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Pretraining of attention-based deep
learning potential model for molecular
simulation
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Machine learning-assisted modeling of the inter-atomic potential energy surface (PES) is revolutionizing
the field ofmolecular simulation.With the accumulation of high-quality electronic structure data, amodel
that can be pretrained on all available data and finetuned on downstream tasks with a small additional
effort would bring the field to a new stage. Here we propose DPA-1, a Deep Potential model with a gated
attentionmechanism,which is highly effective for representing the conformation and chemical spaces of
atomic systems and learning the PES.We tested DPA-1 on a number of systems and observed superior
performance compared with existing benchmarks. When pretrained on large-scale datasets containing
56 elements, DPA-1 can be successfully applied to various downstream tasks with a great improvement
of sample efficiency. Surprisingly, for different elements, the learned type embedding parameters form a
spiral in the latent space and have a natural correspondence with their positions on the periodic table,
showing interesting interpretability of the pretrained DPA-1 model.

Reliably representing the inter-atomic potential energy surface (PES) is core
to the study of properties of molecules and materials in computational
physics, chemistry,materials science, biology, etc.While electronic structure
methods typically give accurate and transferable PES, they are prohibitively
expensive for scaling to systems of more than thousands of atoms. On the
other hand, empirical forcefields aremuchmore efficient but are inherently
limited by their accuracy in many applications. By properly integrating
machine learning (ML) methodologies and physical requirements like
extensiveness and symmetries, various methods have emerged to address
the accuracy v.s. efficiency dilemma in the realm of PES modeling1–11.
Arguably, a new paradigm is forming: electronic structure methods are no
longer used to generate the driving forces during molecular dynamics
simulations but are used to generate data for training their alternatives,ML-
based PES models.

Despite remarkable achievements of ML-based PES models12–14,
challenges still remain. For a domain expert who would like to apply such
methodologies in their applications, a natural first question is on the efforts
needed for obtaining a reliable PES model: Are there ready-to-use PES
models? If not, what would be the amount of training data and time cost
required? Can we take advantage of the ever-increasing publicly-available
training data?

To address these issues, there have been several efforts. On one hand,
general-purposemodels for various systems, such as silicon15, phosphorus16,
water17, metals and alloys18–22, etc., have been developed and are directly
applicable to relevant studies. However, the range of applicability of such
models is typically limited to small conformation or chemical space. For
example, for alloys, the majority of general-purpose ML models are devel-
oped for systemswith atmost two element types.On the other hand, several
efficient data generation protocols have been developed23–26, of which a
representative is DP-GEN25,26, a concurrent learning procedure that itera-
tively explores the configuration space using models trained with existing
data, and then labels only those configurations with high uncertainty level.
Even with these protocols, the computational effort needed for complicated
systems is still prohibitive. For example, to train a fairly general-purpose
model for the AlMgCu alloy system, 100k density functional theory
(DFT)27,28 calculationswereultimately performed, resulting in the cost of ten
million CPU core hours18.

With the accumulation of high-quality electronic structure data cov-
ering almost all the elements on the periodic table, it is becoming possible to
systematically develop pretraining schemes, which have been widely
adopted in areas like computer vision (CV)29,30 and natural language pro-
cessing (NLP)31,32. In these schemes, one first trains a unified model on
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large-scale datasets and then finetunes it for downstream tasks, expecting
that a good representation can be learned in the first stage, and the amount
of supervised data needed for the second stage will be significantly reduced.
Recently, the pretraining-finetuning idea has been applied to organic
molecules systems for energy and force predictions33,34, and to tackle tasks
beyond representing the PES35–37. Unfortunately, most ML-based PES
models are premature for such schemes at scale in materials applications.
Taking the widely used two versions of Deep Potential models6,7 as exam-
ples, the ML parameters are element-type-dependent, making it highly
inefficient when the training data contains many elements.

Constant efforts have been devoted to adapt the architecture of theML-
based PES models for large datasets. Among them, one class of models
named equivariant graph neural networks (GNN)38 that is built upon con-
volutions over atomic graphs of node and edge equivariant representations
has shownpromise of trainingon largedatasets. SchNet5, PaiNN39,GemNet-
OC40, DimeNet++41, PFP42, SCN43, SpinConv44 and Equiformer/
EquiformerV245,46 are trained on the OC20/OC2M47 dataset containing
about 133M/2Mdata frames of 56 elements. Thesemodels are benchmarked
by the accuracy of energy, force and stable structure predictions. Very
recently, it has been shown that introducing the attention architecture45 in a
GNNmodel improves theperformanceon theOC20/OC2Mdataset46.Chen
and Ong48 proposed M3GNet, which was able to train on a subset of the
Materials Project49 that contains 187,687 configurations encompassing 89
elements and labeled at the generalized gradient approximation (GGA)50 or
GGA+U level. Takamota et. al.42 introduced the PFP model, which was
trained on a dataset composed of molecular and crystal configurations
including approximately 9 × 106 frames of 45 elements. Choudhary et. al.51

developed the ALIGNN model, and they were able to train the model on a
subset of the JARVIS-DFTdataset52 that is composed of 307,113 data frames
of 89 elements. The M3GNet, PFP, and ALIGNN models are proposed as
“universal” potential models, however, their accuracies are not on par with
PES models trained for specific materials applications.

The equivariant GNNmodels are potential candidates for pretraining,
several issues worth special attention before applying them in downstream
real-world applications. First, the GNN approaches are not well-suited for
massively parallel molecular dynamics simulations53. The update of each
GNN layer requires communications between spatially decomposed sub-
regions of the system. In each evaluation of the energy and forces, in total
several to a dozen such updates are required,whichmay lead to a substantial
communication overhead in massively parallel high-performance super-
computers. Second, some models, such as PaiNN, GemNet-OC, SCN,
Equiformer/EquiformerV2, directly predict forces using rotationally
equivariant networks39,40,45,54 instead of energy gradients with respect to
atomic coordinates.Therefore, thepredicted force is not conservative,which
serves as a basic assumption in guaranteeing the accuracy of molecular
simulations55. The DimeNet++41 Allegro53 models are conservative. Last
but not least, some models, such as GemNet-OC, SpinConv, M3GNet, and
ALIGNN are not smooth, i.e. a sudden energy jump may happen as the
positions of atoms infinitesimally varies. This leads tonon-conserved energy
in the Hamiltonian dynamics simulations, which is used in computing the
dynamical properties like diffusion constant and viscosity.

By far, how much the downstream materials applications benefit from
theMLmodels trainedon the large-scaledatasets are still not clear. To answer
thequestion, in this article,weproposeDPA-1, aDeepPotentialmodelwith a
gated attention mechanism. Designed with a local descriptor, this model is
exceptionally well-suited for parallel simulations on large-scale systems
containingmillions of atoms56. Notably, DPA-1 predicts conservative forces,
ensures smoothness and demonstrates outstanding efficacy in learning inter-
atomic interactions. Moreover, once pretrained, DPA-1 can significantly
decrease the supplementary efforts needed for subsequent downstream tasks.
We tested DPA-1 on various systems and observed superior performance
compared with existing benchmarks. Then we took AlMgCu alloy systems18

as an example, showing that after pretrainingwith single-element and binary
samples, DPA-1 can save around 90% ternary samples compared with the
DeepPot-SE model7. Finally, we pretrained DPA-1 using the OC20 dataset,

which consists of 56 elements, and successfully applied it to various down-
stream tasks. We checked the interpretability of the pretrained model by
looking into the learned embedding parameters for different element types,
finding that the 56 elements are arrangedon a spiral in the latent space,which
has a natural correspondence with their physical properties on the periodic
table. Above all, we believe that DPA-1 and the pretraining schemewill bring
the field of molecular simulation to a new stage.

Results
Weconductedanumberof experiments to evaluate theperformanceofDPA-
1,with its architecture illustrated inFig. 1 anddetailed in theMethods section.
First, to test the model’s ability to transfer among different compositions, we
trained it from scratch against various systems and tested it under several
challenging schemes. Then, we used an AlMgCu dataset to test its ability to
transfer to ternary systems upon pretraining with single-element and binary
data. Finally, we pretrainedDPA-1 using theOC2M subset inOC20 dataset47

and applied it to various downstream tasks. To illustrate the effectiveness of
the type-embedding and attention schemes, we compared them against
DeepPot-SEmodel7 in all the experiments. In the following,we shall introduce
first the datasets we used, and then the experiments we conducted.

Datasets
AlMgCu alloy systems18. This dataset is generated using DP-GEN26, a
concurrent learning scheme. After exploring 2.73 billion alloy configura-
tions (derived from ~2000 bulk and surface systems), only a small portion
(~100k configurations) of them are labeled and then compose the compact
dataset. The exploration runs in the whole concentration space, i.e.,
AlxCuyMgzwith 0 ≤ x, y, z ≤ 1, x+ y+ z = 1, and x, y, z take discrete values
permittedby thefinite-size simulationboxes.Wecandivide the systems into
single, binary, and ternary subsets, in the name of the number of non-zero
x, y, and z. The configuration space covers a temperature range of around
50.0 K to 2579.8 K and a pressure range of around 1 bar to 50,000 bar.

Solid-state electrolyte (SSE) systems57. These systems contain
Li10XP2S12-type SSE materials, where X represents a single or combination
of Ge/Si/Sn, and can be divided into three main parts: init,mix and single.
The init part comes from the standard DP-GEN scheme starting from
590 structures that are generated via slightly perturbingDFT-relaxed crystal
structures, Li10SiP2S12 and Li10SnP2S12 from Materials Project49. The
exploration covers both ordered structures relaxed by DFT (i.e. structures
downloaded from the Materials Project database, in which the position of
Ge/Si/Sn/P atoms are fixed) and disordered structures whose 4d sites are
randomly occupied by Ge/Si/Sn/P. Based on the init part, the mix part
contains further exploration in binary and ternary mixture of Ge/Si/Sn,
while the singlepart covers only a single X inGe/Si/Snwith other changes in
lattice and ratio of Li.

HEA systems. The High Entropy Alloy HEA dataset includes bulk
TaNbWMoVAl alloy systems of various configurations and compositions.
We employ DP-GEN to explore the composition space, starting from
Ta3Nb3W3Mo3V3Al1, a 16-atomunit cell containing the former5elements as
main components and Al as an additive. The dataset is divided into two
subsets: interior and exterior. The interior (higher entropy) subset includes
composition variations near the starting point. It covers six-component,
quinary, quaternary, and ternary alloys. The exterior (lower entropy) subset
includes systems that are close to the corners and edges of the composition
space. It includes systemswhere one or two elements dominate, binary alloys,
and simple substance systems. For both subsets, the temperature range is
around 50.0K to 388.1K and the pressure range is around 1 bar to 50000 bar.

OC2047. OC20 consists of single adsorbates (small molecules) physi-
cally binding to the surfaces of catalysts covering periodic bulk materials
with 56 elements. Both the chemical diversity and system size are much
more complex than other benchmark datasets, such as MD1758, ANI-1x24,
or QM959. OC2M is a subset including 2 million data points (energies and
forces) randomly sampled from OC20, which is still challenging for model
training and decent for pretraining. Johannes et al. recently provided several
baselines on OC2M, taking months to converge40.
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Accuracy on various datasets, trained from scratch
The majority of existing models usually focus on the ability to transfer
among different configurations, in which case training and validation
subsets consist of similar compositions (e.g. randomly sampled from the
same dataset). However, to perform pretraining, the upstream and
downstreamdatasetsmay differ violently. Thus, it’s vital formodels under
the pretraining scheme to transfer among different compositions or even
among different datasets, which has, as far as we know, rarely been dis-
cussed before. In this work, we mainly focus on a more general but
challenging scheme to comprehensively test the generalization ability of
the model.

We first designed several challenging tasks to test themodel’s ability to
transfer among different compositions. For AlMgCu, SSE, and HEA sys-
tems, we divided them into subsets with different compositions for training
and validation (See Datasets subsection for details). The results of DPA-1
and DeepPot-SE are shown in Table 1. With the training loss nearly the
same (omitted in the table), theDPA-1 drastically outperformsDeepPot-SE
in validation accuracy. For example, for AlMgCu systems, when trained
only on single- and binary-element samples, the validationRMSEofDPA-1
on ternary samples can outperformDeepPot-SE by one order ofmagnitude
(6.99 versus 65.1 meV/atom). This suggests that the DPA-1 model might
have learned the latent interactions of ternary pairs Al-Mg-Cu from binary
pairs Al-Mg, Al-Cu, Mg-Cu, and single-element interactions, possibly
thanks to the type-embedding scheme and attention mechanism. We

conducted an ablation study in Supplementary Note 1 on HEA systems to
demonstrate the influence of each structural component.

To test the performance ofDPA-1 in terms of predictingmore physical
quantities, we performedgeometry relaxations on allAlMgCu ternary alloys
available from theMaterials Project to evaluate their accuracy in predicting
formation energy and equilibrium volume (see details in Supplementary
Note 2). We also used it to calculate the elastic moduli of AlMgCu systems,
which requires accurately capturing the second-order information (see
details in Supplementary Note 3). Additionally, we carried out molecular
dynamics simulations on LiGePS systems to assess the diffusion coefficients
in relation to temperature, comparing the results to ab initio molecular
dynamics (AIMD) simulations and experimental studies (see details in
Supplementary Note 4). In all tests, satisfactory agreement with the DFT
and/or experimental references are obtained.

As a supplement, we also trained DPA-1 model on several simple
systems to compare with other ML-based PES. Since these tasks are much
easier than the above ones and out of ourmain focus, we place the results in
Supplementary Note 8. Note that there may be relatively little room for
improvement on these simple datasets, while DPA-1 can still outperform
other methods with even less training samples.

Sample efficiency of pretrained models
As shown in Fig. 2, we use the learning curves to illustrate in terms of the
amount of additional training data saved for downstream tasks thanks to

Fig. 1 | Schematic illustration ofDPA-1. a Flowchart fromAi andRi to the atomic
energy ei. b Structure of the Embedding net, which maps s(rji) and Ti, through
multiple residual layers, to Gi . c Self-attention mechanism on Gi through a standard

scale-dot procedure gated by the angular information R̂iðR̂iÞ
T
. d Fitting net

structures, similar to Embedding net, from the descriptorsDi and Ti to final atomic
energy ei.
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model pretraining. In all the experiments, the learning curves were gener-
ated by an active learning procedure, in which a pool of data labeled by
energy and force is prepared and three steps are repeated iteratively: using
samples in the training pool to train the model; testing the model using the
remaining samples; selecting 50 samples with the largest prediction errors
onper-atomenergies andadding them to the trainingpool.Weuse the term
sample efficiency to denote the amount of training samples required by a
model to achieve a given accuracy level for a certain task. The hyperpara-
meter settings in these tests can be found in Supplementary Note 9.

We started with a relatively simple task to compare DeepPot-SE and
DPA-1. In this task, both the twomodels were pretrained using single-element
and binary subsets of the AlMgCu systems, and the learning curves were
obtainedusing theAlMgCuternarysubset.AsshowninFig.2a,DPA-1exhibits
a much better sample efficiency than DeepPot-SE, which should be expected.

Next, we used the OC2M dataset, which contains 56 elements, to
pretrainDPA-1 and evaluated its performance on theHEA systems and the

AlCu systems (Fig. 2b, c, respectively). As shown in Fig. 3c, the training cost
of DeepPot-SE scales quadratically with the number of elements, making its
pretraining computationally infeasible,while thenumber of elements hasno
effects on the training cost ofDPA-1. It is observed that the sample efficiency
ofDPA-1pretrainedonOC2Mis generally better thanDPA-1 fromscratch,
while DeepPot-SE from scratch is the worst. Moreover, compared with
AlCu systems, the improvement of pretraining ismuchmore significant for
HEAsystems, possibly due to the fact that the number of elements ofHEA is
much larger than AlCu, and the local chemical environment is much more
complicated.

The equivariantGNNmodels usually need thousands ofGPUhours to
be trained to a descent accuracy40. By contrast, the DPA-1model only takes
less than 200 GPU hours for training. The converged energy and force
MAEs on the OC2M validation set are 0.681 eV and 0.076 eV/Å, respec-
tively. This accuracy is comparable with the best energy-conserving GNN
model DimeNet++, which achieves MAEs of 0.805 eV and 0.066 eV/Å,
reported in ref. 40. A better performance of energyMAE 0.286 eV and force
MAE0.026 eV/Åis achievedbyGemNet-OCat the cost of non-conservative
forces and loss of smoothness40.

In the potential energymodel, the presence of non-conservative forces
and unsmoothness introduce an artificial energy drift in MD simulations.
While investigating static properties, this drift can be removed by incor-
porating a thermostat in the simulation. However, it is essential to carefully
examine the potential impact on the accuracy of property estimation. To
calculate the dynamical response of the system, such as the self-diffusion
coefficient, viscosity, and heat conductivity, it is typically necessary to
evaluate auto-correlation functions by using the Green-Kubo relations60,61.
The estimationsof auto-correlation functions usually require 10-100ps long
micro-canonical (NVE) simulations to achieve converged statistics and
eliminate possible nonergodicity in the Hamiltonian dynamics62. In this
context, energy conservation is critical; otherwise, the energy drift may lead
the system to an undesired thermodynamic state or even cause a blow-up in
the total energy. In Supplementary Note 5, we demonstrate the magnitude
of the total energy drift during a 100-ps longNVEMDsimulation forOC20
configurations. The drift observed in non-conservative models is approxi-
mately 10−2 eV/atom,which corresponds to a temperature of roughly 102 K.
In contrast, the energy-conserving DPA-1 model, as anticipated, does not
exhibit any energy drift.

As shown in Supplementary Note 6, it has been observed that, when
trained with 1 million steps on the AlMgCu alloy dataset, the non-
conservative models achieve relatively higher force accuracy but lower

Table1 | ValidationRMSEofDPA-1andDeepPot-SEonenergy
(Δ E, meV/atom) and atomic forces (Δ F, meV/Å) with different
settings of the training/validation sets (See Datasets Section
for details)

Systems Training Validation Validation RMSE

DPA-1 DeepPot-SE

Δ E Δ F Δ E Δ F

AlMgCu single + binary ternary 6.99 58 65.1 92

all (single+binary+
ternary)

ternary 2.26 35 3.16 42

all all 2.74 38 3.67 45

SSE init + single mix 0.56 60 0.72 76

init +mix single 3.72 69 3.76 82

all (init + single +
mix)

all 1.41 68 2.92 85

HEA interior exterior 31.2 158 197 399

exterior interior 6.88 117 236 428

all (interior +
exterior)

all 4.96 71 28.7 141

The number of attention layers l in DPA-1 is set to 2 in the AlMgCu and SSE systems, and to 3 in the
HEA systems. Bold numbers correspond to lower values.

Fig. 2 | Learning curves of both energy and force with DeepPot-SE and DPA-1,
under different setups and on different systems. a Learning curves on the AlMgCu
ternary subset, with DeepPot-SE and DPA-1 models, pretrained on single-element

and binary subsets; Learning curves on HEA (b) and AlCu (c), with DeepPot-SE
(from scratch) and DPA-1 (both from scratch and pretrained on OC2M). The red
line represents the full data training baseline with DPA-1.
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energy accuracy compared to the conservative models. Furthermore, the
accuracy of non-conservative models in predicting the equation of state
(EOS), a fundamental material property, is lower than that of the con-
servative models. This may be attributed to the fact that non-conservative
models predict energy and force separately, and thus accurate force pre-
diction does not necessarily improve the shape of the energy landscape.

Interpretability of type embedding learned from pretraining
To see whether DPA-1 can learn physically meaningful information from
pretraining, we investigated the 3-dimensional principal component ana-
lysis (PCA) visualization of the learned type embeddings in the OC2M-
pretrainedmodel. Interestingly, as shown in Fig. 3a, the arrangement of the
elements generally follows the shape of a downward spiral. Elements
belonging to the same period are lined up in the direction of the spiral; while
elements belonging to the same family are listed in the direction orthogonal
to the spiral. Even though some transitionmetal elements are almost bound
together, this rule still roughly holds. It is observed that C, N, and O are
outliers, possibly because in OC2M, C, N and O are mostly in organic
molecules, which serve as adsorbates and have chemical environments that
are very different from other elements.

In addition, we performed interpolation experiments for the type
embedding of Li, an element unseen in OC2M. As shown in Fig. 3b, we let
TLi ¼ λ Nað Þ � TNa þ 1� λ Nað Þð Þ � TH , since Li lies betweenH andNa in
the same family.When tested on the SSE system, only the bias in the atomic
energy is changed, since the setup of the electronicmethod used to label the
SSE system is different from that for OC2M, which typically causes an
energy shift. It is found that the RMSE of energy and force shows a sudden
drop when λ Nað Þ ¼ 0:7, which meets the chemical intuition and further
confirms the interpretability of the pretrained DPA-1model. Moreover, we
conducted analogous interpolation experiments forNbandMoon theHEA
systems, and reached similar conclusions as theLi interpolation (see detailed
report in Supplementary Note 7).

Discussion
In this paper, we developed DPA-1, an attention-based Deep Potential
model that allows for large-scale pretraining on atomistic datasets. We
tested DPA-1 from different aspects, showing its excellent performance in
terms of its accuracy on various datasets when trained from scratch, as well
as its sample efficiency when pretrained with existing data. Further inves-
tigations on the type embedding parameters suggest the interpretability of
DPA-1 pretrained on OC2M.

In the future, it will be of interest to extend the training dataset to cover
the full periodic table, and, in particular, see amore converged “spiral” in the
latent space; the embedding information of local chemical environments
may be useful to characterize different conformations. Multi-task and
unsupervised training schemes are worth exploring; and, for downstream
tasks, just like what has happened in the fields of CV andNLP, schemes like
model compression, distillation, and transfer, etc., are desperately needed.
We leave these possibilities and more applications to future works.

Methods
Consider a system of N atoms, the elemental types are
A ¼ α1; α2; :::; αi; :::; αN

� �
, and the atomic coordinates are

R ¼ r1; r2; :::; ri; :::; rN
� �

, with ri being the threeCartesian coordinates of
atom i. The PES of the system is denoted by E, a function of elemental types
and coordinates, i.e. E ¼ EðA;RÞ. For each atom i, consider its neighbors
fjjj 2 Nrc

ðiÞg, whereNrc
ðiÞ denotes the set of atom indices j such that rji < rc,

with rji being the Euclidean distance between atoms i and j. E is represented
as the summation of atomic energies e1; e2; :::; ei; :::; eN

� �
, where the

atomic energy ei only depends on the information of Nrc
ðiÞ. We define

Ni ¼ jNrc
ðiÞj, the cardinality of the setNrc

ðiÞ. We useAi to denote element

types inNrc
ðiÞ, andRi 2 RNi × 3 their corresponding coordinates relative to

i. The atomic energy ei is thus a function ofAi andRi. The atomic force on

Fig. 3 | Interpretability of DPA-1 pretrained on
OC2M and training efficiency comparison with
DeepPot-SE. a 3-dimensional PCA visualization of
the learned type embeddings of DPA-1 pretrained
on OC2M. These 56 elements are roughly arranged
on a spiral in the latent space. Elements in the fourth
period are connected with the red line and elements
belonging to the same family are grouped by the blue
dot lines. Colors on the names of the elements
represent the height in z-axis. We use dashed circle
to denote the hypothetical position of Li, which is
not contained in OC2M. See text for discussions.
bRMSEof energy and force for SSE systems given by
DPA-1 pretrained on OC2M, as functions of linear
interpolation coefficient λ Nað Þ. Since Li is not con-
tained in OC2M, we let TLi ¼ λ Nað Þ � TNa þ
1� λ Nað Þð Þ � TH be the interpolated type embed-
ding of Li. The OC2M-pretrained model with this
interpolation and modified energy bias is directly
tested on SSE systems without further training.
c Training efficiency of DPA-1 and DeepPot-SE
(considering type information of both two sides)
with the growing number of element types in
training systems. The maximum number of neigh-
boring atoms to be considered is set to 120 in all the
experiments.
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atom i,F i, is defined as the negative gradient of the total energywith respect
to i’s coordinate:

F i ¼ �∇ri
E: ð1Þ

We refer to ref. 7 for a detailed discussion of several requirements for PES
modeling. In particular, the PES has to be invariant under translation,
rotation, and permutation of the indices of atoms with the same
element types.

The details of themodel architecture are introduced below.We refer to
Fig. 1 for the overall pipeline to predict the atomic energy ei: from the
embedded neighboring environment, through the self-attention scheme, to
the symmetry-preserving descriptors, and finally to the fitting network.

Local embedding matrix with type information
We obtain the local embedding matrix with the following three steps. First,
Ri is mapped to the generalized coordinates ~Ri 2 RNi × 4. In this mapping,
each row ofRi; fxji; yji; zjig, is transformed into a row of ~Ri

:

fxji; yji; zjig7!fsðrjiÞ; x̂ji; ŷji; ẑjig; ð2Þ

where fxji; yji; zjig denotes the Cartesian coordinates of rji = rj− ri,

x̂ji ¼
sðrjiÞxji
rji

; ŷji ¼
sðrjiÞyji
rji

; ẑji ¼
sðrjiÞzji
rji

, and sðrjiÞ : R 7!R is a continuous

and differentiable scalar weighting function applied to each component,
defined as:

sðrjiÞ ¼

1
rji

rji < rcs
1
rji

u3 �6u2 þ 15u� 10
� �þ 1

� �
rcs ≤ rji < rc; u ¼ rji�rcs

rc�rcs
:

0 rc ≤ rji

8>><
>>: ð3Þ

Here rcs is a smooth cutoff parameter that allows the components in ~Ri
to

smoothly go to zero at the boundary of the local region defined by rc.
Second, we add the atomic type embedding as supplemental infor-

mation. For atom i, the type embedding map Ti is defined as:

Ti ¼ ϕT ðαiÞ; ð4Þ

where αi is the atomic type of atom i and ϕT is a one-hot-like embedding
network mapping from αi to a length-fixed vector.

Then, given both ~Ri
and type embeddings fTig∪ fTjjj 2 N rc

ðiÞg, we
define the local embedding matrix Gi 2 RNi ×M1 :

Gi� �
j ¼ GðsðrjiÞ;Ti;TjÞ; ð5Þ

where G is a neural network mapping from scalar weight sðrjiÞ and type
embeddings of both center and neighbor atoms, through multiple hidden
layers, toM1 outputs. Here we simply feed the concatenated inputs intoG at
once, as shown in Fig. 1b.

Attention method for building up trainable descriptors
The attention mechanism has achieved great success and played an
increasingly important role in CV63 and NLP64. It has become an excellent
tool for modeling the importance or relevance of visual regions or text
tokens, thus is potentially appropriate to reweight the interactions among
neighbor atoms according to both distance and angular information.

InDPA-1,we follow the standard self-attentionmechanismandobtain
the queriesQi;l 2 RNi × dk , keys Ki;l 2 RNi × dk , and values V i;l 2 RNi × dv :

Qi;l� �
j ¼ Ql Gi;l�1� �

j

� 	
;

Ki;l
� �

j ¼ Kl Gi;l�1
� �

j

� 	
;

V i;l
� �

j ¼ Vl Gi;l�1
� �

j

� 	
;

ð6Þ

where Ql, Kl, Vl represent three linear transformations which output the
queries and keys of dimension dk and values of dimension dv, and l is the
index of attention layer. Here we take Gi;0 ¼ Gi.

Then we adopt the scaled dot-product attention method65 to mix the
neighbor features after calculating the attention weights:

AðQi;l;Ki;l;V i;l;Ri;lÞ ¼ φ Qi;l;Ki;l;Ri;l
� �V i;l; ð7Þ

where φ Qi;l;Ki;l;Ri;l
� � 2 RNi ×Ni is attention weights. In the original

attention method, one typically has φ Qi;l;Ki;l� � ¼ softmax Qi;l ðKi;l ÞTffiffiffiffi
dk

p
� �

,

with
ffiffiffiffiffi
dk

p
being the normalization temperature. This is slightly modified to

better incorporate the angular information:

φ Qi;l;Ki;l;Ri;l
� � ¼ softmax

Qi;lðKi;lÞTffiffiffiffiffi
dk

p
 !

� R̂iðR̂iÞ
T
; ð8Þ

where R̂i ¼ Ri

kRik2
2 RNi × 3 denotes normalized relative coordinates and⊙

means element-wise multiplication. Intuitively, in the neighborhood of
center atom i, neighbor atom kmay be highly correlated with j when both

the relative distance attention ðQi;lÞjðKi;lÞTk and normalized product of

relative coordinates
rjiðrkiÞT
rjirki

have high scores.

Thenwe add layer normalization in a residual way to finally obtain the
self-attentioned local embedding matrix Ĝi

in one such attention layer:

Gi;l ¼ Gi;l�1 þ LayerNormðAðQi;l;Ki;l;V i;l;Ri;lÞÞ: ð9Þ

We also tried other attention-related tricks such as pre-layer normalization,
multi-head attention, etc., which brought little improvement. In practice, as
shown in Fig. 1c, we repeated this procedure by l(l ≥ 2) times for a more
complete representation. If not statedotherwise,weuse l = 2 in the following
sections of the work. Next, we define the encoded feature matrix Di 2
RM1 ×M2 of atom i:

Di ¼ ðĜiÞ
T
~Rið ~RiÞT _Gi

; ð10Þ

where _Gi
stands for a sub-matrix of Ĝi

, which takes the first M2(<M1)
columns of Ĝi

. Here the featurematrixDi, i.e. the descriptor, preserves all
the invariance mentioned above, of which the proof can be found in
ref. 7. We then pass the reshaped Di, concatenated with the type
embedding parameters of the center atom, through the multi-layer
fitting network:

ei ¼ e Di;Ti

� �
: ð11Þ

The total energy of the system is then given as the summation of ei, and the
atomic force F i can be further computed via Eq. (1).

Model (pre-)training and finetuning
Formodel training or pretraining, we adopted theAdamstochastic gradient
descent method66 on all the trainable parameters w inside the model to
minimize the loss:

LwðEw;FwÞ ¼ 1
jBj
X
t2B

pϵ∣Et � Ew
t ∣

2 þ pf ∣F t � Fw
t ∣

2
� 	

: ð12Þ

Here B represents a minibatch, jBj is the batch size, t denotes the index of
the training sample. Ew;Fw denote the model outputs and E;F are the
corresponding DFT results. We also adopted a scheduler to tune the pre-
factors pϵ and pf during the training process to make a better balance
betweenenergy and force labels.Virial errors,whichareomittedhere, canbe
added to the loss for training if available.
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To finetune the pretrained model with a new dataset, we first change
the energy bias in the last layer of the pretrained model with the new
statistical results of the newdataset, and thenwefix part of the parameters in
the pretrained model and train the remaining. For the following experi-
ments, we obtained the best performance when only the type embedding
parameters are fixed.

Data availability
The dataset used for training OC2M-pretrained DPA-1 is available at:
https://www.aissquare.com/datasets/detail?pageType=datasets&name=
Open_Catalyst_2020(OC20_Dataset). Other datasets are available in their
references or on reasonable request.

Code availability
The codes of DPA-1 are in the repository of DeePMD-kit: https://github.
com/deepmodeling/deepmd-kit. The OC2M-pretrained model is available
at: https://www.aissquare.com/models/detail?pageType=models&name=
DPA_1_OC2M.
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