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Machine learning-enabled chemical
space exploration of all-inorganic
perovskites for photovoltaics
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The vast compositional and configurational spaces of multi-element metal halide perovskites (MHPs)
result in significant challenges when designing MHPs with promising stability and optoelectronic
properties. In this paper, we propose a framework for the design of B-site-alloyed ABX3 MHPs by
combining density functional theory (DFT) and machine learning (ML). We performed generalized
gradient approximation with Perdew–Burke–Ernzerhof functional for solids (PBEsol) on 3,159 B-site-
alloyed perovskite structures using a compositional step of 1/4. Crystal graph convolution neural
networks (CGCNNs) were trained on the 3159 DFT datasets to predict the decomposition energy,
bandgap, and typesof bandgaps. The trainedCGCNNmodelswere used to explore the compositional
and configurational spaces of 41,400 B-site-alloyed ABX3MHPswith a compositional step of 1/16, by
accessing all possible configurations for each composition. The electronic band structures of the
selected compounds were calculated using the hybrid functional (PBE0). Then, we calculated the
optical absorption spectra and spectroscopic limitedmaximumefficiencyof the selected compounds.
Based on the DFT/ML-combined screening, 10 promising compounds with optimal bandgaps were
selected, and from among these 10 compounds, CsGe0.3125Sn0.6875I3 and
CsGe0.0625Pb0.3125Sn0.625Br3 were suggested as photon absorbers for single-junction and tandem
solar cells, respectively. The design framework presented herein is a good starting point for the design
of mixed MHPs for optoelectronic applications.

Metal halide perovskites (MHPs) are a class of materials with the chemical
formula of ABX3, where A, B, and X represent monovalent organic/inor-
ganic cations, divalent metal cations, and monovalent halide anions,
respectively1 MHPs have received considerable research efforts1 owing to
their outstanding optoelectronic properties, low cost, and easy fabrication,
which make them promising materials for photovoltaics2, light-emitting
diodes3, lasers4, and photodetectors5. Among the various MHPs, com-
pounds containingmethylammonium (MA)or formamidinium (FA) at the
A-site and Pb at the B-site have been extensively studied and have
demonstrated the best optoelectronic properties5. However, commerciali-
zation of the MHPs is still challenging because of several obstacles, such as
the toxicity of Pb and instability under adverse conditions such as high
temperature andhumidity, which primarily originate fromorganic cations6.
Therefore, to facilitate their commercialization, MHPs with better stability
while containing less Pb should be developed without compromising their
optoelectronic properties6.

To overcome these challenges, several researchers have suggested
substitutional alloying (i.e., doping or mixing with different elements or
chemicals at each site in an MHP)7 as a promising approach for tuning the
stability and optoelectronic properties of MHPs8, and thus, the Pb-derived
toxicity of MHPs can be effectively mitigated by partially replacing Pb with
other elements. In thefield ofmetallurgy, the concept of high-entropy alloys
has recently demonstrated that mixing multiple elements can improve
thermodynamic stability by exploiting the large configurational entropy9.
This concept has also been applied in MHPs10. For example, the A-site
mixing entropy improved the stability of perovskite solar cells11,12 and light-
emitting diodes13. Moreover, high-entropy alloying of the B-site of
MAPbBr3 improved the colloidal stability and optical performance while
reducing the Pb content14. In this study, we primarily focused on B-site
alloying to achieve both improved stability and lower Pb content.

However, because the compositional space of MHPs with multiple
alloying elements is virtually infinite, utilizing an experimental design
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approach is not practical for exploring the chemical space of element-mixed
MHPs. Even the use of high-throughput experiments only achieved the
synthesis of a few tens of binary and ternary alloys of MHPs15–17. In this
regard, several computational approaches utilizing either density functional
theory (DFT) calculations18–21 or a combination of DFT with data-driven
machine learning (ML) models22–24 have been proposed for the rapid
screening of the compositional space of MHPs. For example, Wang et al.18

investigated the effect of entropy on the thermodynamic stability and
optoelectronic properties of Cs2B

+B3+Cl6 double-perovskite alloys using
DFT calculations. They used the special quasi-random structure (SQS)25,26

approach to model disordered double-perovskite alloys, showing entropy-
driven stabilization. Moreover, Yang et al.19 presented generalized gradient
approximation and hybrid-level computations on a DFT dataset of 495
ABX3 perovskite alloys, performed modeling mixed perovskites using the
SQS approach, and suggested 32 compounds showing promising stability
and photovoltaic efficiency from the screening.

For exploration using ML, Choubisa et al.23 developed a “crystal site
feature embedding” (CSFE) representation, which achieves low errors
when predicting DFT energies and bandgaps of mixed MHPs. They used
CSFE to explore the chemical space of MHPs and discovered how a small
amount of Cd doping (i.e., ~1.5%) can change the bandgap to 1.1 eV,
which is desirable for the active layers of solar cells23.Moreover,Mannodi-
Kanakkithodi et al.24 proposed an ML-driven high-throughput screening
framework based on the stability, bandgap, and defect tolerance of mixed
MHPs, where the tabulated elemental properties of each species of the
MHPs were used as inputs for ML (i.e., neural networks). Using the
proposed screening framework, 392 out of 17955MHPswere identified as
promising candidates for photon absorbers24.

Despite the practical applicability of the aforementioned computa-
tional design framework, most previous studies do not guarantee the most
stable atomic configuration for each composition. That is, previous
works18–21,23,24 utilized random sampling or SQS methods to estimate the
properties of random alloys and did not explore all possible configurations
exhaustively. Understanding the properties of the ground-state atomic
configuration is important because the atomic configuration of an alloy is
likely tobe themost stable configuration, and thepropertiesof alloys, suchas
the bandgap, can be significantly altered by configuration changes, even at
the same composition27,28. In this regard, Yamamoto et al.22 utilized the
cluster expansion approach to identify the ground state of B-site mixed
iodide perovskites (i.e., ABxB’1-xI3); however, the authors only investigated
the effect of B-site mixing on thermodynamic stability.

In this work, we propose a DFT/ML-combined framework (Fig. 1) for
the design of B-site-alloyed MHPs with improved stability and optoelec-
tronic properties by accessing all possible atomic configurations. To achieve
this, we employed a crystal graph convolution neural network (CGCNN)29

as a surrogate model for predicting the stability and the electronic band
structure computed at the Perdew–Burke–Ernzerhof functional revised for
solids (PBEsol) level30. For the construction of the DFT-calculated database
used for training the CGCNN, a 20-atom unit cell was used, in which B-site
alloyed MHPs were modeled with a compositional step of 1/4. The trained
CGCNN is then used to exhaustively explore the enlarged chemical space of
B-site alloyed MHPs with the increased compositional resolution by four
times (i.e., 1/16 compositional step) remaining the A- and X-sites as unary
(i.e., A: Cs, K, and Rb; X: Br, Cl, and I). ThroughML-assisted screening, 110
compounds were predicted to be thermodynamically stable and exhibited
promising electronic band structures, and validations on the
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Fig. 1 | Overview of the present study. a Schematic representation of crystal
structure for ABX3 metal halide perovskites (MHPs). B1, B2, B3, and B4 represent
elements positioned in the B-site of MHPs. bMixing of entropic contribution
ð�TΔSmixÞ in AB1

xB
2
1-xX3 system at varying temperature. c Histogram of

decomposition enthalpy (ΔHdecomp) with and without the mixed entropic con-
tribution (at T = 298 K) in our Perdew–Berke–Ernzerhof functional revised for
solids (PBEsol) dataset. d Schematic workflow of the present study.
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thermodynamic stability and electronic band structures were further con-
ducted using DFT calculations with the semi-local PBEsol and hybrid
PBE031 functionals, respectively. From this, we identified 10 promising
candidates for solar-cell application after examining the PBE0-calculated
bandgaps. To this end, the main contributions of our work can be sum-
marized as follows.
• Weexplored thewhole possible atomic configurational space using the

trained CGCNN model to identify the most stable atomic configura-
tions within the given B-site mixed MHP composition which is not
explicitly identified in the previous work as mentioned earlier.

• We expanded the explored B-site mixed MHP domain up to the
quaternary phase including the mixing entropy effect in terms of both
thermodynamic stability and the electronic properties compared to the
previous works which explored up to the ternary phase for B-site
mixing without the mixing entropy effect23,24.

• We proposed to use PBE031 combined with the spin-orbit coupling
(SOC) correction32 term as a more accurate approach for estimating
experimental bandgaps of MHPs exhibiting lower prediction error
compared to the other hybrid functionals such as HSE0633 and
B3LYP34.

Results
Design strategy
Figure 1d illustrates the overall workflow of this study. The generated
PBEsol data were used to train the CGCNNmodels (see details inTraining
data generation in METHODS section). Specifically, three CGCNN
models were independently trained to predict three target properties (see
details in Crystal Graph Convolutional Neural Networks training in
METHODS section): regression of the decomposition enthalpy (ΔHdecomp)
and bandgap (Egap) and binary classification for band type (see also Ther-
modynamic stability and bandgap of B-site mixed metal halide per-
ovskites in METHODS section for details on calculating each target
property). For the band type classification, the non-indirect and indirect
band types were labeled as positive and negative classes, respectively.

To explore the chemical space of multi-element MHPs, we used a
four-fold enlarged structure compared to the training data, containing 16
B-sites (i.e., 80 atoms per unit cell). This allows a finer resolution of the
compositional step (i.e., 6.25 at.%) andwe considered B-site alloying up to
the quaternary system. For each composition of the MHP, CGCNN-
predicted ΔHdecomp (i.e., ΔHCGCNN

decomp ) was used to identify the most stable
atomic configurations, and the mixing entropy term ð�TΔSmixÞ was
added to ΔHCGCNN

decomp at a temperature of 298 K. The entropic contribution,
�TΔSmix, is proportional to temperature, as can be seen in Fig. 1b.
Therefore, the entropy-driven stabilization is more effective at higher
temperatures. Even at 298 K, the distribution of ΔHdecomp � TΔSmix in
our trainingdata shiftednegativelywhen compared to that ofΔHdecomp, as
shown in Fig. 1c.

Next, we considered Bartel’s tolerance factor35, τ, which is a new
data-driven tolerance factor, to classify whether an arbitrary compound is a
perovskite (see details in Tolerance factor of B-site mixed metal halide
perovskites in METHODS section). τ exhibited better classification
accuracy than Goldschmidt’s tolerance factor36. We also compared the
classification accuracy of τ with that of Filip’s geometric limits for the
formability of perovskites37.After a comparisonof classification accuracy for
eight materials that were experimentally confirmed to exist as perovskites,
we concluded that τ predicts closer to the experimental results (see details in
Supplementary Note 2).

For solar-cell applications, CGCNN predicts the band type and
bandgap (ECGCNN

gap , hereafter) of the atomic configuration with the lowest
ΔHdecomp at each composition. Because the CGCNN model is trained to
predict PBEsol-calculated bandgap ðEPBEsol

gap Þ, we selected the compositions
showing direct bandgaps with the condition ECGCNN

gap < 0.5 eV as promising
compounds for photovoltaics. Considering that PBEsol underestimates
bandgap by approximately 1.0–1.5 eV when compared to PBE0 (refer to
Supplementary Table 5), we expect that the candidates satisfying the latter
condition (ECGCNN

gap < 0.5 eV) will show a PBE0-calculated bandgap ðEPBE0
gap Þ

of approximately 1.0–2.0 eV, which is close to an ideal bandgap range of
approximately 1.2–1.4 eV for single-junction photovoltaics according to
the Shockley–Queisser limit38. Moreover, this bandgap range (1.0 <
EPBE0
gap < 2.0 eV) is close to the ideal bandgap for a top cell in a tandem solar

cell (1.72 eV), with silicon as the bottom cell, which has a bandgap of
1.1 eV17.

The compounds selected based on the stability and band structure
criteria were further validated for their stability and band structure through
PBEsol and PBE0 calculations, respectively, to examine their potential
application in photovoltaics. We optimized the geometry of the selected
compounds using PBEsol and then calculated the band structure using
PBE0. We calculated the carrier effective mass, optical absorption spectra,
and spectroscopic limited maximum efficiency (SLME). The SLME was
calculated according to a previous study by Yu et al.39 using the open-source
SL3ME code (https://github.com/ldwillia/SL3ME). In the SLME calcula-
tions, the optical absorption spectra and bandgap were used as inputs,
assuming an air mass 1.5 global solar spectrum (https://www.nrel.gov/grid/
solar-resource/spectra-am1.5.html).

Analysis of the training dataset
The distribution of the thermodynamic stability of the 3,159DFT (PBESol)-
calculated training data was first analyzed, as shown in Fig. 2. As shown in
Fig. 2a, we observed that ΔHdecomp distribution moves toward a lower
energy regime (i.e., orange color inFig. 2a) by employing themixing entropy
term (i.e.,�TΔSmix). As expected, a greater shift to the stable region can be
obtained by mixing more elements. In fact, without considering the mixing
entropy, CsGeBr3 showed the lowest ΔHdecomp value among the 3159DFT-
calculated data; however, we obtainedmore stable data for the composition

Fig. 2 | Analysis of the training dataset.
a Decomposition enthalpy (ΔHdecomp) distribution
of 3159 density functional theory (DFT)-calculated
data with respect to the number of unique elements
in the B-site before (blue) and after (orange)
including the mixing entropy term (at T = 298 K),
respectively. b Difference in distribution of the
decomposition energy with the existence of Ge ele-
ment in the training dataset. Dashed lines indicate
the mean value of each decomposition energy
distribution.
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of CsGe0.25Hg0.25Pb0.25Sn0.25Cl3 corresponding to the lowest ΔHdecomp �
TΔSmix value among the entire 3159 data. Additionally, we note that alloys
with Ge lead to ΔHdecomp distribution in the lower energy range when
compared to that of alloys without Ge (Fig. 2b), which is consistent with the
results of previous computational studies19,24 (refer to Supplementary Fig. 6
for the effects of including other elements at the B-site). As shown in Sup-
plementary Fig. 6, alloys with Zn result inΔHdecomp distribution in a higher
energy rangewhen compared to alloyswithout Zn. Consequently,ΔHdecomp

becomes lowest (highest) when the B-site contains only Ge (Zn). Therefore,
when the B-site contains a single element, the ΔHdecomp distribution is
widest, while the ΔHdecomp distribution narrows as the number of elements
in the B-site increases.

We analyzed the correlation between perovskite formability as described
by Bartel’s tolerance factor (τ) and thermodynamic stability (Fig. 3a). Fig. 3a
shows a positive correlation between τ and ΔHdecomp � TΔSmix, as both
values indicate that compoundswith lower values aremore stable.However, a
regionshowing inconsistencybetween the twometrics exists atτ > 4.18,which
might be due to the imperfectness of τ. The dataset used to derive τ does not
contain B-site alloyed perovskites35, thereby resulting in an inaccurate
prediction for B-site alloyed perovskites. Moreover, τ ignores the mixing
entropy-driven stabilization (Eq. (3)); thus, when we compareΔHdecomp with
τ, less data exists in the inconsistent region (τ > 4.18 and ΔHdecomp < 0), as
shown in Supplementary Fig. 7. Specifically, the data deviating from the
positive correlation (i.e., τ > 4.18 and ΔHdecomp-TΔSmix <−85meV atom−1)
are all Ge-containing compounds, namely, CsGeBr3, CsGeCl3,
CsCd0.25Ge0.75Br3, andCsGe0.75Hg0.25Br3; however, experimental results have
confirmed that CsGeBr3 andCsGeCl3 exist as perovskite structures

40. Despite
this imperfection of τ, we can safely apply the condition, τ < 4.18, to screen
stable compounds if combined with the condition of maintaining the lowest
possible valueofΔHdecomp � TΔSmix, because the twometrics showapositive
correlation. For electronic band-related properties, as shown in Fig. 3b, the
amount of indirect-bandgap data was 4.68 times larger than that of the

non-indirect-bandgap data. Moreover, of the 905 data with a bandgap of less
than 0.5 eV, 654 data were indirect.

Next, we calculated the Pearson correlation coefficient between the
elemental fractions and the four output properties, ΔHdecomp, τ, bandgap,
and band type, and the results are illustrated in Fig. 3c.ΔHdecomp and τ tend
to be lower (more stable)when theA-site is occupied byCs, whereas I in the
X-site increasesΔHdecomp and τ (more unstable). An increase in the fraction
of Ge tends to decrease ΔHdecomp, whereas increasing the fraction of Zn
tends to increaseΔHdecomp. The bandgap tends to decreasewhen theA- and
X-sites are occupied byCs and I, respectively. Notably, the correlation trend
between ΔHdecomp and bandgap is opposite in the X-site: I (Cl) tends to
increase (decrease) ΔHdecomp but decrease (increase) the bandgap.
Increasing the Ge, Hg, and Sn fractions decreases the bandgap, whereas
increasing the Cd, Pb, and Zn fractions increases it. In this correlation
analysis of the band type, we represented the indirect band type as zero and
the non-indirect band type as one. Thus, a positive correlation implies that
increasing the fraction of certain elements tends to change the compounds
into non-indirect-bandgapmaterials and vice versa. TheCs fraction showed
the highest positive correlation (0.21), whereas the fractions of all other
elements exhibited a relatively low correlation with the band type.

Validation of the trained CGCNNmodels
To validate the prediction performance of the trained CGCNNmodels, we
plotted the test set prediction results, as shown inFig. 4.Whenpredicting the
thermodynamic stability (Fig. 4a), the trained CGCNN model showed
promising prediction accuracy with a mean absolute error (MAE) of
0.45meV atom−1, indicating that the model could effectively capture the
quantitative relation between the crystal structure and thermodynamic
stability.

The trained models also showed highly promising prediction perfor-
mance for the prediction of the bandgap (Fig. 4b) and band type (Fig. 4c).
Specifically, the prediction performance of the trained CGCNN model for

Fig. 3 | Visualization of the training data set.
a Decomposition enthalpy with mixing entropy
term ðΔHdecomp � TΔSmixÞ versus Bartel’s tolerance
factor (τ) and b histogram of bandgap with the
number of data for indirect and non-indirect
bandgap displayed. “Non-indirect” includes direct,
metallic, and semi-metallic materials. c Pearson
correlation coefficient between the four output
properties and fractions of elements.
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bandgap prediction (Fig. 4b,MAE of 0.037 eV and rootmean squared error
of 0.061 eV) was superior to that of a previous study24.

In the classification of the band type (Fig. 4c), our model showed
promising classification performance with a low inclusion of misclassified
data (i.e., false-negative and false-positive data). Only 3 and 10% of the
negative and positive classes, respectively, were misclassified with a high
accuracy of 0.96 and recall value of 0.90. In other words, our model could
effectively recover the true-positive distribution with a relatively low
inclusion of false-positive data from the negative class. Here, we noted that
the relatively low precision value of 0.84 was due to the class distribution
imbalance of the negative data (Fig. 3b). Despite the large class imbalance
between thepositive andnegative data, themodel shows a similar amount of
misclassified positive and negative data, as shown in Fig. 4c. Therefore, we
expectno significant reduction in sampling efficiency due to the inclusion of
false-positive data.

Design of B-site mixed MHPs for solar-cell application
As described previously, we applied the trained CGCNNmodels to explore
the chemical spaceof theB-site-alloyedMHPswith a four-fold enlargedunit
cell consisting of 80 atoms. For A- and X-sites, we considered the chemical
elements of {Cs, K, Rb} and {Br, Cl, I}, respectively. For B-site alloying, we
utilized the chemical elements of {Ge, Sn, Pb, Zn, Cd, andHg} under binary,
ternary, and quaternary alloying conditions. The compositional ratio of the
alloying was varied from zero to one in 0.0625 steps. Then the search space
consisted of 2025 chemical compositions for binary alloying and 18,900 for
ternary alloying. For quaternary alloying, we considered only Cs for the
A-site to reduce the computational cost of the search procedure. Through
the exploration of binary and ternary alloying systems, we determined that
ΔHdecomp becomes lowerwhenCs is in theA-site. Thus, the search space for
quaternary alloyingwas reduced to 20,475 compositions. For each chemical
composition, the CGCNN model was applied to all possible atomic con-
figurations to determine the lowest ΔHdecomp � TΔSmix. In total, 41,400
compositions and approximately 5.6 × 1011 atomic configurations were
explored for alloyed MHPs using the CGCNN model during the search
process. The details of computing 5.6 × 1011 atomic configurations are
described in the Supplementary Note 3.

Figure 5 shows the distributions of ΔHCGCNN
decomp � TΔSmix of

CsGexSn1-xBr3 and CsGexHgySn1-x-yCl3 systems as case examples, showing
the lowestΔHCGCNN

decomp � TΔSmix in binary and ternary systems, respectively.
Asmentioned previously, the CGCNN covers the compositions beyond the
chemical space of the training data because the unit cell size is four times

larger than that of the training data.We also observed large variations in the
ΔHCGCNN

decomp � TΔSmix for compositions with a highΔSmix (i.e., close to equi-
atomic ratio). In particular, at the fractionof 0.5 in Fig. 5a, three inequivalent
atomic configurations exhibit different ΔHdecomp in the training data, and
the energy deviation lies on the prediction range of our CGCNN models.
The lowest ΔHCGCNN

decomp � TΔSmix values predicted by the CGCNN model
(x = 0.75 for Fig. 5a and x = 0.5625, y = 0.25 for Fig. 5b) were validated once
again using DFT calculations, as shown in Fig. 5. The error between the
CGCNN predictions and the DFT data (80 atoms) was below
10meV atom−1.

With the most stable atomic configurations for each composition, we
applied the following four screening criteria to discover potentially pro-
mising candidates for solar-cell application: (1) non-indirect bandgap, (2)
ECGCNN
gap < 0.5 eV, (3) τ value that is as low as possible (i.e., τ < 4.18), and (4)

ΔHCGCNN
decomp � TΔSmix that is as low as possible (i.e.,ΔHCGCNN

decomp � TΔSmix<0).
However, increasing the fractionofGe tends todecreaseΔHdecomp, as shown
in Fig. 2b; therefore, we selected candidates with the top three low values of
ΔHCGCNN

decomp � TΔSmix within each region divided into five intervals for τ
lower than 4.18.We additionally selected candidates containing at least 50%
Sn or Pb, because Sn- and Pb-containing MHPs are the most promising
materials for solar-cell applications41. Throughout the screening procedure,
110 compounds were selected.

Subsequently, the 110 selected compounds were validated using DFT
calculations with the PBEsol functional. We determined that the error
between ΔHCGCNN

decomp � TΔSmix and ΔHPBEsol
decomp � TΔSmix did not exceed

6meV atom−1 (view Supplementary Fig. 8a for the error distribution).
However, in the case of the bandgap and band type, the predictions from the
CGCNNwere significantly inaccurate. That is, the CGCNN predicted that
all 110 compounds would have a non-indirect bandgap; however, 79
compounds exhibited an indirect bandgap. Moreover, the MAE for band-
gap predictionswas 0.038 for systemswith 20 atoms, whereas it increased to
0.14 for systems with 80 atoms (Supplementary Fig. 8b). We assume that
these results were obtained as the band structure-related properties do not
change continuously with compositional variations when compared to the
thermodynamic stability, causing high prediction uncertainty for unseen
compositional space. The detailed analysis of increased bandgap prediction
error can be found in the Supplementary Note 4, Supplementary Table 1,
Supplementary Fig. 2, and Supplementary Fig. 3. One practically applicable
strategy to enhance the prediction reliability could be adding training data
randomly selected from the target domain after the DFT calculations as
similarly done in the active learning strategy. A detailed description of the

Fig. 4 | Validation of trained models. Parity plot between crystal graph convolution neural network (CGCNN)-predicted and DFT (PBESol)-calculated (a) ΔHdecomp and
b bandgap on the test set. c: Confusion matrix of classification test. “Non-indirect” includes direct, metallic, and semi-metallic materials.
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mitigation strategy can also be found in the Supplementary Note 5 and
Supplementary Fig. 4.

We calculated the PBE0 bandgap for only those compounds that were
calculated to have a direct bandgap using PBEsol, yielding 31 candidates
(refer to Supplementary Table 5 for the full list of the selected 31 candidates)
withEPBE0

gap close to the Shockley–Queisser limit38 (1.2–1.4 eV)or the optimal
bandgap of the top cell of a tandem solar cell17 (1.73 eV). From among these
31 compounds, 10 compounds showing an optimal bandgap were selected
for each system, as summarized in Table 1. All selected compounds have
direct bandgaps, as shown in Supplementary Fig. 9.

Previous experimental results have been reported for compositions
similar to those listed in Table 1. We compared experimental and PBE0-
calculated bandgaps of those compounds inTable 2. The difference between
experimentally reported band gaps and DFT-calculated band gaps for 19
reported perovskite compounds is summarized in Supplementary Table 4.
Previous experimental studies have reported CsGexSn(1-x)Br3

42,
CsGe0.5Sn0.5I3

43
, CsPbxSn(1-x)Br3

44, and CsGexPb(1-x)I3
45 as light absorbers

for perovskite solar cells. Combining Table 2 and Supplementary Table 4,
the root mean squared error (RMSE) between the experimentally reported
bandgaps and our PBE0-calculated bandgaps is approximately 0.30 eV (see
also Supplementary Fig. 5). Specifically, in the CsGexSn(1-x)Br3 system, the
PBE0 band gap underestimates the experimental band gap by approxi-
mately 0.5 ~ 0.6 eV, while for other systems, it underestimates approxi-
mately 0.1 eV.

The effectivemass of the carriers listed in Table 1 does not exceed 1me

(mass of free electrons), except for CsGe0.5625Hg0.3125Sn0.125Cl3 and
CsCd0.125Ge0.5625Hg0.1875Sn0.125Cl3. The carrier effective mass is known to
directly affect themobility of electrons in the electron transport layer, which
in turn affects the power conversion efficiency of solar cells. The optical
absorption spectra and SLME versus the sample thickness are shown in
Supplementary Fig. 10.Note that the SLME inTable 1 is a convenientmetric
for comparing the suitability of the compounds for photon absorbers;
however, it does not represent a realistic power conversion efficiency.
Considering that our EPBE0

gap value underestimates Eexp
gap by approximately

0.5–0.6 eV in the CsGexSn1-xBr3 system, the SLME of CsGe0.5625Sn0.4375Br3

and CsGe0.4375Pb0.0625Sn0.5Br3 will be lower than that of
CsCd0.125Ge0.5625Hg0.1875Sn0.125Cl3. Thus, considering both the
stability and SLME, we suggest that CsGe0.3125Sn0.6875I3 and
CsGe0.0625Pb0.3125Sn0.625Br3 are promising single-junction and tandem
perovskite solar cells, respectively.

Discussion
Although the DFT/ML design framework presented here shows several
promising aspects, substantial challenges still exist, whichmust be overcome
for the experimental achievement of this framework. A discrepancy exists
between the EPBE0

gap and Eexp
gap values. Owing to the significant discrepancies

between CGCNN predictions and DFT results regarding the band type,
certain compounds thatwerepredicted as indirect-bandgapmaterials by the
CGCNNmay be direct bandgapmaterials in reality. Themitigation strategy
for bandgap prediction is described in the Supplementary Note 5. Fur-
thermore, our metric of thermodynamic stability, ΔHdecomp � TΔSmix,
ignores the fact that Ge and Sn readily oxidize to a+ 4 state during the
fabrication procedure, resulting in a significant loss of open-circuit
voltage46,47. Further extension should be made to consider other impor-
tant properties such as defect formation energy, electronic levels of such
defects, charge carrier transport properties, and stability of surfaces and
interfaces of perovskites for photovoltaics and other optoelectronic appli-
cations. Finally, A- and X-site alloying should also be considered in future
studies.

This study explored the chemical space (compositional and configura-
tional) of B-site-mixed all-inorganic perovskites by combiningDFT andML.
A total of 3,159 PBEsol data points were generated for the thermodynamic
stability, bandgap, and bandgap type. The CGCNNmodels were trained on
the PBEsol data using the crystalline structures as inputs to predict the
aforementioned properties. The trainedCGCNNmodels screened 110 of the
41,400 compoundswith desirable properties.Of the 110 compounds, 31were
selected after examining their band types and PBE0-calculated bandgaps.
Furthermore, the carrier effective masses, optical absorption spectra, and
SLMEof10of the31compoundswere calculated.Among the10compounds,
CsGe0.3125Sn0.6875I3 and CsGe0.0625Pb0.3125Sn0.625Br3 were suggested as

Fig. 5 | ML-enabled search of alloyed perovskite systems. a CGCNN-predicted
ΔHdecomp � TΔSmix of a CsGexSn1-xBr3 and b CsGexHgySn1-x-yCl3 systems in
comparison with the training and DFT data (80 atoms). The variance of CGCNN
data is represented as a line at each composition. In b, only the lowest ΔHdecomp �

TΔSmix value is plotted at each composition for clearance. In b, the validation and
CGCNN data at the same composition (Ge: Hg: Sn = 0.5625: 0.25: 0.1875) are
−107.60 and −103.79 meV atom−1, respectively.
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promising single-junction and tandem perovskite solar cells, respectively,
considering their stability and SLME.We have also presented the limitations
of this study and perspectives for future research. The DFT/ML design fra-
mework proposed herein forms the basis for designing perovskite alloys with
desirable properties.

Methods
Training data generation
Training data were generated through DFT calculations using PBEsol30. As
shown in Fig. 1a, we employed a crystal structure consisting of four formula
units of ABX3 as a computational unit cell (i.e., the number of atoms in the
unit cell = 20), with a focus onmulti-elementmixing at theB-site. For theA-
andX-sites inABX3, we used one of the threemonovalent alkali cations (Cs,
K, and Rb) and one of the three halogen anions (Br, Cl, and I), respectively.
We excluded organic cations such as methylammonium (MA) and for-
mamidinium (FA) from the A-site for two reasons: (1) instability issues of
perovskite devices that primarily arise from organic components6 and (2)
higher positional degrees of freedom than alkali elements, which cause
additional energy contributions from variousmolecular configurations. For
the B-site,we consideredmulti-elementmixing of sixmetal cations (Cd,Ge,
Hg, Pb, Sn, and Zn) up to the quaternary system because four available
atomicpositionsof theB-site existwithin the consideredcomputational unit
cell, giving 126 (= 6H4, combination with repetition) compositions. From
this, 1134 (= 3 × 126 × 3) unique ABX3 compositions were obtained, and by
considering all possible atomic configurations within each composition,
3159 unique B-site-mixed ABX3 structures were obtained for the training
data. The details of obtaining 3159 unique structures are described in
Supplementary Note 1 and Supplementary Fig. 1. The aforementioned six
metal elements for the B-site were chosen to minimize any significant
perturbation of the electronic structure of the pristine Pb-based halide
perovskite, which is good for applications in solar cells. To achieve this, we
intentionally chose cations that exhibit electronic similarities to Pb2+ ions.
This selection was based on two key conditions: 1) maintaining the same
charged state (2+) and 2) ensuring filled d-electron orbitals. The idea
behind these conditions originated from theunderstanding that considering
a cation with a different charge state can result in charge imbalances,
potentially leading to the formation of metallic materials. Additionally, the
presence of unfilled d-orbitals tends to introduce complex interactions with
anions, leading to a markedly different electronic structure.

Crystal Graph Convolutional Neural Networks training
For all CGCNNmodels, an unrelaxed input geometry was used as the input
to predict the target properties of theDFT-relaxed structures, which allowed
us to predict the target properties of the relaxed structureswithout the costly
DFT structural relaxations. Here, the experimentally well-known structure
of CsPbI3 was used as the input for the CGCNN models; moreover, we
present the crystal structure of CsPbI3 in the CIF format in Supplementary
Note 6. The atomic features of the original CGCNN paper29 and default
hyperparameters of the CGCNN code distributed in GitHub (https://
github.com/txie-93/cgcnn) were used. The hyperparameters used in this
study are listed in SupplementaryTable 3.A total of 3159PBEsol data points
were randomly divided in a ratio of 7:1:2 as training, validation, and test
data. The validation data were used to determine the model parameters
using an early-stopping approach.

Table 2 | Comparison between PBE0-calculated and experi-
mental bandgap (EPBE0

gap and Eexp
gap, respectively) of compounds

in Table 1

Formula EPBE0
gap ðeVÞ Formula Eexp

gapðeVÞ
CsGe0.5625Sn0.4375Br3 1.39 CsGe0.5Sn0.5Br3 2.042

CsGe0.3125Sn0.6875I3 1.34 CsGe0.5Sn0.5I3 1.5043

CsPb0.3125Sn0.6875Br3 1.73 CsPb0.3Sn0.7Br3 1.8344

CsGe0.375Pb0.625I3 1.77 CsGe0.1Pb0.9I3 1.69845
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Thermodynamic stability and bandgap of B-site mixed metal
halide perovskites
To estimate the thermodynamic stabilities of the compounds, we used the
previously defined decomposition enthalpy, ΔHdecomp

19–22,24. Decomposi-
tion enthalpy is defined as the difference between the energy of ABX3 and
the sum of the energies of the most stable AX and BX2 phases. Thus,
ΔHdecompof theB-sitemixedMHPs (i.e.,AB*X3,whereB* representsmixed
B-site species such as Cd0.25Ge0.75 and Hg0.25Pb0.25Sn0.5) can be defined as
follows:

ΔHdecomp AB�X3

� � ¼ E AB�X3

� �� E AXð Þ �
X

i

xiE BiX2

� �
; ð1Þ

whereE is theDFT-calculated total energy of the relaxed geometries and xi is
the fraction of the element Bi. From Eq. (1), we can observe that a more
negative ΔHdecomp indicates that the system is more stable when compared
to the other binarymetal halide phases (i.e., AX and BX2). The energetically
most stable structures for the AX and BX2 phases were obtained from
Materials Project (MP), an open-access database that offers material
properties48. Conversely, the structure ofGeCl2was retrieved from theOpen
QuantumMaterials Database (OQMD)49 because the structure of GeCl2 is
not available in the MP. We present a list of MP or OQMD IDs of AX and
BX2 phases and their DFT (PBESol)-calculated total energies in
Supplementary Table 2.

The mixing entropy, ΔSmix, is defined as the configurational entropy
based on the ideal solid solution model (Eq. (2)):

ΔSmix ¼ �kB
XN

i¼1

xi lnxi; ð2Þ

where kB is the Boltzmann constant,N is the number of components at the
B-site, and xi is the atomic fraction of component i at the B-site.

In addition to the thermodynamic stability, the band type andbandgap
(Egap) were calculated to estimate the possibility of application in photo-
voltaics at the PBEsol level. Because MHPs with indirect bandgaps are not
usually suitable for photovoltaics, we classified the band types into two
categories: indirect and non-indirect (i.e., direct, metallic, and semi-metal-
lic).Materials determined to have ametallic or semi-metallic bandgap using
PBEsol canbe identifiedas having adirect bandgapusingPBE0; thus,wedid
not exclude them from the PBE0 calculations. This approach assumes that
the band types calculated using PBEsol and PBE0 are consistent with each
other, although the bandgap calculated using PBEsol (EPBEsol

gap ) is under-
estimated when compared to that calculated using PBE0 (EPBE0

gap ).

Tolerance factor of B-site mixed metal halide perovskites
According toBartel et al.35, the probability of a compoundbeing aperovskite
increases as τ becomes smaller than 4.18, and vice versa. τ is calculated using
Eq. (3):

τ ¼ rX
rB

� nA nA �
rA
rB

ln rA
rB

� �

0

@

1

A; ð3Þ

where nA is the oxidation state ofA and ri is the ionic radius of ion i. Here, rB
is the composition-weighted average of the ionic radius of each B element
(i.e., rB ¼ PN

i¼1xirBi ). We selected the compositions showing ΔHdecomp �
TΔSmix < 0 and τ < 4.18 as stable compounds.

Density functional theory calculations
AllDFT calculationswere performed using theViennaAb initio Simulation
Package (VASP) 6.1.2.50, and projector augmentedwave pseudopotentials51.
The pseudopotentials of all elements were chosen according to the official
recommendations of the VASP. For training data generation and final DFT
validation of the selected compounds, the projection operators of the
nonlocal part of the pseudopotential were calculated in reciprocal and real

spaces, respectively. The energy cut-off for a plane-wave representation was
500 eV. All the cell parameters and atomic coordinates are relaxed using a
convergence criterion of 10−5 eV on the energies of the self-consistent
electronic step and 0.01 eV/Å on the atomic force. The Brillouin zone was
sampled using a Γ-centered automatic k-points generation scheme that was
implemented in VASP, with a length of 50Å for determining the subdivi-
sions. Cell relaxation was performed first; then, the energy was obtained
from the consequent fixed-cell relaxation.

The band structure was calculated for the training data and for the
selected compounds through screening. For training data generation, the
band structurewas calculated using PBEsol at high-symmetry k-points in the
line mode. For the final DFT validation of the selected compounds, the band
structures were calculated using PBE0 with Γ-centered 2 × 2 × 2
Monkhorst–Pack k-points. According to PBEsol, the band edges of all the
selected compounds were predicted to lie on the high-symmetry k-points
contained in the Γ-centered 2 × 2 × 2 Monkhorst–Pack k-point. Therefore,
the Γ-centered 2 × 2 × 2 Monkhorst–Pack k-points were used in the PBE0
calculation to calculate the bandgap and reduce the computational time. Both
band structure calculations used the PBEsol-optimized structure as the input
and SOC corrections32. We compared the bandgaps calculated using PBE0,
HSE0632, and B3LYP33 functionals for 19 representative perovskite materials
with known experimental bandgaps, as shown in SupplementaryTable 4 and
Supplementary Fig. 5. After comparison,we found that PBE0 best alignswith
the experimental bandgaps. The VASPKIT code52 was used to determine the
PBEsol band type and bandgap from the data calculated using VASP.

The effectivemasses of electrons andholeswere calculatedbasedon the
PBEsol-calculated band structures using the sumo53 software, which is a set
of command-line tools for plotting and analysis of periodic ab initio cal-
culations. The optical absorption spectra were calculated using the LOP-
TICS tag54, setting the number of grid points at which the density of states
(NEDOS tag) was set to 2000 for each structure. We obtained optical
absorption spectra on Γ-centered 4 × 4 × 4 Monkhorst–Pack k-points with
the k-point down-sampling scheme using the PBE0 functional with SOC
corrections. Sumo53 was also used to post-process the optical absorption
spectra.

Data availability
The datasets generated and/or analyzed during the current study are
available at https://github.com/KRICT-DATA/Perov_CGCNN. Please
consult the corresponding author with further questions or requests.

Code availability
The underlying code for this study is available at https://github.com/
KRICT-DATA/Perov_CGCNN. Please consult the corresponding author
with further questions or requests.
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