ‘〈s〉’ and other tokens from all 6 hidden layers in
each attention head are illustrated with the example of the PEC-
PEO blend electrolyte coming from PE-II whose polymer SMILES is
‘*COC(=O)OC*.*CCO*’. In addition to polymer SMILES, the

Fig. 3 t-SNE visualization of pretraining and downstream data. The embeddings are obtained by first fitting on the (a) 1M (original), (b) 50K,
and (c) 5K pretraining data and then transforming downstream data to the corresponding data space.
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sequence also includes ‘F[B-](F)(F)F’, ‘0.17’, ‘95.2’, ‘37.0’, ‘−23’, and
‘S_1’ which stand for the anion in the electrolyte, the ratio
between lithium ions and functional groups in the polymer,
comonomer percentage, molecular weight (kDa), glass transition
temperature (Tg), and linear chain structure, respectively. As is
illustrated in Fig. 6, the ‘〈s〉’ token tends to focus on certain tokens,
like ‘*’, ‘$’, and ‘−23’, which are marked in red in the example
sequence in Fig. 6. Since Tg usually plays an important role in
determining the conductivity of polymers64, the finetuned
Transpolyemr could understand the influential parts on properties
in a polymer sequence. However, it is also widely argued that the
attention weights cannot fully depict the relationship between
tokens and prediction results because a high attention score does
not necessarily guarantee that the pair of tokens is important to
the prediction results given that attention scores do not consider
Value matrices65. More related work is needed to fully address the
attention interpretation problem.

DISCUSSION
In summary, we have proposed TransPolymer, a Transformer-
based model with MLM pretraining, for accurate and efficient
polymer property prediction. By rationally designing a polymer
tokenization strategy, we can map a polymer instance to a
sequence of tokens. Data augmentation is implemented to
enlarge the available data for representation learning. TransPoly-
mer is first pretrained on approximately 5M unlabeled polymer
sequences by MLM, then finetuned on different downstream
datasets, outperforming all the baselines and unpretrained
TransPolymer. The superior model performance could be further
explained by the impact of pretraining with large unlabeled data,
finetuning Transformer encoders, and data augmentation for data
space enlargement. The attention scores from hidden layers in
TransPolymer provide evidence of the efficacy of learning
representations with chemical awareness and suggest the
influential tokens on final prediction results.
Given the desirable model performance and outstanding

generalization ability out of a small number of labeled down-
stream data, we anticipate that TransPolymer would serve as a
potential solution to predicting newly designed polymer proper-
ties and guiding polymer design. For example, the pretrained
TransPolymer could be applied in the active-learning-guided
polymer discovery framework66,67, in which TransPolymer serves
to virtually screen the polymer space, recommend the potential
candidates with desirable properties based on model predictions,
and get updated by learning on data from experimental
evaluation. In addition, the outstanding performance of TransPo-
lymer on copolymer datasets compared with existing baseline
models has shed light on the exploration of copolymers. In a
nutshell, even though the main focus of this paper is placed on
regression, TransPolymer can pave the way for several promising
(co)polymer discovery frameworks.

METHODS
Polymer tokenization
Unlike small molecules which are easily represented by SMILES,
polymers are more complex to be converted to sequences since
SMILES fails to incorporate pivotal information like connectivity
between repeating units and degree of polymerization. As a result,
we need to design the polymer sequences to take account of that
information. To design the polymer sequences, each repeating
unit of the polymer is first recognized and converted to SMILES,

Fig. 4 Model performance with varying pretraining data sizes.
The R2 for each downstream task with different pretraining data
sizes are presented in the bar plot. Error bars are included if cross-
validation is implemented.

Table 7. Comparison of performance of TransPolymerpretrained
between finetuning the regressor head only and finetuning the whole
model in terms of test RMSE and R2.

Dataset Finetuning the
regressor head

Finetuning the
whole model

RMSE R2 RMSE R2

PE-I 1.14 0.12 0.67 0.69

PE-II 0.91 ± 0.12 0.40 ± 0.10 0.61 ± 0.07 0.73 ± 0.04

Egc 0.69 ± 0.03 0.81 ± 0.02 0.44 ± 0.01 0.92 ± 0.00

Egb 0.83 ± 0.05 0.81 ± 0.02 0.52 ± 0.05 0.93 ± 0.01

Eea 0.52 ± 0.04 0.76 ± 0.04 0.32 ± 0.02 0.91 ± 0.03

Ei 0.51 ± 0.05 0.73 ± 0.05 0.39 ± 0.07 0.84 ± 0.06

Xc 19.18 ± 2.15 0.34 ± 0.10 16.57 ± 0.68 0.50 ± 0.06

EPS 0.72 ± 0.09 0.58 ± 0.07 0.52 ± 0.07 0.76 ± 0.11

Nc 0.13 ± 0.02 0.70 ± 0.06 0.10 ± 0.02 0.82 ± 0.07

OPV 2.04 ± 0.06 0.24 ± 0.03 1.92 ± 0.06 0.32 ± 0.05

Table 8. Improvement of performance of TransPolymerpretrained
without and with data augmentation in finetuning compared with
best baselines in terms of decrease of test RMSE (in percentage) and
increase of test R2 (in absolute value).

Dataset No Augmentation Augmentation

RMSE (↓) R2 (↑) RMSE (↓) R2 (↑)

PE-I −15.5% +0.22 −30.9% +0.37

PE-II +22.2% −0.15 −3.17% +0.01

Egc −4.17% +0.01 −8.33% +0.02

Egb +9.09% −0.02 −5.45% +0.02

Eea +9.38% 0.00 0.00% +0.01

Ei 0.00% +0.03 −7.14% +0.07

Xc −14.5% +0.43 −20.1% +0.50

EPS +7.55% 0.00 −1.89% +0.05

Nc 0.00% +0.02 0.00% +0.03

OPV +0.52% +0.03 0.00% +0.05

Average +1.46% +0.06 −7.70% +0.11
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Fig. 5 Visualization of attention scores from pretrained TransPolymer. a Attention scores in the first hidden layer. b Attention scores in the
last hidden layer.
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then ‘*’ signs are added at the places which represent the ends of
the repeating unit to indicate the connectivity between repeating
units. Such a strategy to indicate repeating units has been widely
used in string-based polymer representations68,69. For the cases of
copolymers, ‘.’ is used to separate different constituents, and ‘^’ is
used to indicate branches in copolymers. Other information like
the degree of polymerization and molecular weight, if accessible,
will be put after the polymer SMILES separated by special tokens.
Take the example of the sequence given in Fig. 1a, the sequence
describes a polymer electrolyte system including two components
separated by the special token ‘∣’. Descriptors like the ratio
between repeating units in the copolymer, component type, and
glass transition temperature (Tg for short) are added for each
component separated by ‘$’, and the ratio between components
and temperature are put at the end of the sequence. Adding these
descriptors can improve the performance of property predictions
as suggested by Patel et al.29. Unique ‘NAN’ tokens are assigned
for missing values of each descriptor in the dataset. For example,
‘NAN_Tg’ indicates the missing value of glass transition tempera-
ture, and ‘NAN_MW’ indicates the missing molecular weight at
that place. These unique NAN tokens are added during finetuning
to include available chemical descriptors in the datasets. There-
fore, different datasets can contain different NAN tokens. Notably,
other descriptors like molecular weight and degree of polymer-
ization are omitted in this example because their values for each
component are missing. However, for practical usage, these values
should also be included with unique ‘NAN’ characters. Besides,
considering the varying constituents in copolymers as well as
components in composites, the ‘NAN’ tokens for ratios are padded
to the maximum possible numbers.

When tokenizing the polymer sequences, the regular expression
in the tokenizer adapted from the RoBERTa tokenizer is
transformed to search for all the possible elements in polymers
as well as the vocabulary for descriptors and special tokens.
Consequently, the polymer tokenizer can correctly slice polymers
into constituting atoms. For example, ‘Si’ which represents a
silicon atom in polymer sequences would be recognized as a
single token by our polymer tokenizer whereas ‘S’ and ‘i’ are likely
to be separated into different tokens when using the RoBERTa
tokenizer. Values for descriptors and special tokens are converted
to single tokens as well, where all the non-text values, e.g.,
temperature, are discretized and treated as one token by the
tokenizer.

Data augmentation
To enlarge the available polymer data for better representation
learning, data augmentation is applied to the polymer SMILES
within polymer sequences from each dataset we use. The
augmentation technique is borrowed from Lambard et al.70. First,
canonicalization is removed from SMILES representations; then,
atoms in SMILES are renumbered by rotation of their indices;
finally, for each renumbering case, grammatically correct SMILES
which preserve isomerism of original polymers or molecules and
prevent Kekulisation are reconstructed31,71. Also, duplicate SMILES
are removed from the expanded list. SMILES augmentation is
implemented by RDKit library72. In particular, data augmentation
is only applied to training sets after the train-test split to avoid
information leakage.

Fig. 6 Visualization of attention scores from finetuned TransPolymer. The attention scores between the ‘〈s〉’ token and other tokens at
different hidden layers in each attention head after finetuning are visualized. At the bottom is the sequence used for visualization in which the
tokens having high attention scores with ‘〈s〉’ are marked in red.
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Transformer-based encoder
Our TransPolymer model is based on Transformer encoder
architecture34. Unlike RNN-based models which encoded temporal
information by recurrence, Transformer uses self-attention layers
instead. The attention mechanism used in Transformer is named
Scaled Dot-Product Attention, which maps input data into three
vectors: queries (Q), keys (K), and values (V). The attention is
computed by first computing the dot product of the query with all
keys, dividing each by

ffiffiffiffiffi

dk
p

for scaling where dk is the dimension
of keys, applying softmax function to obtain the weights of values,
and finally deriving the attention. The dot product between
queries and keys computes how closely aligned the keys are with
the queries. Therefore, the attention score is able to reflect how
closely related the two embeddings of tokens are. The formula of
Scaled Dot-Product Attention can be written as:

AttentionðQ; K ; VÞ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V (1)

Multi-head attention is performed instead of single attention by
linearly projecting Q, K, and V with different projections and
applying the attention function in parallel. The outputs are
concatenated and projected again to obtain the final results. In
this way, information from different subspaces could be learned
by the model.
The input of Transformer model, namely embeddings, maps

tokens in sequences to vectors. Due to the absence of recurrence,
word embeddings only are not sufficient to encode sequence
order. Therefore, positional encodings are introduced so that the
model can know the relative or absolute position of the token in
the sequence. In Transformer, position encodings are represented
by trigonometric functions:

PEpos;2i ¼ sinðpos=100002i=dmodelÞ (2)

PEpos;2iþ1 ¼ cosðpos=100002i=dmodelÞ (3)

where pos is the position of the token and i is the dimension. By
this means, the relative positions of tokens could be learned by
the model.

Pretraining with MLM
To pretrain TransPolymer with Masked Language Modeling (MLM),
15% of tokens of a sequence are chosen for possible replacement.
Among the chosen tokens, 80% of which are masked, 10% of
which are replaced by randomly selected vocabulary tokens, and
10% are left unchanged, in order to generate proper contextual
embeddings for all tokens and bias the representation towards
the actual observed words35. Such a pretraining strategy enables
TransPolymer to learn the “chemical grammar" of polymer
sequences by recovering the original tokens so that chemical
knowledge is encoded by the model.
The pretraining database is split into training and validation sets

by a ratio of 80/20. We use AdamW as the optimizer, where the
learning rate is 5 × 10−5, betas parameters are (0.9, 0.999), epsilon
is 1 × 10−6, and weight decay is 0. A linear scheduler with a warm-
up ratio of 0.05 is set up so that the learning rate increases from 0
to the learning rate set in the optimizer in the first 5% training
steps then decreases linearly to zero. The batch size is set to 200,
and the hidden layer dropout and attention dropout are set to 0.1.
The model is pretrained for 30 epochs during which the binary
cross entropy loss decreases steadily from over 1 to around 0.07,
and the one with the best performance on the validation set is
used for finetuning. The whole pretraining process takes
approximately 3 days on two RTX 6000 GPUs.

Finetuning for polymer property prediction
The finetuning process involves the pretrained Transformer
encoder and a one-layer MLP regressor head so that representa-
tions of polymer sequences could be used for property
predictions.
For the experimental settings of finetuning, AdamW is set to be

the optimizer whose betas parameters are (0.9, 0.999), epsilon is
1 × 10−6, and weight decay is 0.01. Different learning rates are
used for the pretrained TransPolymer and regressor head.
Particularly, for some experiments a strategy of layer-wise learning
rate the decay (LLRD), suggested by Zhang et al.73, is applied.
Specifically, in LLRD, the learning rate is decreased layer-by-layer
from top to bottom with a multiplicative decay rate. The strategy
is based on the observation that different layers learn different
information from sequences. Top layers near the output learn
more local and specific information, thus requiring larger learning
rates; while bottom layers near inputs learn more general and
common information. The specific choices of learning rates for
each dataset as well as other hyperparameters of the optimizer
and scheduler are exhibited in Supplementary Table 2. For each
downstream dataset, the model is trained for 20 epochs and the
best model is determined in terms of the RMSE and R2 on the test
set for evaluation.
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