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Machine learning for automated experimentation in scanning
transmission electron microscopy
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Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM,
imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The
effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow
design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data
analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the
loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration,
and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple
platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation.
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INTRODUCTION
The most widely used definition of materials science is the study
of structure-property relationships and mechanisms that underpin
them1,2. Such relationships extend across multiple length scales –
from atomic arrangements and displacements of the order of
angstroms to domains and grain structures of tens to hundreds of
nanometers to texture relationships across micrometers. The
scientific community has expended an enormous amount of effort
over the past century to discover these relationships, finding that
most material properties originate from structural phenomena
occurring across the length scales from an angstrom to a micron.
Whether a defect, a dislocation, a domain boundary, or surface
strain, features almost invariably fall between these length scales.
However, since optical wavelengths are of the order of a few
hundred nanometers, these phenomena exist mostly outside its’
purview, although specialized super-resolution fluorescence
microscopy has achieved resolution below the Abbe limit down
to ~50 nm3,4.
Imaging with X-ray photons can reach resolutions of a few tens

of nanometers; thus, they are an extraordinarily useful tool in
materials science5–8. Furthermore, reaching the resolution limits of
X-rays can only be done at dedicated synchrotron light sources,
which are both expensive and rare. At the same time, these
techniques cannot image individual defects, interfaces, disloca-
tions, dopants, or structural information across interfaces – all of
which are under the purview of transmission electron microscopy
(TEM)9–12. TEM is significantly less expensive than a dedicated
synchrotron facility, leading to its ubiquity in materials
research11,13.
Modern electron microscopes are manufactured and operated

in two distinct flavors - the first is called conventional TEM (CTEM),
where a planar wavefront interacts with the material, and the

transmitted wave is recorded with a pixelated electron detector14.
In the second approach, rather than a plane wave, the electron
wavefront is collimated down to an angstrom-scale probe, which
is raster scanned across the sample and is thus referred to as
scanning TEM (STEM)15. Unlike CTEM, the STEM detectors are
placed in the diffraction or front focal planes16. There is a dizzying
variety of detector geometries, but the single most commonly
used detector is a ring-shaped single-pixel (integrating) detector,
also called an annular detector17. With annular detectors, the
entire electron count falling on the ring is summed up to generate
a single value, and thus a 2D raster scan pattern generates a 2D
image from these summed values. In the past decade or so, there
has been an interesting divergence: biological EM, especially cryo-
EM, has chosen CTEM as their de facto technique, while materials
science has increasingly focused on STEM18,19. The reason for this
divergence is the development of aberration correction. In STEM,
the imaging resolution with annular detectors is governed by the
diameter of the electron probe20–22. The smaller the probe, the
better the resolution. Correction of spherical aberrations can now
generate sub-angstrom probes even for accelerating voltages as
low as 30 kV23,24. Additionally, when STEM detectors are operated
in the high-angle annular dark field (HAADF) mode, where the
inner collection semi-angle (β) is larger than ~85 mrads, the
obtained image contrast is linear and easily interpretable17.
Individual atomic columns can be distinguished and differentiated
based on this technique.
As a result, STEM has emerged as a powerful tool to study

materials structure and functionality across length scales from
nanometer to atomic25 and recently to the deep sub-atomic
domains26. As atomic-resolution studies of 2D and 3D materials
become more routine, these observations have been coupled with
computer vision techniques to map minute deviations of atomic
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positions from high symmetry12,27–29. These approaches have
unlocked order parameter fields associated with structural and
ferroelectric phase transitions30–32 and allowed chemical expan-
sion33 phenomena to be visualized in real space. Such studies, in
turn, can be further used to determine the generative physics of
materials systems34–36. However, a significant drawback of
HAADF-STEM is the high dose rates to which samples are
exposed, commonly over a million electrons/angstrom237.
One of STEM’s most primary advantages is that the electron

beam can generate both elastic and inelastic scattering, the latter
of which can provide spectral information. In elastic scattering,
while the electron energy remains unchanged, the electron beam
deviates or deflects from its path due to interaction with the
electromagnetic potential in the sample. Coherent elastic scatter-
ing is the underlying physical basis for both imaging and
diffraction measurements. In contrast, inelastic scattering occurs
due to beam electrons exchanging their energy with the material’s
own orbital electrons and is thus the basis for spectroscopy. The
two most widely used spectroscopic techniques in the electron
microscope are electron energy loss spectroscopy (EELS) and
energy dispersive X-ray spectroscopy (EDX/EDS/XEDS). EELS
measurements have provided insights into the single atom level
chemistry38 by probing the low-energy quasiparticles and
provided in-depth information on the dark plasmons and light-
induced plasmonic phenomena. Apart from resulting in highly
interpretable images, another strength of STEM imaging is that
when using annular detectors, both the inelastic and elastic
scattering information can be captured simultaneously. Modern
electron microscopes have thus evolved into complex multimodal
platforms that can simultaneously perform imaging, diffraction
space experiments, and spectroscopy, leading to the famous
observation that it is “A Synchrotron in a Microscope”20,39.
Another advancement in the field of electron microscopy has

been detector development. As mentioned previously, CTEMs use
pixelated detectors, while STEMs conventionally use single-pixel
annular detectors. Putting a pixelated detector in place of a single-
pixel HAADF detector allows microscopists to use exotic detector
geometries in post-processing. Even more exciting is the ability to
solve for inverse problems, also called ptychography – where the
spatial redundancy in the scanning data is used to solve for the
microscope parameters and the sample scattering independently
of each other. Yet another area is using such data for nanoscale
diffraction experiments to calculate strain or polarization with
precision that cannot be matched by HAADF-STEM40,41. The
advantages of pixelated detectors have long been known, as
Harald Rose speculated on their use cases fifty years back, but the
large data volumes they generate have been prohibitive. While
standard HAADF-STEM images are on the order of tens of
megabytes, these datasets, also called 4D-STEM (2 scanning
dimensions, 2 diffraction dimensions in the pixelated detector) are
a thousand times larger42. Only recently has computing power
become widely available to handle such data with comparative
ease – a prediction that Earl Kirkland accurately made in the late
eighties43.
The developments in STEM imaging and spectroscopic techni-

ques over the last decade have brought forth two closely
intertwined problems: namely the analysis of bespoke multi-
dimensional datasets in terms of materials functionality and the
development of new approaches for microscope operation. For
the post-acquisition analysis problems, Noel Bonnett envisioned
one of the original perspectives on the field early on44,45. In 25
years since his visionary papers were published, many of the
predicted advances have indeed been realized. Over the last
several years, multiple opinion pieces and roadmaps for ML in (S)
TEM have been reported46,47. Particularly over the last four years,
the advances in deep learning algorithms and low entry barriers
due to the development of high-level languages such as Keras/
TensorFlow, JAX and PyTorch have resulted in broad interest in

deep learning methods for the tasks such as image segmenta-
tion48, unsupervised analysis of imaging and spectral data, and
learning correlative structure-property relationships49.
The rise of large and multimodal electron microscopy datasets

has also led to growing use of unsupervised deep learning
methods to process such data50. There has been however, several
recent exciting developments in this field. It was demonstrated
last year that spectroscopic and imaging modalities need not be
handled separately and can “learn” from each other to generate
fused data with SNR levels beyond the reach of any current
instrument51. Additionally, several papers have recently demon-
strated that strain and structural quantification from 4D-STEM
datasets can be more effectively performed with pre-trained
neural networks on simulated synthetic datasets52–54. Such
examples have also pushed even CTEM, the old workhorse, into
new, dose-limited regimes that were not possible earlier. Similar
tools now exist even in the synchrotron space, where pre-trained
neural networks outperform conventional gradient descent
algorithms for ptychography both in speed and data
requirements8,55.
Despite the progress in instrumentation and post-acquisition

data analysis, the basic principles of STEM operation have mostly
stayed the same over the last several decades. In almost every
case, a human scientist operates the microscope, and it is that
scientist who optimizes the microscope performance, explores the
sample, and selects regions for further detailed imaging or
spectroscopy56. The realization of this limitation has led to a
strong interest in active learning methods for STEM, in which an
ML algorithm controls measurement pathways. Apart from this,
simulations can be combined with Bayesian methods to generate
idealized experimental routines for data collection, as shown for
example in a recent ptychography work57. However, despite the
strong enthusiasm, there is a growing need for the community to
understand what learning can do and what constitutes an
automated experiment. In brief, an automated experiment is
defined by real-time analysis, which is used to alter the trajectory
of experimental decisions. Here we discuss emerging develop-
ments in this domain and comment on future opportunities.

ML IN MICROSCOPY
Prior to discussing active experiments, we briefly overview several
emerging cases for ML in STEM. The vision for the application of
ML in microscopy was developed by Bonnett and others almost 25
years ago45. However, the practical implementation had to wait
for new computational tools and resources to become sufficiently
powerful to work with large-dimensional data sets typical for
imaging and hyperspectral imaging. The first practical applications
of unsupervised ML methods to spectroscopic data dates back to
Bosman et al.58.
There are many problems where it is essential to discover the

underlying structure-property relationships from multimodal
spectroscopic imaging modes in electron microscopy. ML
techniques need to disentangle statistical spectroscopic charac-
teristics to facilitate practical interpretations. The challenge with
this task is that there is often no good way to form suitable labels.
Thus, the philosophy involves learning a constrained low-rank
identity function that can disentangle important features of
spectroscopic response. Early methods applied linear clustering
techniques to associate spectra with characteristic responses59.
While computationally efficient, these models can only identify
groups of characteristic responses and thus cannot deconvolute
continuous transformations that occur at interfaces, defects, and
topological structures.
Various unsupervised linear ML methods have been applied to

accommodate continuous transformations of spectroscopic
responses. For example, techniques such as principal component
analysis, dictionary learning, and non-negative matrix factorization
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have been applied across multiple imaging domains58,60. These
techniques are deceptively powerful. It is common for these
techniques to discover statistical correlations that result in
eigenvalues that match physical intuition. However, it is quite
rare that the eigenvectors and reconstructions preserve spectro-
scopic physics. This behavior is the result of several mathematical
limitations of the algorithms. First, these methods consider each
data point as an independent uncorrelated dimension eliminating
important spatial and temporal information. Understanding a
phase or translational shift in diffraction images is out of the
question. Secondly, these methods are linear, whereas spectro-
scopic signals and noise profiles are highly non-linear. These
trends must be approximated through overparameterization, or
the resulting model is usually significantly underfit. Due to the
computational efficiency and ease of implementation, these
methods provide an excellent starting point for ML analysis;
nonetheless, it is essential that the results are rigorously validated
to avoid making incorrect interpretations of underfit data61,62.
On the other side of the coin, it is possible to use unsupervised

neural networks in the form of autoencoders to disentangle
spectroscopic features in hyperspectral images. Autoencoders are
a class of neural networks formulated to learn an identity function
using three functional blocks. The first block is an encoder that
tries to disentangle the statistical information from the raw data;
the second block compresses this information in an embedding
layer; and the final block is a decoder that takes the compressed
information and reconstructs the spectra. Since autoencoders are
based on neural networks, it is possible to use logical operations
that consider important geometric constraints. For example,
convolutions can include translational invariance, harmonic
convolutions can learn rotational equivariance, recurrent neurons
can consider sequential dependences, and transformers can learn
attention maps.
Despite these capabilities, training robust neural networks is

challenging, as they are overparameterized. Given enough
neurons, autoencoders become universal identity functions
capable of memorizing any observable. To make autoencoders
practically valuable, it is essential to add bottleneck layers and
statistical regularization mechanisms that force the model to learn
a compact representation of the data, rather than just memorizing
it. In turn, a variety of regularization strategies have been applied.
In the first example of a regularized autoencoder for disentangling
spectroscopic features in materials spectroscopy, Agar et al.
applied scheduled ||L1|| activity regularization on a ReLu-activated
embedding to disentangle sparse, non-negative characteristics of
ferroelectric switching in band-excitation piezoresponse force
microscopy63. In an alternative approach, variational constraints
have been included to construct variational autoencoders.
Variational autoencoders (VAE) add a Kullback–Leibler (KL)-
divergence regularization term to the loss function:
KL½N μn; θnð Þ;Nð0; 1Þ�. This step adds a penalty if the observed
distribution in a minibatch deviates from a prior distribution –
usually a Gaussian. This process allows learning a smooth latent
space that is generally more interpretable.
This concept can be expanded in several ways. For example, a

hyperparameter β can be included to modify the KL-divergence
regularization term. When regularization scheduling is employed,
this term can be used as a disentanglement metric64. Such
regularization scheduling has been used to disentangle mechan-
isms of ferroelectric switching62. In an alternative modification,
learnable geometric transformations can be learned using so-
called j(r)-VAEs. These models include a spatial-transforming layer
in the embedding to predict an affine transformation grid that
learns the geometric orientation and transformation. This
information is subsequently passed to the decoder, facilitating
the disentanglement of geometric transformations from spectro-
scopic characteristics.

VAEs have been applied for numerous spectral and image
analysis problems emerging in the context of electron and
scanning probe microscopy and spectroscopy. These include
identification of elementary atomic building blocks and their
distortion in crystalline materials65, analysis of rotationally
invariant molecular representations in evolving graphene66, and
semi-supervised learning of molecular shapes from the micro-
scopic data65,67. Here, the repositories such as PyroVED (https://
github.com/ziatdinovmax/pyroVED) contain collections of VAE
including rotation- and shift-invariant networks, as well as simple,
conditional, semi-supervised, and joint versions.
While these approaches have proven to be quite robust, there

are justified concerns about the over reliance on machine learning
models to derive physical conclusions. ML methods that include
only statistical or only soft physics constraints need to be
rigorously validated before any physics conclusions are derived.
Conversely, this situation creates tremendous opportunities to
include hard physics constraints and governing equations to
restrict the output to be physics-conforming, dramatically enhan-
cing interpretability.
In the imaging and spectroscopy domain, much work has been

conducted on denoising and sparse reconstructions of images.
Controlling spatio-temporal dose distribution to preserve sample
integrity is a strong motivator for sparse and/or low dose
acquisitions18. Some methods require an a priori set of sampling
points, determined before an experiment, from which a full
reconstruction is later derived. For example, ML based compres-
sive sensing algorithms coupled with microscope hardware allow
for collection of a random (or pseudo-random) subset of pixels in
an image without sacrificing image quality16. Kernel based
Gaussian process methods17 estimate information sharing a priori
to constrain and localize variability in high fidelity multivariate
reconstructions. These methods use a statically chosen set of
sampling points before an experiment is started, but there are also
existing methods for utilizing on-the-fly information (points
updated during experiments) in AE, which will be discussed later.
Another broad set of problems involves analyzing images to

identify the objects of interest, including localization and
characteristics. Many of these problems, including atomic
identification, have been extensively explored well before the
emergence of deep ML. However, the emergence of the deep
DCNNs (deep convolutional neural networks) has made this
problem almost routine48,68. We note that these semantic
segmentation methods are supervised in nature, meaning the
algorithm is trained on the human-labeled data and is subse-
quently applied to a much larger data set.
Visual feedback is a necessary part of image analysis, both when

training a ML model and interpreting its results. Values such as
accuracy and uncertainty can be calculated to determine the
trustworthiness of a model’s results, but often the best and most
meaningful evaluation comes from seeing the model’s results
overlayed on top of – or displayed next to the original image. This
comparison allows a microscopist to easily see where the model
agrees or differs with their expectations, and to interpret and
explain results. This type of feedback is also important during the
design and training of a ML model. Microscopy images vary
significantly between material systems and even within a single
material due to noise, imaging artifacts, and beam-induced
changes; thus, image acquisition parameters can have a powerful
effect on the resulting image. It follows that the preprocessing
steps and ML models that produce good results on one image
may not translate well to another set of images, making visual
feedback throughout the process of designing or tuning a model
essential. Some models overcome this barrier and can generalize
to multiple material systems by demanding a minimum amount of
information about image(s) each time the model is run20,21.
Providing this information to a model using a command-line
interface might not be intuitive to users who would benefit from
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applying such a model to their own data. A graphical user
interface (GUI) designed to guide users through the process of
selecting an image, preprocessing it, training the model, and
interpreting the results greatly improves the accessibility of ML
models to microscopists69.
The type of user interface needed for a model depends on the

intended users. A microscopist may prefer to interface with an
existing ML model through a polished GUI such as a web app that
guides them smoothly through applying it to their data69. One
such web app – pyCHIP – allows users to select model parameters
that fit their image’s feature size by adjusting a slider bar which
dynamically updates a grid overlaid on their image. PyCHIP also
simplifies the selection of ‘support sets’ for a few-shot ML model
by allowing users to click on regions of the image containing
interesting features and adding custom labels69. This kind of
interface works well for someone looking to apply a model as-is to
their dataset. A data scientist on the other hand may appreciate a
more dynamic relationship with the model such as through a
Jupyter Notebook, allowing them to look under the hood and
modify model parameters as needed to tune it to their dataset.
The Pycroscopy Python package for example, provides Jupyter
notebooks containing well documented code and instructions for
utilizing its ML models in different ways70. Both web app GUIs and
Jupyter Notebook UIs aid in the interpretability and accessibility of
ML models for microscopy applications.
The early successes in post-acquisition image and spectroscopy

analysis in STEM have naturally generated much excitement in
extending these methods towards the real-time data analytics and
subsequently automated experiments. In the latter case, the real-
time data analysis is used as a basis for a real-time decision
making, e.g., choosing the sequence of measurement points for
EELS measurements or finetuning the microscope parameters for
different parts of the sample.
However, the transition to automated experimentation has

proven to be a considerably more complex problem then initially
anticipated. First, during an active experiment, the data becomes
available sequentially—a very different situation from the static
data sets typically used in classical ML methods. Secondly, the
microscope performance changes during operation and especially
between the subsequent experiments. Consequently, a neural
network trained on one day will perform much worse on
subsequent days—the celebrated out of distribution drift effect.
Third, and less recognized until now, is the workflow planning
process. In other words, a human operator performs the sequence
of operations following a specific, implicit, or explicit goal. In
certain cases, it is obvious (e.g., when we tune the microscope, we
aim to improve the resolution), but it is often not trivial to explain
a workflow, such as the process of discovery. Hence, a key part of
defining automated experiment workflows is the reward, which
we next discuss.

AUTOMATED EXPERIMENTS: CONTROL, ALGORITHMS
AND REWARD
Discussion of automated experimentation requires explicit analy-
sis of three dissimilar components. The first and obvious
component is the engineering controls: the microscope control
and command language that determines what operations can be
performed and initiated from the external control electronics. The
second component is the ML algorithm: that code analyzes the
data streaming from the instrument, reduces the data, and
generates a sequence of commands returned to the microscope.
Third and, often overlooked, is the reward—the perceived goal of
the experiment. Given a list of possible operations, an experiment
targeting different specific goals will follow different experimental
paths. For example, exploring the same sample of the oxide film
will lead the scientist to different regions if interested in
electrocatalytic activity on the surface vs. magnetoresistive

phenomena dominated by the interfaces. Below, we discuss these
three elements in more detail.

● Engineering controls: Engineering controls currently strongly
hinge on the availability of the manufacturer-provided
application programming interfaces (APIs) for instrumental
control. For example, early work on the electron beam
material sculpting71, direct beam writing72, atomic manipula-
tion73, and non-rectangular scans74 at Oak Ridge National
Laboratory (ORNL) relied on the custom modifications of
microscope electronics and home built controls. The introduc-
tion of the improved version of the Nion SWIFT API in the
summer of 2021 have permitted unparalleled access to
multiple instrument components, including the illumination
system, stage, projection system, and detectors and has made
these experiments almost straightforward75.
Recent approaches based on low-level Python APIs in JEOL

microscopes have also achieved task automation for materials
focused electron microscopy76–80. In the AutoEM system
developed by Olszta et al., centralized control is based on
asynchronous communication protocols that allow for variable
timing between instrument control (action) and instrument
readout (reaction), which is essential to account for latencies in
both data collection and analysis78. Importantly, such latencies
can vary depending on the nature of the experiment itself. For
instance, in large area statistical montaging, data collection is
the bottleneck since it is limited by the speed of mechanical
motion (~0.1 fps images), while data analysis via few-shot ML-
based classification is fast (~100 fps images). In other cases,
such as high-speed in situ experimentation, data collection may
fast (1-10k fps images) but a similar data analysis then becomes
the bottleneck. In the latter case, only a subset of frames can be
processed, limiting the ability to make decisions on rapidly
changing phenomena. Here it becomes desirable to have
interchangeable models, which a modular system like the
AutoEM controller allows. Descriptive models are useful for
scenarios where the goal is to identify, describe, and relate
features, such as crystal phases, defects, or particles81,82.
However, we increasingly require predictive models that can

forecast the future state of a chemical or material system for
anticipatory control of long-latency instrument parameters.
Recurrent neural networks (RNNs) have been successful in
forecasting for other domains facing similar problems. Long
short-term memory models (LSTMs), a type of RNN, have
recently been applied to in situ electron energy loss spectro-
scopy (EELS)83. The new model, called EELSTM, inputs a series
of prior spectra, such as the initial stages of a chemical reaction,
and forecast the future time state of the reaction. They can then
be implemented on-the-fly and used to direct an experiment,
compensating for long-latency instrument or sample reactions.
This area is largely unexplored and presents a tremendous
opportunity for more intelligent and impactful automated
experimentation.

● Algorithms: The second key element of automated experimen-
tation is the algorithm, whether machine learning or simple
image analysis. Generally, the algorithm has access to the data
generated by the microscope at certain level of aggregation,
e.g. direct data flow from the detectors or data aggregated at
the level of individual images, spectra, or hyperspectral data
sets. The algorithms perform certain transformation of the data
and return the control signals to the microscope. It is important
to note these algorithms can vary in complexity from
elementary edge filters or Fourier transforms to complex deep
convolutional networks. The choice of the algorithm is
determined by the specific task to be accomplished, dimen-
sionality and property of parameter space in which it operates,
variability of the data, and by the availability of the compute
capabilities and required latencies.
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● Rewards: Finally, the key and often unrecognized element of
the automated experiment is the reward. This is a new element
that appears in active learning and more generally stochastic
optimization problems, and generally represents the goal of the
experiment. Often, the reward function is understood implicitly.
For example, tuning the microscope necessitates reducing the
effective probe size and minimizing asymmetries. In case when
the reward function is well understood and can be readily
determined from the data, the problem can be conveniently
cast as the optimization over a certain parameter space, for
example via Bayesian optimization57.

In general, reward functions for imaging and spectroscopy
experiments can be very non-trivial and are closely aligned with
the goal of the experiments. For example, when exploring
ferroelectric oxide thin films, the experimentalist may be mainly
interested in the formation of dislocations and presence of
second phase inclusions in the material, properties of the
topological defects, evolution of the electronic and phononic
properties at structural or topological defects, and many other
aspects of material behavior. The sequence of actions taken by
the experimentalist will depend on this perceived reward, and
the experiment will balance the exploration and exploitation
component. Here, exploration generally refers to the overview of
the structural elements present in the material, whereas
exploitation refers to the experimental measurements on specific
elements that are a priori known to be of interest. The reward
function can also change during the experiment. For example, an
initial reward function is often calibration and optimization of the
imaging conditions, performed using the standard (or well
known) sample. Secondly the exploration often aims to ascertain
the statistically significant features of the sample and identify
outliers (defects, dislocations, etc.). After that, an experimental
workflow can be driven by the exploration of objects known to
be of interest, or driven by operator curiosity. These considera-
tions necessarily must be considered for the ideation and
orchestration of automated experimentation, as will be
discussed below.

ON THE FLY ANALYSIS: RECONSTRUCTION AND
SEGMENTATION
The first step in automated experimentation is real-time analysis of
a data stream from the microscope detectors. This analysis can
include denoising and interpolation to improve human operator
perception, as well as more complex operations, such as semantic
segmentation and feature discovery (e.g. finding atoms on sparse
images). This semantically segmented data can inform human
operator decisions, or subsequently used to autonomous
experiments.
For pre-acquired data sets, these analyses can be performed via

a broad variety of ML algorithms including compressed sensing,
Gaussian processes, or supervised learning. The mathematics
behind many of these methods is fairly complex and will not be
discussed here. However, the development of open code
ecosystem renders them easy to implement once the Python
plug-ins for the instrument are available. It is important to note
that for any algorithm it is vital to establish the balance between
the data and the prior knowledge in some form. For example,
compressive sensing and simple Gaussian Processes are purely
data driven strategies that seek to interpolate and denoise the
data under some general requirements on the smoothness of the
image. At the same time, pre-trained neural networks will
remember the significant features of their training data, poten-
tially leading to contamination of the processed data, as
humorously illustrated in the generative approaches shown in Fig. 1.

For active learning on microscope these issues are amplified. By
definition, information only becomes sequentially available during
such an experiment. For unsupervised learning problems, this
creates an obvious problem of the analysis of increasing data set
at each step, with the interpretation of emerging components
changing over acquisition time. For supervised ML problems
based on a pretrained model, a key issue becomes out of
distribution drift. In other words, the neural network trained for
one state of the imaging system will start to fail for different
parameter setting.
A typical automated experiment (AE)79 on the microscope

should be capable of performing (a) accurate semantic or chip-
level segmentation on images to recognize and extract
information on atoms or other relevant features, followed by
(b) discovering relationships between beam control parameters
and how those affect structure-property relationships of the
material under investigation. The final goal is to find out a
roadmap, assisted by theory, to obtain target structure by
atomic manipulation with the least possible human
intervention.
ML/deep learning methods become the obvious choice to

accomplish the first task since their applications have proven to
be successful at feature detection in many fields such as
computer vision, biology, and medicine, as already discussed.
These networks tend to work reasonably well on the datasets
with large sample sizes, with large variabilities belonging to each
category. However, datasets consisting atomically resolved STEM
or scanning tunneling microscopy (STM) images, the features
such as atoms, defects are almost identical (periodic). Changes in
imaging conditions on same material system give rise to a
different set of data distribution. As a result, one network
yielding reasonably accurate prediction may give suboptimal
performance on a dataset coming from another set of experi-
mental parameters due to out-of-distribution drift. In addition,
deep networks trained on a cumulative dataset with instances
from multiple experimental, or simulation conditions are not
always sufficient to recognize subtle distinctions in atomic
features. Retraining networks by varying hyperparameters every

Fig. 1 Example of the errors introduced via StyleGAN116. The
generative network allows to transform horse into zebra. However, it
also attempts to perform similar operation with humans.
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time is also time and resource consuming, limiting its applic-
ability within an AE environment. Therefore, to accomplish the
task of feature recognition during a live experiment, the network
must adapt to changes to the imaging conditions and success-
fully locate features while quantifying associated uncertainties to
make the analyses efficient and accurate.
In our recent work, we have demonstrated how an ensemble

learning84 iterative training (ELIT) workflow85 can be employed to
overcome some of these challenges. Within the ensemble learning
(EL) part of the workflow, each new model is trained with different
random initialization of weights and random shuffling of training
data, with a stochastic weight averaging (SWA) procedure. At the
end of training, the model averages over multiple points along the
trajectory of stochastic gradient descent. The examples on the
static datasets on graphene and NiO-LSMO further show how EL is
capable to select of artifact-free features and pixel-wise uncer-
tainty maps by combining multiple networks. Switching from
image-specific to materials-specific descriptors and training net-
works on the first frame of images obtained at the initial stages of
the experiment can help to account for out-of-distribution effects
and improve model performance. Once an initial prediction is
obtained, the network is retrained iteratively to realize all features
by focusing its attention on features present in the (heavily
degenerate) data. It increases the feature detection limit of the
network.
Pre-trained ELIT models provide a good start to establish this

workflow during a real-time AE. Here, initial training datasets do
not necessarily have to come from experiments. These datasets
can be obtained by performing first-principles simulations (e.g.,
density functional theory (DFT), ab initio DFT, molecular dynamics
(MD)) on the same material system. The models trained on such
accurate simulated data may not account for experimental noise
or nonidealities. Hence, these generally fail to approximate
features from the experimental data. However, simulated datasets
must be carefully augmented to include possible data transforma-
tions to minimize the differences between the simulated and
experimental structures. Possible augmentations include addition
of random zoom-ins, rotations, contrast scaling, and noise. Once
the datasets are prepared, ELIT models are trained. During an AE
as shown in our recent work86, we can utilize the pre-trained ELIT
models to detect features from a live data stream by iteratively
training the models to analyze local atomic environments, with
the possibility of using detector feedback to guide beam
conditions such as dwell time.
To successfully assist the next set of experiments and discover

structure-property relationships, one must also infuse the funda-
mental theoretical understanding within the AE loop. The last
decades have seen a tremendous growth in the field computa-
tional physics, materials science, and related areas, due to
significant advancements in computational capabilities including
accessible central processing units (CPUs)/graphical processing
units (GPUs), efficient algorithms. Performing physical simulations
from the atomistic scale using first-principles techniques to
mesoscale/finite scale using quantum Monte Carlo and finite-
element methods are all within our reach. As expected, the surge
of data that gets generated via these simulations also comes with
a wealth of knowledge on thermodynamic, electronic, magnetic
properties of materials and physical/chemical phenomenon.
However, a strong disparity still exists between the time, length

scale, and associated latencies of running an experiment (e.g.,
generating one image frame using electron microscope takes
fraction of a second) and execution of simulation (e.g., performing
geometry optimization on a system in Å to nanometer scales and
estimating physical properties take multiple CPU hours). Hence,
integration of theory into AE is non-trivial and requires develop-
ments of smart approaches87–90 to enable on-the-fly synchronized
learning from the experimental observations and simulations. In
our recent work91, we have established a workflow that employs

deep neural networks to identify atomic features (type and
position), followed by constructing simulation objects in an
automated fashion to directly pipe those into DFT and MD
simulations environment. Here, various image patches and
corresponding simulation objects are chosen by the human
expert in the loop to decide the structure fragments from the
entire image perspective, suitable to perform simulations. For e.g.,
segments of graphene that has maintained its ideal coordination
after few seconds under the electron beam, may not be the most
interesting to investigate compared to regions where it has
already begun to form defects. Similarly, it becomes more likely
for a successful transition-metal adsorption to take place or
dynamic reconstruction of ring arrangements if the regions with
symmetry or bond breaking are explored. In addition, performing
simulations on the smaller counterparts, as opposed to the entire
large-scale system, also help to match the disparity in the time
and length scales, while helping to approximate the overall
evolution of the material.
While this workflow is already in place and has led to successful

results, it also opens new avenues for exploring structure
fragments92–94 in a broader possible way, which can act as
proxies to conduct theoretical investigations during an AE.
Moreover, these proxies could be unique in nature that directly
relate to the features as recognized by the deep networks to
fundamental causal mechanisms. It is established95–98 that
experimental variables can be directly related to properties such
as microscopic polarization or lattice parameters. But to determine
how these can be controlled, we can incorporate insights from
structural distortions connecting to the electronic degrees of
freedom, that ultimately control most functionalities99–102 such as
phase transitions, electronic properties (e.g., linear magnetoelec-
tricity, ferromagnetism and polarization and metal-to-insulator
transition in transition metal oxides) in solids. Here, these can be
exploited as theoretical proxies to establish underlying causal
mechanisms103 to further elucidate the physics involved for
assisting next set of measurements.

DIRECT EXPERIMENTS
The real time analytics of the STEM data stream further opens the
pathway for the implementation of automated experimentation,
meaning real-time decision making by the automated agent.
During an experiment the human operator typically goes
through multiple steps of tuning, selection of region of interest,
exploration at different resolution, and spectroscopic measure-
ments. Correspondingly, it makes sense to explore the actions
performed by the ML agent in the context of human operation.
Following the terminology accepted in active learning commu-
nity, we refer to the decision-making process adopted by ML
agent, i.e. selection of actions based on the state of the system,
as policy. The simplest form of an automated experiment is based
on predefined policies, which we have previously termed an
‘open loop’ experiment74. In this case, the (pre trained) ML
algorithm is used to identify the objects of interest, and
predefined sequence of action is taken dependent on observa-
tion. We note that in most cases of human-driven experiment the
policies are also predetermined (albeit can be very complex),
since analysis of the data is usually performed after the
experiment and human learning (that will affect policies)
typically happens much slower than a single experiment.
A typical example of such experimental measurements uses the

real-time analysis of the imaging data stream to identify the a
priori known objects of interest, such as specific defect config-
urations, extended defects, or edges. For example, one of the most
common materials science studies is the ‘needle in the haystack’
search. In this study, it is necessary to be able to both acquire large
volumes of representative data—a classic challenge for highly
local electron microscopy—and detect features of interest with
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human-like reasoning. The aforementioned AutoEM system is one
example of such a platform that can acquire data repeatably and
at scale in an ‘open loop’ experiment. Data can subsequently be
triaged using a few-shot or other ML approach to target desired
features of interest. The instrument can then move to those
objects, change magnification, select new imaging parameters,
etc., constituting a ‘closed loop’ experiment with rich statistical
information, as shown in Fig. 2. Here the challenge is not simply
object detection, but rather the movement of the stage and on-
the-fly tuning, which is often quite imprecise and prone to
error54,104. Costly and time-consuming registration and image
correction routines must be applied to achieve the desired
precision for the many hundreds or thousands of acquisitions that
might be executed in a typical experiment105–108. There is an
important opportunity to improve stage hardware, alignment
stability, and overall timing to facilitate emerging automated
experimentation77,104.
A similar approach can be applied for the electron-beam

modification experiments. In this case, the real time analysis of the
STEM data stream can be used to identify objects of interest such
as specific atomic configurations. Figure 3 shows the conversion of
live ADF data into classified atomic groups using neural networks
within the ensemble learning iterative training (ELIT) scheme85,
where the computations are performed either on an edge
computing device, a connected multi-GPU workstation, or even
directly on the instrument machine itself. This approach was used
to realize controlled experiments where atomic precision of the
electron beam relative to specific atomic groups is required – for
instance, targeting and ejecting selected S atoms in MoS286. Direct
fabrication of atomic devices can be accomplished in this way, as
shown in Fig. 3 with the placement of single (sulfur) vacancy lines
in MoS2. We note that in this case the modification policies were
also defined prior to the experiment (‘open loop’).

INDIRECT EXPERIMENTS AND DKL EXPERIMENTS
A more complex task in the context of imaging-spectroscopy is
the inverse experiment, where the goal is to discover the
structural elements that exhibit a specific spectroscopic feature.
We note that in this case the aspect of interest is defined before
the experiment (i.e., the policy is fixed), and is assumed to be
reduced to one (or several) aspects. For example, for a given EELS
spectrum, the aspects of interest can be either peak structure, area
under specific peaks, or even pre-trained neural network, as is the

case in the EELSTM model79. Aspects of interest are typically scalar
quantities; therefore, a spectrum may be ‘scalarized’ into such an
aspect by operating on the spectrum in a defined manner.
Scalarizing the spectrum in a specific manner allows physics to
enter the workflow, which is decided by the user, i.e., the ‘human-
in-the-loop.’ If a spectrum is acquired from within a parent
structural image, a relationship can begin to be built between the
local structural information from where the spectrum was
acquired and an aspect of interest of the spectrum. A similar
argument can be made for how a human operator uses their
expertise to decide from where they should acquire high-cost
measurements, given an observation of a structural space.
These relationships can be discovered autonomously with even

only a handful of structure-property pairs on-the-fly and with no
prior training, in what is known as deep kernel learning (DKL).
When equipped with such structure-property relationships, this
approach allows temporally expensive or high dose measure-
ments to be performed in an intelligent manner. In this way, DKL
falls within the category of active learning. This of course has
implications for beam-sensitive specimens, but also, it crucially
allows exploration of the sample space much more significantly,
and the exploration itself is determined by the specified
“scalarizer” at the start of the experiment. This design means that
depending on the scalarizer, different structure-property relation-
ships are learned by the model, and therefore different regions in
space will be probed based on that selection. DKL is not limited to
EELS109, but virtually any multidimensional signal can be used,
such as diffraction data in 4D-STEM54. How the DKL model learns
can be visualized by their exploration pathway (order of acquiring
data points). DKL operates by leveraging a deep neural network to
embed local structural descriptors (image patches centered at the
measurement position) to a low dimensional latent space, where a
gaussian process (GP) kernel operates to reconstruct the full data
given the acquired data. DKL experiments for both EELS and 4D-
STEM (diffraction data), in addition to the impact of choosing
different scalarizers, are shown in Fig. 4.
For this scheme to be possible on an instrument in real time,

there must be access to both the structural image data and the
measurement data (EELS, diffraction pattern, etc.). Positioning of
the electron beam and readout of the detector signal must also be
possible. We note that in many (traditional) systems, the EELS
detector operates on a separate machine entirely, making this
type of experiment extremely challenging or not possible. The
DKL algorithms were implemented on the Nion instruments,

Fig. 2 Automated task-based statistical analysis via few-shot learning. Analysis of organic photovoltaic precursor synthesis products can be
conducted in the STEM, using few-shot analytics combined with low-level instrument control to incorporate human-like decision-making.
Adapted from Olszta et al.74. under CC.-BY-4.0 license.
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where these requirements are easily satisfied via access to the
scan controller, all detectors, and practically all low-level hardware
components through the Nion Swift API71. No external hardware is
needed, aside from a possible connection to a GPU or multi-GPU

workstation for faster model training. While API-level control is not
an absolute requirement, it is extremely useful, particularly for
complex experiments which are difficult in advance to know what
controls are needed. Further, more microscope manufacturers

Fig. 3 Real-time conversion of atomically resolved STEM image data into classified atomic groups for use with atomic fabrication. The
neural network-based method utilizes ensemble learning iterative training (ELIT) for robust conversion of STEM image into atomic
coordinates, with various methods of classification shown in a. Classified coordinates are used with control of electron beam position and
feedback to target specific atoms, as shown in b, where left column consists of HAADF-STEM images of MoS2, and right column is the
predicted classified atomic groups, where blue represents Mo, yellow represents S, and orange represents single vacancy lines (SVLs). This
scheme was used to eject single sulfurs by precisely placing the electron beam on rows of di-sulfur columns and monitoring the ADF
feedback to ensure only one sulfur is removed. Reprinted with permission from ref. 86.

Fig. 4 DKL in STEM. General schematic workflow depicted in a where local image patches are related to an analytical measurement such as a
(scalarized) EEL spectrum or diffraction pattern. DKL operating in the EELS domain is shown in b, where two different scalarizers reveal
different exploration pathways (shown as red dots) – peak ratio and peak maximums within specified spectral bands were used to incorporate
physics into the model. DKL operating on diffraction data is shown in c, where a convergent beam electron diffraction (CBED) pattern is
reduced into the center of mass (CoM), and the magnitude of the CoM and direction of the CoM are used as scalarizers to guide the
automated experiment. In both EELS and 4D-STEM versions of DKL, the choice of scalarizer clearly impacts the exploration pathway as well as
the structure-property relationship learned. A.F. denotes acquisition function and relates to the learned relationship that combines prediction
and uncertainty – the maximum intensity in the A.F. is the next measurement point. Scalebars 50 nm and 1 nm in b and c, respectively.
Reprinted (adapted) with permission from Roccapriore et al.54. Copyright 2022 American Chemical Society.
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appear to be trending toward increased control of their systems,
for example, with JEOL’s PyJEM Python package74.

FROM TWO TO MANY: BUILDING CHARACTERIZATION
WORKFLOWS
As discussed above, the operation of the microscope typically
involves multiple operator-initiated steps including initial tuning
and overview scans and identification of initial objects of interest,
as illustrated in Fig. 5. With these, the imaging, tuning, and
spectroscopic cases can be repeated multiple times during the
experiment. We note that while this process is familiar to any
microscopist, there are several specific aspects that should be
enumerated explicitly.
The first specific aspect is the hyper-language, i.e. the sequence

of operations and associated parameters that the human operator
can execute. Despite differences among microscopes from
different manufacturers and between microscopes of different
types (STEM, SEM, SPM), the hyper-languages for many of these
systems will be essentially identical and should evolve on the
convergent paths between different communities. A second key
aspect is the workflow, defined here as the sequence of steps
performed by the human operator using the available hyper-
language. The third component is the reward – meaning the
perceived goal of the experiment. We note that while reward is a
very familiar concept for scientists in the fields such as stochastic
optimization and reinforcement learning, the definition of the

reward function in scientific experiment is highly non-trivial and
domain dependent. For example, for traditional ML problems such
as autonomous driving the reward function is defined as getting
from point A to point B in the least time without crashes. Services
such as Google Maps provide the preferred path, reducing the
problem to driving.
Comparatively, the reward in scientific experimentation is often

a very complex function determined by the prior knowledge and
perceived goal of the experiment. The reward can combine the
elements of curiosity and general discovery, falsification of
hypothesis, or quantitative measurements. For example, it is
common to explore new material system in the pure discovery
mode, i.e. elucidating the observable structures and morpholo-
gies. The more detailed studies can be informed by the prior
hypotheses, for example establish the presence of specific
structural elements that can account for the macroscopic
behaviors. Finally, the experiment can be motivated by the
quantitative measurements, e.g. establish the structure of the
polarization distribution across the specific ferroelectric domain
wall or the strain field around the dislocation.
Following the comparison with the stochastic optimization

community, we introduce the concept of a policy guiding the
experiment. Generally, in RL a community policy defines the
deterministic or probabilistic action taken given the (observed)
state of the system. Correspondingly, the policy in the human-
driven experiment implicitly defines the selection of the actions by
the operator. This process includes elements well established in

Fig. 5 Workflow analysis during a STEM-EELS experiment. After the initial tuning, the operator selects the region of interest and performs
multiple zoom-in and zoom out stages, retuning, and selection of locations for the spectroscopic studies. This sequence of actions can be
represented as a workflow, i.e. sequence of microscope operations performed by the human. The operations implemented by human
implicitly define the hyper-language used by the microscope. The workflow design via ML agent is essentially reinforcement learning problem
targeting the specific reward via sequence of actions possible within the language.
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the RL community, including the exploration and exploitation. The
former is exploring the image plane for object of interest. This
process can be random, or driven by curiosity, outlier detection,
etc. The latter is exploitation, including discovery of specific
microstructural elements, hypothesis falsification, or quantitative
measurements. While it is difficult to generalize, we argue that the
policies used by the human operator will change only weakly
during the experiment. For example, depending on the observa-
tions the operator can choose a different reward function (i.e.
explore the dislocations rather than second phase inclusions), but
is unlikely to update the knowledge base during the experiment.
These characteristics suggest that workflow planning in the
automated experiment can be treated similarly to the RL problem,
where the reward function is defined prior to the experiment and
workflow development includes updating the policies that define
the microscope operation possible within the hyper-language
commands for a given system.

REAL-TIME LOCAL DECISION MAKING
One of the principal challenges with deploying ML models is
making them practically relevant to the experiment and the
scientist. Depending on the experiment, these practical require-
ments could be vastly different. Thus, it is essential to consider the
design of the experiment, algorithms, infrastructure, and hardware
when designing real-time analysis for automated experiments in
electron microscopy. The primary constraint is that the analysis
must happen on a time scale relevant to the experiment. This
could mean that the analysis needs to happen in hours to minutes
to provide the experimentalist insight to guide the following
experiment. If trying to guide active learning and autonomous
experiments, the analysis should happen commensurate with the
experimental collection speed, usually in minutes to seconds.
Finally, it could be required that ML be used for real-time controls
and triggering that requires millisecond to nanosecond latencies.
Advances in computational resources have made achieving

real-time hours-to-minute analysis possible. Excluding fringe cases
limited by high-velocity data, many empirical models can be
reasonably approximated using neural networks. These processes
are simple to implement at scale since they are embarrassingly
parallel. Achieving the desired throughput merely requires
purchasing and co-locating the correct number of GPUs. When a
pre-trained model exists, most electron microscopy experiments
can be analyzed in minutes on a local GPU-accelerated
workstation.
The implementation of the active learning and automated

experiments on STEM necessarily brings forth the consideration of
the available computation power, data storage, and data transfer.
This can be performed both at the local level and via the
integration with distributed cloud resources (and potentially other
microscopes). In the former case, data analytics and decision
making are performed locally on the computational tools
collocated with the microscope. In the second case, the
microscope, potentially with some form of point of generation
data compression, is integrated with the large-scale cloud
resource.
However, achieving real-time analysis can be challenging if a

model needs to be trained or fine-tuned for a specific experiment.
Model development typically requires hyperparameter tuning to
find the optimal parameters to train a model to the specific
statistical distributions of the training dataset. Hyperparameter
search is generally done using brute force techniques or using e.g.,
hyperparameter optimization software or architecture tuning
tools, each requiring many GPU hours. It is still an open challenge
to provide burstable GPU access to experimentalists to train large-
scale ML models rapidly. Alternatively, it is possible to reduce the
computational complexity of the model and training process.
Most ML tasks barely consider computational complexity or

optimization speed, as providing more computing resources and
computational time is comparatively easy. In turn, most machine
learning algorithms are overparameterized and over-precise (in
terms of bit-depth). The result is flat loss landscapes that are easy
to optimize using simple momentum-based stochastic gradient
descent optimizers like stochastic gradient descent. Such first-
order optimizers sacrifice performance and efficiency for compu-
tational simplicity. When optimization speed becomes critical,
more advanced optimizers are required. One approach is to use
quasi-second-order optimization methods that approximate the
Hessian. These methods are inherently more computationally
complex but result in significantly better optimization steps,
particularly on highly regularized models. Moving beyond first-
order optimizers is necessary to achieve real-time electron
microscopy analysis.
When trying to automate experiments in minutes to seconds, the

primary limitation is established by infrastructural challenges
associated with stable and high-speed networking and the high
availability of computing resources. The distributed nature of
scientific instrumentation makes it uncommon to have networking
>1 Gbps at microscopes. Upgrading networking infrastructure
requires a reconceptualization of network topologies which tend
to bear high costs. In turn, administrators are slow to make high-
speed networking (>10 Gbps) available. In an ideal scenario, this
limits data velocities to <100MB/s. In practice, many layers of
complexity render connecting scientific instruments to centralized
computing impractical. Additional latencies appear from compet-
ing network traffic, data ingestion at parallel file systems, and
transfer to computing resources. Furthermore, typical job scheduler
management systems used in HPC facilities are antithetical to
electron microscopy, which requires immediate computational
availability when experiments are ready. The solution is to analyze
the edge by leveraging technologies such as remote direct memory
access; data transferred over networks can be transferred directly to
the GPU over the peripheral component interconnect express
(PCIe) bus without CPU involvement and thus minimal latency.
Everything becomes more complicated when analyzing real-

time controls and triggering that requires inference with <ms-to-
nanosecond latencies. General-purpose hardware such as CPUs
and GPUs cannot be used as an instruction process, and input/
output (I/O) imparts latency commensurate with scientific
experiments. The only viable solution is to directly deploy
machine learning models on the extreme edge in programmable
logic. The convergence of researchers with knowledge of electron
microscopy, machine learning approaches, and programmable
logic is currently not well addressed. When deploying machine
learning on programmable logic, there are tradeoffs between
model performance, computational operations, and hardware
resources that must be carefully considered to meet the required
figures of merit for an application. This must be achieved through
codesign. Recently, several developments have assisted in
machine learning codesign on the extreme edge. Packages
including Brevitas and QKeras make simpler compressed machine
learning models using quantized-aware training. The optimization
of these models is assisted by second-order optimizers such as a
HAWQ specifically designed for quantization.
Similarly, the design cycles to deploy models on programmable

logic (e.g., field-programmable gate arrays [FPGAs]) and
application-specific integrated circuits have been facilitated by
tools such as HLS4ML110,111 and FINN112 that convert models
training in TensorFlow113, PyTorch114, and Onnx to HLS (high-level
synthesis) that can be synthesized into internet protocol (IP)-
blocks. These frameworks provide a simple abstraction that allows
tuning tradeoffs between model complexity, resource utilization,
and latency. Developing the physical and cyberinfrastructure to
simplify edge ML in electron microscopy offers tremendous
opportunities for growth and could enable entirely new imaging
modes and complex atomic-scale manufacturing.
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MICROSCOPE AS A PART OF DISTRIBUTED SYSTEM
With these considerations in mind, we can design a STEM
ecosystem needed to support remote autonomous experiments
employing edge computing and storage systems, as shown in Fig. 6:

● Local and remote access: Microscopes are manually operated
using custom software installed on control computers co-
located with instruments, which are typically connected only
to local hub networks. The network access from remote
computing nodes is established to both their hardware and
software which are protected by access controls and firewalls.

● Operation system (OS) and software: Microscope software is
typically proprietary and runs on Windows OS, and the
measurements are stored on the local computer, and the
storage systems often use custom mechanisms and formats.
Both control and data access from remote Linux servers may
be required, which entails interfacing different OSs, including
programming environments, file and data formats, remote file
mounts and host firewalls and access mechanisms. For
example, in ecosystem shown in Fig. 1, files on Windows
based network attached storage (NAS) are mounted on
remote Linux systems using cifs and sshfs.

● Networking: Network connections to control computers carry
both measurements and control traffic, typically, over the
same IP path and network interfaces. Over long network
connections, this non-separation can potentially lead to the
loss of instrument control when large measurement transfers
occupy the entire available bandwidth. Suitable end-to-end
network channels and mechanisms are provisioned between
the microscope control computers and remote servers.

An ecosystem design and implementation design are described
in refs. 56,76,115 based on separate end-to-end channels for control
and data that are serviced by software modules that communicate
across Windows and Linux OS. The control channels enable the
scientists and automated codes to remotely access the micro-
scope control computer and execute steering commands. The
microscope measurements are collected on the NAS and made

available on remote computing systems. In addition, a manage-
ment plane is utilized by the science users and administrators to
manage microscope, systems, NAS from the control node.
Figure 6 shows this design for ORNL ecosystem for the

microscope infrastructure. A Nion microscope with an attached
applicability statement 2 (AS2) controller is controlled by the
instrumentation control computer running Swift software. Upon
the completion of a manual or remote command, the measure-
ments from the microscope are transferred and stored on NAS,
which is configured to export its file system, thereby making it
available for analyses codes that utilize powerful remote comput-
ing systems such as servers with multiple GPUs. A control channel
is used to remotely access the instrument control computer for
sending control commands and parameters to steer the micro-
scope experiments. Upon command execution, the control
computer may send back the results or other data. Pyro client-
server codes are developed56,76 to support remote steering of
microscope experiments across the ecosystem. Pyro provides a
Python API for network access and is installed it on the control
computer’s Swift virtual environment and on the remote
computing systems. The computing capabilities of remote
computing systems, namely, DGX1 with 8 GPUs and Linux server
with 2 GPUs, are integrated into this ecosystem, and same
approach is applicable to high performance computing (HPC)
systems which typically are Linux based.
The alternative PNNL ecosystem design is shown in Fig. 7,

utilizing a universal JEOL-based platform running the pyJEM API.
The system integrates low-level API commands with an asynchro-
nous, centralized controller that networks all aspects of the
instrument and facilitates on-the-fly machine reasoning using
sparse data analytics and other ML models. The system abstracts
direct control of illumination, stage, and detectors, permitting
highly reproducible, standardized experimentation. Importantly, it
can rapidly incorporate new analytic models and harness on-
premises edge computing hardware, including an NVidia Jetson
AGX Xavier-based supercomputing system, for real-time classifica-
tion, segmentation, and denoising of data. The system is

Fig. 6 The ORNL microscope facility architecture. The architecture features an edge computing and storage system integrated into
networked ecosystem to enable remote, automated experiments orchestrated from remote computing nodes.
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interlinked with PNNL’s DataHub lab-level data architecture,
permitting automated curation of data and recall for subsequent
priming of experimentation. The instrument can be operated in
both ‘open-loop’ and ‘closed-loop’ modes and observed remotely
via a secure terminal connection. A key advantage of this
architecture is that the underlying controller and analytics can
be deployed on any JEOL hardware system, enabling rich
automated experimentation for a broad set of the microscopy
community.

DATA INFRASTRUCTURE FOR SHARED INSTRUMENT CLOUD
AND AUTOMATED MICROSCOPY
New powerful experimental microscopy instruments that are
capable of generating 100 s of TB/day are being built. Simulta-
neously, a new generation of powerful computational resources
including e.g., Exascale systems at DOE Leadership Computing
Facilities and on-demand cloud computing resources (e.g.,
Amazon Web Services, Microsoft Azure, Google Cloud Compute,
NSF Jetstream) while new automation software and services are
available to researchers. Thus, there exists an opportunity to
weave these varied experimental and computational resources
into a cohesive distributed data infrastructure composed of
software, services, and resources that facilitate data transfer and
movement, advanced computing, flexible policy definition and
execution, reusable and shared data, models, and workflows. With
such an infrastructure, it will be possible to realize ML-guided real-
time analysis and feedback-based microscope operation and to
build a connected cloud of instruments vastly increasing the
efficiency of instruments and potentially enabling new modes of
discovery. We share here key aspects of the enabling distributed
data infrastructure followed by an aspirational example of an ML-
guided near real-time STEM experiment.
We envision the development of a shared data infrastructure to

allow scientists at any networked facility to share data, workflows,
and models, instantly accessing the best performing AI algorithms
for image analysis from the model repositories and reusing data
collected from many instruments from data repositories to enabling
an optimized research process. Here, we discuss some of the key
data infrastructure components of the instrument cloud.

● Workflow Repository and Orchestration: A set of instrument
cloud capabilities are abilities to define, orchestrate, share, and
reuse workflows. For example, researchers may define work-
flows, comprised of steps, that coordinate and orchestrate
simple and complex actions - perhaps conditional on the results
of previous steps or other state. Such actions may include: 1)
specifying where and when data should be replicated to
locations where processing occurs; 2) defining which functions
are applied to data for processing; 3) depositing data and
metadata in a shared data repository at the end of the
experiment; 4) triggering actions conditional on workflow state,
and much more (e.g. Exaworks/Automate/Gladier).

● Data Collection and Movement: A core component needed to
realize a distributed data infrastructure is the software-defined
movement of data between heterogenous systems. These
software and services should allow data to be moved, as needed,
reliably and seamlessly between e.g., the systems where data are
collected, cloud storage, and eventually repositories where the
data are made available to the community (e.g. Globus).

● Flexible Computing: Microscopy workloads may necessitate
computation on a continuum of systems ranging from laptops,
cloud, GPU clusters, all the way to Exascale system. Microscopy
workflows may require regular retraining of ML models, on-
demand model inference, data cleaning and processing, and
more (e.g. Parsl, FuncX).

● Data Repository: The instrument cloud should have access to
repositories of previously collected data, potentially shared across
many institutions. These repositories should enable search for
existing data, or read and write of data and metadata with
defined data structures and metadata schemas. The repository
acts to provide 1) raw or processed data for the training of
models to guide future experiments, 2) metadata to allow users
or agents to search and discover what data are already available
and what experiments have been conducted, and 3) a place to
share data with the wider community (e.g. materials data facility
[MDF]/Foundry).

● Model Repository: The instrument cloud should also have access
to similarly read, write, and search for and shared models. For
example a model repository could contain 1) the latest and
versions of models trained and used as part to track provenance;
and 2) provide to simplify inference with registered models.

Fig. 7 The PNNL automated microscopy architecture (AutoEM). The architecture is based on asynchronous instrument control of JEOL
microscope hardware, leveraging low-level APIs (a), interchangeable sparse data analytics (b), abstracted control (c), and dynamic lab-level
data curation for both open- and closed-loop experimentation. Reproduced from Olszta et al.74 under CC.-BY-4.0 license.
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Finally, we define an aspirational ML-guided automated STEM
experiment flow that leverages the instrument cloud capabilities
described above. In this scenario, shown in Fig. 8, data are
collected at a high-powered microscope at ORNL or PNNL that
generates data at rates too fast to process with local compute
resources. Instead, the data are moved to a processing facility,
(e.g., at the nearby Oak Ridge Leadership Computing Facility
(OLCF) or PNNL’s Constance / Deception Supercomputer). Upon
data generation, a script automatically begins streaming the data
to the OLCF system for processing. Processed data and metadata
are added to a central repository that may also connect data from
external resources. At the same time, a policy is defined that
automatically initiates the GPU-heavy workload of model retrain-
ing upon collection of a new dataset for a specific material. The
new model(s) are stored in a model repository that may also
access external models. Finally, the trained model and weights are
sent back to the data collection for inference using a local GPU.
Critical to this flow is seamless and automated data and metadata
collection, data registration in a repository, flexible computing, a
policy engine to define where and when various compute
happens. Similar examples have been developed for common
workflows at beamlines at the Advanced Photon Source for
processing at the Argonne Leadership Computing Facility for near
real-time feedback (e.g. Gladier).

TOWARDS THE FUTURE
Scanning transmission electron microscopy and spectroscopy has
become one of the foundational tools in modern materials
science, condensed matter physics, chemistry, and biology. The
impact of this technique is directly related to the amounts of
quantifiable information on materials structure and properties it
can derive. The success of fields such as Cryo EM and small crystal
electron crystallography suggest that the availability of the data
analysis methods and operational workflows greatly amplifies the
value derived from technique developments and suggests
tremendous potential for the field growth.

One of the rapidly emerging trends in STEM is the development
of the automated experiments. Here, we overview some of the
challenges that transition from human-driven to automated
experiment EM will bring. On the instrument side, this necessitates
the development of the instrument-level hyper-languages that
allow to represent the human operations via minimal primitives.
On the ML side, it requires development of the supervised ML
algorithms that are stable with respect to the out of distribution
drift effects and active learning methods that can be trained on
small volumes of data. On the computational and network side, it
requires development of edge computing infrastructure capable
of supporting rapid analysis and decision making, and connect the
instrument to the global cloud. The latter in tern opens the
pathway to the effective data and code sharing, formation of the
distributed human-ML teams, and emergence of the lateral
instrumental networks.
However, the transition to the automated experiments also

requires deep changes in the way scientific community plans and
executes experimental activities. To date, all examples of the
automated experiment in microscopy we are aware of are
performed with the workflows based on fixed policies and a
priori known objects of interest. The only examples of beyond
human workflows include the inverse discovery experiments
based on the deep kernel learning. Going beyond simple imitation
of human operation and unleashing the power of automated
experiment requires clearly defining the experimental reward, i.e.
specific goals. This can include the discovery (curiosity learning),
hypothesis falsification, or quantitative measurements. Many of
these rewards are defined only within a broader scientific context
of specific domain applications. Secondly, this requires formulat-
ing the deterministic or probabilistic policies, i.e. algorithms
connecting the specific action expressed in the hyper language
and the observed state of the system (image or spectra). These
policies can be defined prior to the experiment to balance the
exploration and exploitation goals. Alternatively, and much more
interestingly, the policies can evolve along the experiment to
achieve the desired reward within the given experimental budget.
Overall, the current state of the AE in STEM is nascent but fast

changing. However, given the rapid emergence of the Python-

Fig. 8 An example workflow built using distributed data infrastructure to enable an AI-guided microscopy experiment. This general flow
encompasses (1) automated data collection at the microscope, and movement of these data to a processing location; (2) registration of these
data in a data repository; (3) periodic or policy-driven retraining of models on data collected in the data repository; (4) registration and
versioning of the newest model in a model repository and (5) movement of the model back to the data collection location or inference from a
cloud service. External data, metadata and models allow for sharing across workflows.
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based APIs and cloud infrastructure, remotely controlled micro-
scopes, and especially given recent advances in active learning
methods including Bayesian Optimization, reinforcement learning,
and other forms of stochastic optimization, this field is likely to
grow quickly in the coming years.
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