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Uncertainty quantification (UQ) is rapidly becoming a sine qua non for all forms of computational
science out of which actionable outcomes are anticipated. Much of the microscopic world of atoms
andmolecules has remained immune to these developments but due to the fundamental problems of
reproducibility and reliability, it is essential that practitioners pay attention to the issues concerned.
Here aUQstudy is undertaken of classicalmolecular dynamicswith a particular focus on uncertainties
in the high-dimensional force-field parameters, which affect key quantities of interest, including
material properties and binding free energy predictions in drug discovery and personalized medicine.
Using scalable UQ methods based on active subspaces that invoke machine learning and Gaussian
processes, the sensitivity of the input parameters is ranked. Our analyses reveal that the prediction
uncertainty is dominated by a small number of the hundreds of interaction potential parameters within
the force fields employed. This ranking highlights what forms of interaction control the prediction
uncertainty and enables systematic improvements to be made in future optimizations of such
parameters.

Classical molecular dynamics simulation, originally created in the late
1950s, has become one of themost common computer-basedmethods used
to investigate the behavior of molecular and condensed matter systems
whether in the context of physics, chemistry, materials, life or medical
research1,2. It is routinely used in an attempt to understand the physico-
chemical mechanisms underlying not only microscopic properties of such
systems but also to explore their macroscopic properties, such as thermo-
dynamic and mechanical behavior and, in combination with quantum
mechanicalMD, can account for up to 50% of the cycles consumed on large
scale supercomputers3,4.

Remarkably enough, molecular dynamics is used routinely in many
important areas of science and technology without much attention being
paid to its reliability and reproducibility. Practically speaking, along with
many other microscopic modeling and simulation methods, it is rarely
encountered at the sharp end of decisionmaking, which requires actionable
outcomes from simulations executed in a timelymanner.However, in recent
times the field of validation, verification and uncertainty quantification
(VVUQ) has come to the fore as a means of assessing the reliability and

reproducibility of computer simulation techniques, with particular focus on
areas inwhichmodeling and simulationare applied to assist decisionmaking
in safety-critical situations such as those arising in tsunami modeling5,6, the
design of environmentally friendly energy generation plants7,8, engineering
and construction projects9,10 as well as disaster evasion11,12.

Such (macroscopic) studies generally involve the application ofVVUQ
methods to systems of (nonlinear) partial differential equations, or (graph-
based) discrete structures. Many microscopic descriptions of matter have a
different algorithmic structure. Relatively speaking, these algorithms have
been exposed to less uncertainty quantification. They are particulate in
nature so the treatment of uncertainty and reliability is somewhat different.
Nonetheless, the general principles of VVUQ remain the same. In this
article, we shall be focusing on uncertainty quantification (UQ), assessing
the source and quantifying the size of errors originating from the equations
used to describe the behavior of matter. These equations are, of course, very
well known - they areNewton’s equations ofmotion, applied to the detailed
molecular motion of assemblies of atoms within molecules and, in con-
densed phases, large assemblies of suchmolecules in the solid or liquid state.

1ScientificComputingGroup,CentrumWiskunde& Informatica, Amsterdam, TheNetherlands. 2Université deRennes,CNRS, Institut dePhysiquedeRennes,UMR
6251, Rennes 35000, France. 3Department of Statistical Science, University College London, London, United Kingdom. 4Centre for Computational Science,
University College London, London, United Kingdom. 5AdvancedResearchComputing Centre, University College London, London, United Kingdom. 6Informatics
Institute, University of Amsterdam, Amsterdam, The Netherlands. e-mail: p.v.coveney@ucl.ac.uk

npj Computational Materials |           (2024) 10:87 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01272-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01272-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01272-z&domain=pdf
http://orcid.org/0000-0001-7192-1999
http://orcid.org/0000-0001-7192-1999
http://orcid.org/0000-0001-7192-1999
http://orcid.org/0000-0001-7192-1999
http://orcid.org/0000-0001-7192-1999
http://orcid.org/0000-0002-8787-7256
http://orcid.org/0000-0002-8787-7256
http://orcid.org/0000-0002-8787-7256
http://orcid.org/0000-0002-8787-7256
http://orcid.org/0000-0002-8787-7256
mailto:p.v.coveney@ucl.ac.uk


In UQ one often starts by first dividing the sources of uncertainty into
aleatoric and epistemic components. In forward parametric UQ, the latter
are concerned with how uncertainties in the parameters used to set up,
control and run a simulation impact the quantities of interest (QoIs) being
computed. These parameters are epistemic, as withmore knowledge and/or
data it is possible to obtain better estimates of their values. In a classical
molecular dynamics simulation, the dynamical behavior is determined by
the forceswhich eachatomexerts on the others, as these forces directly enter
Newton’s equations of motion, the solution of which provides a description
of the trajectories of all the particles, or, more technically, of a single point
moving in the (6N+1)-dimensional phase space comprising all the posi-
tions and velocities of the N particles in the simulation and the time t. The
sum of all the forces is known as the force field, and it is obtained from the
interaction potentials that describe these atomistic interactions. As is well
known, there exists a range of force fields (or interaction potential para-
meterizations) which are known to do a generally reasonable job of
describing many different systems, from condensed matter physics,
chemistry and materials to biological and biomedical cases of concern.
While we have studied the effect of 14 uncertain simulation parameters
(epistemic parameters not related to the force field, e.g. thermodynamic
inputs associated with the temperature or pressure) in a previous study13,
there are orders of magnitude more force-field parameters to contend with
inmost all-atomMDsimulations. Some earlier attempts have beenmade to
investigate parametric uncertainty and its propagation in MD simulations
for limited force field parameters in simple molecular systems, such as for
three force-field parameters in TIP4P water14 and for two Lennard-Jones
energy parameters in an aqueous NaCl solution15. In more complicated
molecular systems, there are hundreds of force field parameters as a con-
sequence of the wide range of different atoms present in real-world situa-
tions (see Section “Selection of models and interaction potential
parameters”). It is the study of uncertainty in these parameters which is the
focal point of this paper.

In addition, we also deal with sources of aleatoric uncertainty. By this,
we mean the inherent uncertainty that cannot be reduced with increased
knowledge, which in our case arises from the presence of random number
generators or ‘seeds’ in the MD codes. Molecular dynamics provides an
example par excellence of chaos, by which we mean that the trajectories
manifest extreme sensitivity to the initial conditions. Remarkably, this is a
facet of the method which is seldom discussed in any MD publication, and
yet the sheer fact of its existence immediately points to a problem in terms of
its reproducibility - it is essentially impossible to reproduce the result of any
molecular dynamics simulation. That the dynamics is chaotic is also deeply
connected to the existence of thermodynamic equilibrium states: in the
hierarchy of ergodic theory, a necessary and sufficient condition for a
dynamical system to exhibit an approach to equilibrium is that thedynamics
is mixing. Mixing in turn implies chaos. Moreover, mixing is a stronger
property than ergodicity itself: mixing implies ergodicity but is not implied
by it16.

In order to get control of such aleatoric uncertainty, onemust perform
ensembles of simulations, by which we mean that a large number of
‘replicas’ (model simulations at the same epistemic parameters and a dif-
ferent random seed) are executed concurrently on a large enough computer,
and statistical averages fromall the simulations are calculated. In thiswaywe
obtain results which are statistically robust, reproducible and can be treated
as scientificallymeaningful. For thosewho regard a singleMDsimulation as
computationally expensive, the requirement to perform ensembles of such
simulations comes as a bitter pill. Although it is now dawning onmany that
they must run more than one simulation, they prefer to think that they can
run threeand thatwill suffice.This is basedon the experimentalists’oft-cited
protocol which is sufficient to produce a mean and a standard deviation to
report on a measurement. By now, it is evident that this minimal size of
ensemble, often referred to as a set of ‘repeats’, will not cut themustard. Even
to assess the true nature of a normal distribution, one often needs many
more such measurements; but – and much to the surprise of many – the
distribution of quantities of interest is frequently non-normal, possessing

manymore than only twomoments and leading to unexpected behavior of
the QoIs13,17.

Existing formsofUQoften suffer from the curse of dimensionality (e.g.
refs. 18,19),which is to say that in order to investigate how the uncertainty in
the input parameters affects the outputQoIs onemust perform a number of
simulations which increases exponentially withD, the number of uncertain
parameters under investigation. That said, such methods as Polynomial
Chaos (PC) expansions can show very rapid convergence at low parameter
counts and have been applied in the context of MD14. PC expansions can
also subsequently be used to accelerate Bayesian calibration of (low-
dimensional) force-field parameters, see e.g. ref. 20. For any non-trivial
computational model, such as MD with D > 10, this quickly becomes
impractical, and the expense is rendered even greater as in many cases one
must perform ensemble averaging over random seeds before one can assess
the uncertainty in the epistemic parameters. New UQ methods capable of
handling high-dimensional parameter spaces are required to address such
situations.

These high-dimensional UQmethods bank on the existence of a low-
dimensional ‘effective dimension’21, where a (hopefully small) subset of the
input parameters is responsible formost of the variance in themodel output.
The effective dimensionality of a model is closely related to the concept of
‘sloppiness’; see ref. 22 for a recent review. Sloppy models are characterized
by an insensitivity to changes in parameter values in certain directions of the
parameter space. This poses challenges for (inverse)UQproblems, as sloppy
combinations of parameters are not informed by data, yet they do increase
the dimension of the UQ problem, thereby slowing down convergence.
Interaction potentials have also been shown to be sloppy, see e.g. the recent
work of Kurniawan et al.23. To obtain a local measure of sloppiness, an
eigenvalue decomposition of the Fisher Information Matrix (FIM) eval-
uated at the best-fit parameters is performed23,24. Sloppiness is said tooccur if
these eigenvalues span orders of magnitude, and have only a few large and
many small values. The corresponding eigenvectors identify the stiff/sloppy
directions in the parameter space respectively, where stiff directions are
those along which the model can be informed by data.

A downside of the aforementioned approach is that the FIM is a local
quadratic approximation of the cost surface (the metric that quantifies how
well the parameters fit the available data, i.e. a loss function), valid in the
neighborhoodof thebest-fit parameters. Instead,wewill use global, ensemble-
based methods to identify the effective dimensionality, which require a
sampling algorithm to draw new parameter values. One could employ an
adaptive strategy where the most important parameters are found via an
iterative sampling algorithm13,25,26, refining only the dimensions of influential
inputs. Instead, the authors of refs. 27,28 introduced a coordinate transfor-
mation (applied in the context of (Gaussian) PC expansions), that looked at
linear combinations of all parameters instead of individual inputs. Projection
operators were developed that project to a very low-dimensional structure
around which the probabilistic content of the (scalar) model output is con-
centrated. Similarly, active-subspacemethods29 also look for low-dimensional
linear combinations of all parameters, along which themodel varies themost
onaverage.Thesedirectionsof the strongest variability, i.e. theactive subspace,
form a new low-dimensional coordinate system which is rotated from the
original coordinate system of the individual inputs. Note that the active-
subspace directions are the equivalent of the stiff directions in the sloppy
model literature, although the active subspace is determined from an eigen-
value decomposition of a global matrix constructed from the gradient of the
model with respect to its input parameters. By looking at linear combinations
of inputs rather than individual input parameters, active-subspace methods
can lead to a much more significant reduction in the input dimension com-
pared to adaptive sampling techniques. Inpractice, it is notuncommontofind
a one-dimensional active subspace; see for instance references30–35. Once such
anactive subspacehasbeen identified, a low-dimensional surrogatemodel (an
approximation which can be evaluated rapidly) of the high-dimensional
simulation code is constructed in this subspace.

Theoriginal versionof the active subspacemethod requires evaluations
of gradients of the model; here we would need to differentiate the MD code
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predictions with respect to simulation and force-field parameters, which is
practically infeasible. For these circumstances several derivative-free active-
subspacemethods have been developed.One suchmethod has been applied
to a simple MD model34, using a local linear interpolant to estimate the
derivatives. Unlike the study we report here, however, the parameter space
considered was low-dimensional (7) and the simulation setup was much
simpler, involving a single atom type and crystalline order of the atoms,
avoiding the need for ensemble averaging. The study was also limited to a
single macroscopic quantity of interest.

Instead, we will use a recently developed neural network based
approach which is scalable in D, called the Deep Active Subspace (DAS)
method36,37, which allows us to probe the uncertainty of at least hundreds of
parameters. In addition, we compare our findings with a derivative-free
kernel-based method which uses a Gaussian Process (GP) as a surrogate
model38. The latter approach is denoted as theKernel-basedActive Subspace
GP (KAS-GP) method in the following discussion. We describe our
methods here and apply them to perform uncertainty quantification and
sensitivity analysis for several different real-world molecular dynamics
systems comprising:
(i) Epoxy-resin thermosetting polymer materials, predicting mechanical

properties, namelyE, theYoung’smodulus, an indicator of the stiffness
of the material, and the Poisson ratio, which is the ratio of lateral to
axial deformation when straining the material in a given direction.

(ii) Protein-ligand biomolecular systems, where binding free energies are
computed. Two types of binding free energies are investigated: the
absolute binding free energy (shortened as ‘binding free energy’
hereafter) which is a quantitative measure of the strength of protein-
ligand binding, and the relative binding free energy which is the
difference of binding free energies between two ligands. Reliable
prediction of such properties plays an important role in drug discovery
and personalized medicine.

Within this study, we have used two different molecular dynamics
engines, LAMMPS39 for epoxy-resin polymer materials and NAMD40 for
protein-ligand biomolecular systems. The absolute and relative binding
free energies are calculated using the ESMACS (enhanced sampling of
molecular dynamics with approximation of continuum solvent)41 and
TIES (thermodynamic integration with enhanced sampling)42 protocols,
respectively.

The objective of the present paper is thus to perform a high-
dimensional active-subspace based uncertainty quantification analysis
to assess the influence of aleatoric, simulation and particularly force-
field parameter uncertainty on classical molecular dynamics predic-
tions. Although in each case we vary more than 100 simulation and
force-field parameters, we find evidence of a one-dimensional active
subspace in all of these MD applications. Beside identifying active
subspaces, we also extract the sensitivity of the QoIs to individual input
parameters. Here the existence of a low effective dimension is not only
manifest but striking, as ourMD predictions typically show a sensitivity
to less than 10 individual inputs. This shows for instance that for the
protein-ligand biomolecular systems, the uncertainties in non-bonded
van der Waals parameters control the uncertainty in the binding free
energy predictions.

Results
Selection of models and interaction potential parameters
In the context of classicalMD simulation, a force field is used to describe the
interactions between atoms, which is a collection of equations and asso-
ciated constants designed to reproduce selected properties of a given
molecular system1. The Amber43 and OPLS44 force fields we are using, as
withmanyother contemporary forcefields inwidespread use, consist of two
parts: the bonded terms and the non-bonded terms. The former describes
the interactions of bonds, angles, torsions and improper torsions, while the
latter comprises electrostatic interactions and van der Waals (vdW) inter-
actions.Atomtypes are used to assign the force-field parameters for both the
bonded and nonbonded types. For the electrostatic interactions, the partial
charges for the atoms are also required, which are typically calculated using
quantum or (semi-)empirical approaches45. Although electrostatic interac-
tions are crucial in MD simulations, we do not investigate their sensitivity
here because the partial charges cannot be varied independently (the total
net charge needs to be consistent and integer-valued in units of the elec-
tronic charge). There are still 836 force-field parameters in the ESMACS
model and a fewmore in the TIESmodel.We further reduce the number of
parameters by only including parameters which describe the interactions
within the selected ligand or ligand pair and its vdW interactions with its
environment. This includes all parameters for bonds and angles, force
constants for dihedrals within the ligand and the vdW parameters for all
atom types. This leads to a total number of (force-field) parameters under
study here between 100 and 200; see Table 1 for the exact number per
application. The main reason for this a priori reduction is to investigate if a
low-dimensional active subspace exists when replacing 100–200 inputswith
random variables.

Selection of input distributions and generation of training data
For all input parameters xi we prescribe independent uniform input dis-
tributions such that the joint probability density function (pdf) is
pðxÞ ¼ QD

i¼1 pðxiÞ, with xi ∼U 0:85�xi; 1:15�xi
� �

, where �xi are the default
values. The only exception is the temperature simulation parameter
(setTemperature), forwhich−15%fromadefault value of 300Kwould
yield a freezing temperature. Instead, ±7.5% is used. Random samples from
p(x) are drawn via simple Monte Carlo sampling; see also Section “Statis-
tics”. Tofindall parameter names and their default valueswe refer the reader
to Supplementary Tables 1–6.

Note that the choice of the pdf will surely affect the observed uncer-
tainty in theMD simulations. The uniform distributions represent our lack
of prior knowledgeon themost-likelyparametervalues. Furthermore,wedo
not argue that the ±15% range is optimal, although the generated output
uncertainty (see Section “Epistemic vs aleatoric uncertainty”) is large
enough to expect it to envelop the true value of the outputs. Overall, the
results we present should thus be interpreted as a sensitivity study condi-
tional on our choice of p(x). Obtaining more realistic, data-informed,
posterior distributions is the domain of (Bayesian) inference; see e.g.
refs. 23,46 for examples in MD.

For the epoxy applicationwehaveone trainingdata setwithndata = 500
randomly drawn input-output samples, all inputs being force-field para-
meters. In the case of the ESMACS and TIES applications we generated two
separate data sets, namely one in which only the force-field parameters are

Table 1 | Data set summary per application

Application input types D ndata nreplica output

Epoxy FF only 103 500 20 Young’s modulus, Poisson ratio

ESMACS FF only 153 428 25 binding free energy

FF + SIM 167 308 25 binding free energy

TIES FF only 157 273 5 relative binding free energy

FF + SIM 169 215 5 relative binding free energy

Here, the input type (force-field (FF) only and force-field & simulation (SIM) parameters), number of inputs (D), number of data points, number of replica simulations and output type are described.
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varied with the simulation parameters being fixed at their default value and
one inwhich both are varied, allowing us to evaluate the relative importance
of eachparameter class. In fact, our sensitivity analysis (Section “Globalfirst-
order sensitivity analysis”) shows that the force-field parameters completely
dominate the simulation parameters. Unless otherwise stated, we therefore
combine both data sets in the ESMACS andTIES application to increase the
training data size.

Finally, to assess the aleatoric uncertainty of the random seed involved
in the initial condition, nreplica replica simulations were executed for each
random input value, similar to ref. 13. All data sets are summarized in
Table 1.

Epistemic vs aleatoric uncertainty
Since we have MD output data over both the epistemic (force-field &
simulation) parameters and the randomseedof the replicas,we can estimate
marginal distributions in order to analyze the respective contribution of
epistemic and aleatoric uncertainty. The results for the epoxy-resin, the
ESMACS and the TIES applications are given in Fig. 1. The marginal dis-
tributions are created by averaging over either the replicas or the parameters
with bootstrapping. For all applications, given the input distributions
described in Section “Selection of input distributions and generation of
training data”, the epistemic uncertainty dominates over the aleatoric
uncertainty introduced by the random seeds.

We also display the mean, standard deviation, skewness and kur-
tosis computed over all replica and parameter samples in Table 2. This
analysis reveals notable characteristics in terms of skewness and kur-
tosis. Skewness, ameasure of the asymmetry of a distribution, indicates a
departure from perfect symmetry in the calculated data. Excess kurtosis
indicates the presence of heavier tails or outliers compared to a normal
distribution. Higher kurtosis values suggest the presence of more
extreme values or outliers in the data, indicating a greater concentration
of observations away from the mean. A common rule of thumb for the
presence of significant skewness are (absolute) values larger than 1, and
values larger than 3 for the excess kurtosis. With the exception of the
ESMACS case, we find significant skewness and/or kurtosis values, see
Table 2. Both the skewness and kurtosis estimations fall within the
reported bootstrap 95% confidence intervals, which demonstrates their
robustness against random sampling error and confirms the non-
normality of the relevant QoIs. Ensemble methods enable a deeper
understanding of the system dynamics and uncover insights that are not
apparent through traditional one-off simulations47, enhancing the
reliability and validity of subsequent analyses and interpretations, thus
leading to more informed decision-making.

Dimension reduction
In the original active subspace method29, the eigenvalue spectrum of an
(uncentered) covariance matrix of the gradient of the MD output f(x) is
examined, i.e. C = ∫(∂f/∂x)(∂f/∂x)Tp(x)dx. A large eigengap between
consecutive (ordered) eigenvalues (defined as λd− λd+1≥0) is evidence
of the existence of a low-dimensional active subspace, provided that
d≪D. Denote U1 2 RD× d to be the d dominant eigenvectors of C,
which span the identified rotated active-subspace coordinate system
along which f(x) varies most on average. The high-dimensional input
vector x is then linearly projected onto the d-dimensional active sub-
space as y ¼ UT

1 x 2 Rd .
The active-subspace inspired methods we employ, that is DAS and

KAS-GP, each use different means to approximate U1 with standard
supervised input-output data (xk, f(xk)), x ~ p(x), k = 1,⋯ , ndata, i.e. with-
out requiring the MD gradient ∂f/∂x. More information is presented in the
Supplementary Methods. Once U1 is approximated, the DAS method cre-
ates a surrogate of the MD output as a function of y by means of a feed-
forward neural network, while the KAS-GP method utilizes a GP for this
purpose.

In Fig. 2 we show the largest 4 eigenvalues λ1≥ λ2 ≥ λ3 ≥ λ4 of the C
matrix of both DAS and KAS-GP C matrix, for all three applications.

Especially in the DAS results, we observe an eigengap λ1− λ2 of one
order of magnitude, which is evidence of the existence of a 1D active
subspace, although not as strong as in some other (non-MD)models, see
e.g. ref. 31.

Hence we set the dimension of the active subspace to d = 1 for all
applications. All subsequent results are from a DAS or KAS-GP surrogate
model trained with data averaged over the random seeds of the MD initial
condition, unless otherwise specified. Besides d, there are other hyper-
parameters that must be suitably chosen, e.g. the number of neurons per
hidden layer of the DAS network, and the kernel length scale in the KAS
method. We have performed a hyper-parameter grid search for both
approaches to select optimal values, the results of which are shown in the
Supplementary Methods. This includes error analysis on unseen test data,
which shows TIES to be the most challenging application.

Active subspace approximation
The epoxyDAS andKAS-GP surrogates for the Young’smodulusE and the
Poisson ratio are plotted vs the d = 1 dimensional active subspace y1 in
Fig. 3a, b. Note that the 1D function captures the overall trend of the data
well, for bothQoIs. Importantly, the variation of theMDdata f(x) at a given
location in the active subspace, i.e. Var½f ðxÞjy1�, is heavily concentrated
around the prediction, especially for theDAS surrogate. This holds for both
the training data and the test data (10% of the data set), which was not used
in constructing the surrogates. Hence, while the original MD model is a
function of a 103-dimensional input space (see Table 1), it is well
approximated by a 1D surrogate. The 1D ESMACS binding-energy surro-
gates are shown in Fig. 3c. A 1D active subspace is clearly visible, although
the variance of the training and test data around the surrogate is larger than
for the epoxy surrogates. Note that here the trend of the DAS surrogate is
reversed from the trend of its KAS-GP counterpart. This is due to use of
stochastic gradient descent in the DAS training procedure. Since eigen-
vectors are defined up to multiplication with −1, it is possible that the
learned active subspace flips upon retraining. This is not a serious issue: the
main criterion for success is that the eigenvector spans the active subspace
correctly. The TIES 1D relative binding free energy surrogates are shown in
Fig. 3d. The 1D active subspace is again visible, although (like the ESMACS
case) it is not of the same quality as for the epoxy surrogates.

Thus far all surrogates were trained with data that was averaged over
the replica MD simulations. We can contrast this with surrogates that were
trained on data without replicas, i.e. of a single random seed. In many cases
we obtained similar performance in the sense that Var½f ðxÞjy1� remained
similar or decreased only slightly when averaging out the random seed. An
exception is shown in Fig. 4, which compares the DAS Poisson ratio sur-
rogatewith andwithout replica-averaged trainingdata.HereVar½f ðxÞjy1� is
visibly smaller when f(x) is averaged over the replicas. Hence, even though
marginal distributions of Fig. 1 show that the random seed is relatively
uninfluential overall, this does not mean the aleatoric uncertainty can be
safely ignored. While the seed accounts only for a marginal fraction of the
total output varianceVar½f ðxÞ�, its influence on the conditional variance in
the active subspaceVar½f ðxÞjy1� can bemore pronounced, as shown in Fig.
4. This is important as it directly influences the quality of the surrogate that
can be constructed in the (1D) active subspace. Moreover, the relative
importance of the seed is of course wholly dependent upon the type of
epistemic parameters involved, as well as the distributions imposed upon
them. For instance, in ref. 13 we employed a dimension-adaptive UQ
technique, varying the seed and the simulationparameterswhile keeping the
force-field fixed. Under such circumstances the aleatoric uncertainty sig-
nificantly impacts the overall variance Var½f ðxÞ�; see also refs. 16,48 for
other examples where the aleatoric uncertainty is comparatively significant.

When comparing the DAS surrogates with the KAS-GP surrogates in
Fig. 3, note that the variance Var½f ðxÞjy1� of the training and test data
around the DAS prediction is smaller than the corresponding variance
around the GP mean. While overall the DAS and KAS-GP results are
similar, this does show that the DAS method found a more pronounced
active subspace, which is consistent with the eigenvalue results of Section
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“Dimension reduction”, where the DAS method was able to find a larger
eigengap. The underperformance of KAS-GP can be attributed to the
selected kernel functions. The chosen kernels (see SupplementaryMethods)
should match the regularity of the active subspace which is challenging in
the absence of prior knowledge. Conversely, in contrast to DAS, the KAS-
GP intrinsically provides an uncertainty for the surrogate output which is

the standard deviation or confidence interval of themodel response, a direct
consequence of the GP surrogate model.

Finally, note that so far all our QoI haven been scalar. In fact, the
original active subspace method is limited to scalar outputs due to the
construction of C ¼ R ð∂f =∂xÞð∂f =∂xÞTpðxÞdx 2 RD×D with f 2 R,
although it can be applied pointwise on vector-valued outputs. Adaptations

Fig. 1 | MD output distributions. Left column: the
probability density functions of all output samples
(from both epistemic parameters and the aleatoric
random seed replicas). Right column: the marginal
epistemic parameter distribution averaged over the
replicas, and the marginal aleatoric replica dis-
tribution averaged over the epistemic parameters.
Results are shown for a epoxy resin application, E
output, b epoxy resin application, Poisson ratio
output, c ESMACS binding free energy, d TIES
relative binding free energy.
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to the active-subspacemethod that can handle vector-valued functions have
appeared only relatively recently, see e.g. ref. 49. The DAS method can also
handle vector-valued outputs by just increasing the number of output
neurons36. Whether the network converges to a meaningful active subspace
or not depends on the degree to which the different outputs share the same
active subspace, which could be unrealistic. To investigate, we have per-
formed an additional study for the materials case, where we build a single
DAS surrogate for the Young’s modulus, Poisson ratio, bulk and shear
modulus simultaneously. The results (included in Supplementary Section 2)
show that in this case we can approximate all 4 QoIs in the same 1D active
subspace.

Global first-order sensitivity analysis
Weuseglobal derivative-based sensitivity indices νi tomeasure the impactof
individual input parameters, i = 1,⋯ ,D, see (5) of Section “Global
derivative-based sensitivity analysis”. Figure 5a, b displays the sorted 25
largest sensitivity indices νi of the epoxy E and Poisson ratio surrogates.
Roughly the same subset of importantparameters emerge for bothQoIs, as 8
out of the E top 10 also appear in the top 10 of the Poisson ratio. The order
within the top 10most sensitive parameters differs between the two outputs.
Figure 5c, d shows the ESMACS and TIES sensitivity indices for the (rela-
tive) binding free energies. To interpret the parameter naming convention
we refer to the Supplementary Methods. Overall, while there are small
differences in the ranking put forward by the DAS and KAS-GP methods,
both methods flag the same input parameters as important for all
applications.

For the materials application, bond (b) and pairwise (p) interactions
(see Supplementary Table 1) for a limited number of atom types and bond
types dominate. Bond interaction b12 is ideal to control the Poisson

coefficient without modifying the Young’s modulus. The parameters b12
and b42 refer to the equilibrium distance of C-H and C-C atom types.
Conversely, b42 offers independent control of the Young’s modulus.
Pairwise interactions p12, p42 and p62 do affect both QoIs significantly.
The parameters p12 and p42 control the minimum potential energy radii
of two different hydrogen atom types, while p62 controls this same
potential energy for some carbon atoms. Comparatively to bond and
pairwise interactions, the angle (a) and dihedral (d) parameters havemuch
less influenceon the elasticmechanical properties of thepristine epoxy resin.
Interestingly, at these low strain amplitudes, the Young’s modulus of the
material is essentially controlled by non-bonded hydrogen atom interac-
tions, while the Poisson ratio results from a more complex combination of
bonded and non-bonded interactions involving carbon and hydro-
gen atoms.

To identify the sources of the dominant ESMACS contributions
(Fig. 5c), we demonstrate the positions of the atoms to which the most
sensitive parameters are assigned. Most of the important ESMACS para-
meters in Fig. 5c are pNNrm and pNNev, representing the pairwise equi-
librium internuclear distance and well depth of vdW interactions for atoms
with index NN (see Supplementary Table 4). It is reasonable to observe that
the non-covalent binding free energies are sensitive to changes in the non-
bonded parameters. The first parameter (p03rm) is the equilibrium
internuclear distance of vdW interactions for most sp3 hybridized carbon
atoms (which have one 2s-orbital and three 2p-orbitals to create four hybrid
orbitals), while the second and fourth (p08rm and p08ep) are the equi-
librium internuclear distance associated with the well depth of the vdW
interactions for hydrogen atoms attached to these sp3 carbon atoms. These
parameters are themost sensitive ones as (i) many atoms close to the ligand
are carbon andhydrogen atomswith these parameters (Fig. 6), and (ii)most

Fig. 2 | The first 4 eigenvalues λi/λ1 ofCDAS andCKAS.These are the DAS and KAS-
GP equivalents of the gradientCmatrix Eq. (1), Section “Methods”. They are plotted
off-axis from the i indices to avoid overlap of squares and triangles. In the case of the
DASmethod, we generate 95% confidence intervals on the eigenvalues by retraining
the neural network 20 times, each time recomputing the eigenvalues. The variation is

caused by the use of stochastic gradient descent in training the DAS neural network.
The squares indicate the sample means over the replica DAS networks. Results are
shown for a epoxy resin application, E output, b ESMACS binding free energy,
c TIES relative binding free energy.

Table 2 | The first four sample moments

Output Mean Std dev Skew Kurt

Epoxy E 6.54 (6.49/6.59) × 1e9 3.22 (3.16/3.29) × 1e9 1.61 (1.541/1.666) 3.76 (3.46/4.05)

Poisson ratio 0.34 (0.339/0.341) 0.053 (0.0520/0.0535) −1.01 (−1.076/-0.956) 0.97 (0.63/1.42)

ESMACS Bind fr energy −29.85 (−29.95/−29.76) 7.68 (7.61/7.74) −0.08 (−0.117/−0.050) 0.07 (0.003/0.14)

TIES Rel bind fr energy 8.23 (8.00/8.45) 6.70 (6.38/7.01) 1.95 (1.77/2.11) 5.94 (4.91/6.87)

Includes 95%bootstrap confidence intervals in brackets, for all applications andoutputs. The statisticswere computedusing all parameter and replica samples, giving a sample size of 10,000/18,400/2240
for the epoxy/ESMACS/TIES application respectively. We use the excess kurtosis definition, which yields zero for a normal distribution.

https://doi.org/10.1038/s41524-024-01272-z Article

npj Computational Materials |           (2024) 10:87 6



rotatable bonds involve sp3 carbonatoms,which aremainly affectedby these
parameters. The third parameter (p16rm) is the equilibrium internuclear
distance of vdW interactions for hydrogen atoms on the ligand, which are
the most common atom type on the surface of the ligand. The fifth para-
meter is for oxygen on tyrosine residues; two tyrosine residues are in close
proximity with the ligand (Fig. 6). As the ligand binds to the protein non-

covalently, it is not surprising that the distance-related parameters for non-
bonded interactions can be found among the highest sensitivity indices.

For the TIES case (Fig. 5d), in addition to the vdWparameters as in the
ESMACS study, several bonded interactions, including force constants
([a,b]NNfc, see SupplementaryTable 6) and equilibriumvalues ([a,b]
NNev) for angle and bond terms respectively, also contribute substantially

Fig. 3 | TheDAS andKAS-GP surrogates of all QoI
plotted along the first active variable y1. Note that
the KAS-GP surrogates includes 95% confidence
intervals. Results are shown for a epoxy resin
application, E output, b epoxy resin application,
Poisson ratio output, c ESMACS binding free
energy, d TIES relative binding free energy.
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to the sensitivity of the predictions. In the TIES simulations, we need to
perform separate alchemical simulations in both protein and solvent
environments, in which the uncertain parameters are varied independently.
The bonded parameters (bonds and angles) therefore also contribute sig-
nificantly to the uncertainty of the final predicted free energy differences.

This study thus allows us to identify the most sensitive parameters
upon which the QoIs depend and thus the ones whose values are most
important to pin down as accurately as possible. In all cases only force-field
inputs are influential, see Fig. 5. The simulation inputs (i.e. the non force-
field inputs), which have been given the same uniformly-distributed input
distribution (Section “Epistemic vs aleatoric uncertainty”), are compara-
tively insignificant. This is clear from Fig. 5, as simulation parameters such
as setTemperature or time_sim1 rank very low if they appear at all
in the top 25 most sensitive parameters. Note however that we varied only
force-field parameters for the epoxy case, see Table 1. Moreover, in all cases
the number of important parameters is much smaller than the total input

dimensionD. Hence, such analysis can be utilized to focus and enhance the
optimization of existing and future force fields. By exploring the uncer-
tainties associated with different parameters, we gain a deeper under-
standing of force field behavior and the terms that dominate a system’s
behavior. By incorporatingUQ techniques, informeddecisions can bemade
on the continuous refinement and optimization of the force-field para-
meters, ultimately leading to more accurate and reliable simulations. It
should be noted that our method provides a first-order sensitivity analysis;
higher-order interaction effects between input parameters are not
considered.

Discussion
We have shown that it is possible to perform a comprehensive uncertainty
quantification analysis of all-atom chemically specific classical molecular
dynamics simulations that embraces the interaction potential para-
meterizations present in force fields used in real-world research. We use

Fig. 5 | The 25 largest global derivative-based sensitivity indices. Displayed for
both the DAS and KAS-GPmethod, ordered as ν1 ≥ ν2≥⋯ ≥ν25, see Section “Global
derivative-based sensitivity analysis” formore details. The indices are normalized by
ν1 and ordered according to the DAS ranking, although the KAS-GP ranking is

similar. The DAS indices are averaged over a set of 20 replica networks. Results are
shown for a epoxy resin application, E output, b epoxy resin application, Poisson
ratio output, c ESMACS binding free energy, d TIES relative binding free energy.

Fig. 4 | The largest effect of aleatoric uncertainty
on DAS surrogates. Compare a the DAS Poisson
ratio surrogate when using training data averaged
over the replica simulations, and b the same surro-
gate when training data of a single random seed
is used.
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deep active subspace and kernel-basedGaussian processmethods to handle
these problems in a scalable manner suitable for use on supercomputers.
Both work well and yield results in close agreement with one another. We
illustrate the approach with current research applications taken from
advanced materials and drug discovery.

In all cases studied, we are able to identify a one-dimensional active
subspace. Especially in the epoxy-resin polymer materials application, we
could reduce the input dimension from 103 to 1, with little loss of accuracy.
This shows thepotential of active-subspacemethods fordimension reduction
in MD which is significant as, today, commonly used force fields come with
high-dimensional parameter setswhich admitnonotionofuncertainty - they
simply provide fixed numbers, often to two or three decimal places.

While our parametric spaces are high-dimensional, we have imposed
an a priori reduction in the number of parameters for reasons discussed in
Section “Selection of models and interaction potential parameters”. We
consider ≈ 1000 parameters as a case study for future research, and expect
our DAS/KAS-GP methods to scale to this dimension, although this will
again require substantial computational resources to sample the MD code
(with replicas). An interesting question is if a low-dimensional active sub-
space will again exist, and how much data is required to approximate it.
Regarding scalability, randomsampling is done byMonteCarlo,whichdoes
not suffer from the curse of dimensionality. Secondly, increasing the input
dimension will not cause significant scaling issues. Neural networks are
regularly trained with more than 200 input neurons. The KAS-GPmethod,
using the kernel functions to approximate the covariance matrix of the
model response gradient, has the same convergence rate as Monte Carlo
methods50,51, thus avoiding the curse of dimensionality. Furthermore, the

kernel functions can be defined for arbitrary types of data, including non-
Euclidean data such as graphs and images. By incorporating the intrinsic
interactions (see Fig. 6) among input parameters within the kernel
function52, a more effective and interpretable active subspace could be
identified with less data.

Some light can be shed on the existence of the active subspaces. By
combining classical dimensional analysis with active subspaces, the authors
of refs. 53–55 show that a physical law for a QoI f ðxÞ ¼ f ðx1 � � � ; xDÞ 2 R
has links with the active subspace of that QoI. While this analysis does link
the active subspace to the physical law that generated a (non-dimensional)
QoI, it does not explain why the active subspace is often very low-
dimensional in practice, d = 1 in our case. However, if this also proves to be
the case in other high-dimensional MD applications, active-subspace
methods arewell suited for use in the future designofMDsurrogatemodels.
Moreover, a low-dimensional active subspacemight also be exploited in an
inverse UQ context, e.g. for the data-driven calibration of force-field inputs
via Bayesian inference. This typically requires running a Markov chain to
draw samples from the data-driven posterior distribution56, which does not
scale well to high-dimensional input spaces. The problem can be made
computationally feasible by only running the Markov chain on the active
variables, while sampling the inactive variables through the prior
distribution57. Some recent work on statistical inference of force-field
parameters can be found in reference23, which takes place in the context of
sloppy models. As such, to determine the effective dimension, the eigen-
value decay of the Fisher Information matrix is examined, which is a local
quantity. Their effective dimension is the number of so-called ‘non-eva-
porated’parameters, essentially those parameterswhich canbe informedby
data via Bayesian (or Frequentist) inference procedures. The closest analog
in this article would be the number of parameters for which the sensitivity
indices νi are larger than a certain cutoff. Depending on the cutoff value, we
would obtain an effective dimension between 5 and10 (seeFig. 5), similar to
the results from ref. 23. Since active-subspace methods are not tied to the
original coordinates axes of the parameters they are able to reduce the
dimension further, if we consider a linear combination of parameters as a
single input.

As mentioned, within the active subspace it is also possible to rank the
influenceof the individual interactionpotential parameters on thequantities
of interest, which include materials properties and free energies. This
ranking tells us which physicochemical parameters dominate the uncer-
tainty and therefore require most attention when determining what
improvements to make to such all-atom force fields. This physics-based
approach provides a level of physicochemical insight and understanding
that wholly surpasses what is forthcoming from machine-learning (ML)
derived potentials. There are orders of magnitude more parameters (the
connection weights in the neural networks) in any ML based interatomic
potentials58. In a recent study of machine learning interatomic potentials
(MLIPs) for coarse-grained (CG) proteins59, the ensuing MLIP contains
294,565 parameters in it, whereas the CGmodels had far fewer parameters
than the all-atommodel. While physics-based force fields are comprised of
interpretable and understandable parameters, none of these 294,565 para-
meters in the MLIP model have any meaning – they are simply and purely
fitting parameters. Uncertainty quantification has only been attempted for
MLIPs in the case of very simplemolecular systems60,61; even in such cases it
is not possible to obtain any insight into the parameters as they have no
physicochemical bases.

Methods
Here we briefly describe the molecular models, the simulation protocols,
and our statistical active-subspace and global derivative-based sensitivity
methods. The Supplementary Methods contains more details on the
derivative-free DAS and KAS-GP methods.

Models and simulation protocols
Thematerials application relies on epoxy resinmolecularmodels, andmore
precisely tetraglycidyl methylene dianiline (TGMDA) cured with

Fig. 6 | Positions of the atoms in the binding site of the ligand-protein complex, of
which the force-field parameters are most sensitive in the ESMACS study. The
ligand is represented as bond, and the protein is shown as ribbon in white. The
residues at the binding site are shown as ball and stick. The sp3 carbon atoms
(colored orange) and attached hydrogen atoms (yellow) from protein have the most
sensitive parameters, along with hydrogen atoms (green) from ligand. The para-
meters for the oxygen atoms (purple with an arrow) from two tyrosine residues are
also important to the sensitivity.
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polyetheramine (PEA) in a 1:1 ratio62. We use an in-house code to pack the
epoxy and cross-link the monomers63. By this method, we produce an
ensemble of 20 replicas for which 91.8% ± 0.5% of the functional groups
have reacted. We already performed an extensive aleatoric uncertainty
quantification analysis of these epoxy resins48. All materials properties
simulations were run with LAMMPS39 on SuperMUC-NG at the Leibniz
SupercomputingCenter, Germany, following theELASTIC procedure from
the LAMMPS examples database.

The protein target of the ESMACS simulation is the
bromodomain-containing protein 4 (BRD4)64, while that of the TIES
simulation is myeloid cell leukemia sequence 1 (MCL1)65. Both pro-
teins are promising anticancer drug targets currently under extensive
research in academia and the pharmaceutical industry. They have
recently become something of a benchmark system for free energy
calculations, which we have investigated extensively using our binding
affinity calculator for diverse ligand data sets42,65,66. Here we use one of
the ligands64 and one ligand pair65 studied previously, and investigate
the sources of uncertainty along with the quality of binding free energy
predictions.

The standard ESMACS and TIES protocols41,42 have been applied to
investigate the binding free energy for the ligand to BRD4 and the binding
free energy difference for the ligand pair to MCL1. The ESMACS protocol
employs an ensemble of 25 replicas41,67, while the TIES protocol employs an
ensemble of 5 replicas for each of the 13 intermediate alchemical states
(represented by a coupling parameter λ which is introduced to connect the
thermodynamic end states)42,67. A 10 ns and 4 ns production run is used for
all replicas in ESMACS and TIES respectively. Our extensive studies over
several years demonstrate good convergence and reproducibility from these
protocols48,67. All ESMACS and TIES simulations were run with NAMD40

on SuperMUC-NG and on ARCHER2 at Edinburgh Parallel Computing
Center, UK.

Statistics
We define x 2 RD as our high-dimensional vector of uncertain
(simulation and force field) input parameters, that are distributed
according to a given probability density function; x ~ p(x). Let a (sca-
lar) output of the MD code be generally denoted by f(x), which is
ensemble-averaged over the replicas unless otherwise noted. The active
subspace method can achieve significant dimension reduction in the
input space by noting that f(x) will likely not show the greatest varia-
tion in a direction that is exactly alignedwith some coordinate axes of x.
Instead, a rotated coordinate system is sought that is aligned with the
directions along which f varies themost on average. A low-dimensional
approximation of f (a surrogate model) can then be created if d rotated
directions of greatest variability exist, where d≪ D. To search for these
directions, the following gradient matrix is constructed:

C ¼ E ∇f xð Þ� �
∇f xð Þ� �Th i

¼ R
∇f xð Þ� �

∇f xð Þ� �T
pðxÞdx: ð1Þ

C is symmetric positive semi-definite and therefore has the following
spectral decomposition

C ¼ UΛUT ¼ ½U1 U2�
Λ1 0

0 Λ2

� �
½U1U2�T ; ð2Þ

with orthonormal eigenvectors contained in the columns ofU1,U2, and real
eigenvalues λ1 ≥ λ2≥⋯ ≥ λD ≥ 0 along the diagonals of Λ1 :¼
diag λ1; � � � ; λd

� �
and Λ2 :¼ diag λdþ1; � � � ; λD

� �
. Note that the d largest

eigenvalues are grouped intoΛ1 such that the column vectors ofU1 point in
the direction of largest (on-average) variability. If a clear separation in
magnitude between Λ1 and Λ2 exists, most variability of f is retained along
directions obtained by linearly projecting the input x 2 RD to a low
dimensional active subspace y 2 Rd via the matrix U1 2 RD× d of

orthonormal basis vectors, i.e.;

y ¼ UT
1 x: ð3Þ

In a similar vein, z ¼ UT
2 x are the so-called inactive variables along which f

varies relatively little. If a suitable active subspacey exist, one canapproximate
f ðxÞ ¼ f UUTx

� � ¼ f U1U
T
1 x þ U2U

T
2 x

� � ¼ f U1y þ U2z
� �

via the fol-
lowing conditional expectation,

f ðxÞ≈G y
� � ¼ Ez f jy� � ¼ R

f U1y þ U2z
� �

p zjy� �
dz≈ 1

N

PN
i¼1

f U1y þ U2zi
� �

:

ð4Þ

While the integration in (4) over the inactive variables is typically a high-
dimensional problem, f will show little variation over these variables, again
provided thatmost variability takesplace over y. If this is the case, theMonte
Carlo approximation shown on the right will not require a large number of
samples. If the active subspace is especially pronounced, one can even ignore
the inactive variables altogether29.

Finally, note that in order to use the active subspace method as
described here, one needs access to∇ f(x). Once again, the DAS and KAS-
GP methods are derivative-free adaptations as discussed in the Supple-
mentary Methods. The DAS method does not incorporate the effect of the
inactive variables, while the KAS method does work with the conditional
expectation (4).

We trained the DAS and KAS-GP surrogates using Monte Carlo
sampling from p(x). The parametric configurations for the different x
samples of each application have been generated using the Python package
EasyVVUQ68.We generated 500MonteCarlo samples for each application,
each containing an ensemble of replicas, see Table 1. However, for the
ESMACS and TIES computation, not all samples converged properly; see
the computational setup of the SupplementaryMethods.We useddirect job
submission on the different HPC machines employed. Training the DAS
surrogate model based on the simulated Monte Carlo data was performed
using EasySurrogate69; see theData&Code availability statement to retrieve
the scripts associated with this paper. Both EasyVVUQ and EasySurrogate
are distributed as part of the open-source SEAVEA-toolkit70. The KAS-GP
approach consists of two parts: 1) estimating the active subspace by Kernel
Dimension Reduction, and 2) Fitting the Gaussian Process surrogatemodel
over active subspace to model response. We used the Multi-Output Gaus-
sian Process Emulator (MOGP)71 for the implementations of both
KAS and GP.

Global derivative-based sensitivity analysis
To assess which inputs are most influential, commonly-used options are
global variance-based sensitivity methods (e.g. ref. 72). In our case it is
convenient to use global derivative-based methods, e.g.

νi :¼
Z

∂f
∂xi

� 	2

p xð Þdx: ð5Þ

These indicesmeasure the (average) sensitivity of f to small perturbations in
the inputs x, and are especially suited for identifying non-influential
parameters73. To connect (5) to the active subspacemethod, note that the νi
are the diagonal elements of the Cmatrix74:

ν1; � � � ; νD
� �T ¼ diag Cð Þ: ð6Þ

While we do not have access toC, we compute the exact analytic derivatives
∂ef =∂xj; j ¼ 1; � � � ;D, either through the DAS neural network or the KAS
Gaussian Process.Hereef denotes the surrogatemodel approximation of f as
modeled by the neural network or GP. An approximation of νi or C,
replacing ∂f/∂xi by ∂ef =∂xi, is therefore available. The integrals involved can
be computed using Monte Carlo sampling from p(x), since ∂ef =∂xi is eval-
uated very rapidly.
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Data availability
The data required to reproduce the results presented above can be found in
ref. 75. Details on our NAMD and LAMMPS simulations can also be
found there.

Code availability
The source code (Jupyter notebooks) can be found in ref. 75.
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