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Compositional design and phase
formation capability of high-entropy
rare-earth disilicates frommachine
learning and decision fusion
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A key strategy for designing environmental barrier coatings is to incorporate multiple rare-earth (RE)
components into β- and γ-RE2Si2O7 to achieve multifunctional performance optimization. However,
the polymorphic phase presents significant challenges for the design of multicomponent RE
disilicates. Here, employing decision fusion, a machine learning (ML) method is crafted to identify
multicomponent RE disilicates, showcasing notable accuracy in prediction. The well-trained ML
models evaluated the phase formation capability of 117 (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 and (RE11/
6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7, which are unreported in experiments and validated by first-
principles calculations. Utilizing model visualization, essential factors governing the formation of
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 are pinpointed, including the average radius of RE

3+ and variations
in different RE3+ combinations. On the other hand, (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 must
take into account the average mass and the electronegativity deviation of RE3+. This work combines
material-orientedMLmethodswith formationmechanismsofmulticomponentREdisilicates, enabling
the efficient design of superior materials with exceptional properties for the application of
environmental barrier coatings.

Environmental barrier coatings (EBCs) have received significant attention
ingas turbine technology, aiming to shield turbine components crafted from
SiCf/SiC ceramic matrix composites (CMCs) against corrosion damage
fromCaO-MgO-Al2O3-SiO2 (CMAS) andwater vapor inhigh-temperature
combustion environments, thus enabling higher inlet temperatures, greater
core power, and improving fuel efficiency in turbine engines1–5. Rare earth
disilicates (RE2Si2O7) show great potential for EBC applications, because of
their excellent resistance to molten CMAS/water vapor, low thermal con-
ductivity, and compatible thermal expansion coefficients (CTEs)withCMC
substrates6,7. Particularly, the thermal expansion coefficients
((4–5)×10–6K−1) of the β- and γ-RE2Si2O7 are close to that of CMCs
((4.5–5.5)×10–6K−1)6–10. However, previous studies have shown that their

performance decreases when subjected to the strong coupled attack of
thermal steam, molten CMAS, and thermal stresses8,11,12.

Most RE2Si2O7 experience intricate phase transformations (α, β, γ,
δ, A, F, andG) at various temperatures. Especially, the β-γ polymorphic
transition may result in catastrophic cracking or delamination of the
EBCs13–15. Multi-component systems often exhibit interesting char-
acteristics, such as high configurational entropy, slow diffusion
kinetics, severe lattice distortions, and mixing effects. Through com-
bining the outstanding characteristics of each element, multi-
component RE2Si2O7 materials allow for exploring and optimizing the
properties of single-phase multi-RE principal component RE2Si2O7

(namely (nRExi)2Si2O7) beyond known single one16–22. Currently, β-
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(nRExi)2Si2O7 with good phase stability and co-doped solid solutions
are commonly used for EBC applications23. A key challenge in
designing (nRExi)2Si2O7 is to determine if a specific composition can
eventually form a single-phase (nRExi)2Si2O7.

Recently, Machine Learning (ML) methods have achieved great suc-
cess in many fields, especially in predicting new materials. ML can predict
high-performance materials directly from high-dimensional input data
(descriptors) through learning, rather than extracting limited information
from linear combinations of different descriptors24–29. In the field of mul-
ticomponent materials, ML models, including Artificial Neural Networks
(ANN)30–32, Random Forest Classification (RFC)32–35, and Support Vector
Machines (SVM)31–35, have been successfully applied for predicting their
single-phase formation ability, with their outstanding predictive capabilities
and flexibility in handling new material predictions. For example, Kauf-
mann et al. developed a regression ML model based on hundreds of
properties and CALPHAD features36, in which the results are consistent
with density functional theory (DFT)37–39 calculations and experiments. In
contrast, the effectiveMLmodel for designing and identifying the β- and γ-
(nRExi)2Si2O7 is still rare. Recently, Luo et al. found that the configurational
entropy of mixing serves as a dependable descriptor for β-(nRExi)2Si2O7

formation, but extensive experiments and first-principles calculations are
needed for the configurational entropy of mixing13. Therefore, it is essential
to develop a visualizedMLmodel that utilizes the characteristics of potential
(nRExi)2Si2O7 and RE2Si2O7 features to predict the phase of (nRExi)2Si2O7.

Moreover, the (nRExi)2Si2O7 synergistically optimizes its struc-
tural stability, mechanical/thermal properties, and corrosion resis-
tance by combining key RE components. The performance of rare
earth elements in CMAS corrosion reactions can be categorized into
three groups: inert elements (Yb and Lu), active elements (Gd, Tb,
and Dy), and neutral elements (Ho, Er, and Tm)15. For instance, the
Lu element shows the ability to diminish the activity of CMAS,
thereby improving the resistance of environmental barrier coatings to
CMAS23,40,41. Through customization of these elements,
(nRExi)2Si2O7 may enhance the formation of corrosion-resistant
products (apatite) and decrease the activity of CMAS, resulting in a
slower corrosion rate15. Especially, Lu2Si2O7 and Yb2Si2O7 exhibit
good phase stability and comprehensive performance in EBCs.
Therefore, the SVC, ANN, and RFC models are firstly developed to

predict the β- and γ-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 (RE= La, Ce,
Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y) in this work (Fig. 1), where some
structural characteristics are extracted from the (nRExi)2Si2O7 and
RE2Si2O7. Moreover, the well-trained SVC, ANN, and RFC models
are used to predict the β- and γ-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7

with a validating by DFT calculations, in which the correlation
between the average RE3+ radius and deviation with different RE3+

combinations are analyzed by model visualization.
Meanwhile, by combining the Bayesian theory and majority vot-

ing methods as decision fusion approaches, the decision fusion-based
RFC model is optimized and extended for the single-phase
(6RExi)2Si2O7. Due to the atomic radius of Gd located in the middle
of lanthanide RE elements, it plays a dual role in improving both the
formation of apatite and facilitating the synthesis of single-phase
(nRExi)2Si2O7. (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 (RE = Y,
La, Ce, Eu, Tb, Dy, Ho, Er, and Tm) are focused on this work to enhance
their performance as EBCs, where the formation of regular patterns for
single-phase (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 are deduced
through model visualization and elemental analysis. Finally, the
effectiveness of the decision fusion strategy and robustness of the
optimized model are demonstrated by re-predicting the phase for-
mation ability of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 using them. It is
important that the good consistency between the predictions and
reported experiments demonstrates the accuracy of this ML model for
the rapid evaluation and design of multicomponent RE disilicates,
which will encourage and facilitate both the exploitation and design of
innovative single-phase β-(nRExi)2Si2O7 and γ-(nRExi)2Si2O7.

Results
Feature selection
As shown inTable 1, a list of commonly useddescriptors thatmay influence
the phase stability of multicomponent RE disilicates, such as ion radius-
related features, is considered for thisMLmodels22. It should be noticed that
the features which can be obtained directly from the database to replace the
input descriptors calculated by DFT is selected. To mitigate the risk of
overfitting caused by highly correlated features and enhance the fitting
efficiency, the features are eliminated with Pearson coefficients exceeding
0.9018,42. The Pearson correlation coefficient (r) is calculated using the

Fig. 1 | Machine Learning framework used in
this work. The strategy is composed of machine
learning discovery, decision fusion and density
functional theory validation modules, in which
ANN, RFC and SVC refer to artificial neural net-
work, random forest classification and support
vector classification, respectively.

https://doi.org/10.1038/s41524-024-01282-x Article

npj Computational Materials |           (2024) 10:95 2



following formula:

r ¼
P

xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �x
� �2

yi � �y
� �2q ð1Þ

where, xi and yi represent the ith values of two different input features,
respectively, while �x and �y represent the expectations of these two input
features, respectively. As depicted in Fig. 2, all Pearson correlation coeffi-
cients arebelow0.8, indicating the rationality of the feature value selection in
this work. To expedite the convergence of the ML models, the features are
additionally normalized via the formula:

x̂i ¼
xi � xmean

xstd
ð2Þ

where, xstd and xmean are the variance and mean values, respectively. The
processed array shows amean of 0 and a variance of 1 for each column. xi is
ith value of the feature (x).

Phase identification of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 via ML
During the training process, a random splitting technique is employed to
divide the data into training and testing sets. Then, the performance of each
model is assessed by measuring its validation accuracy at three proportions
of training and testing data. Here, the proportions for the test set are 0.15,
0.2, and 0.25, while the corresponding proportions for the training set are
0.85, 0.8, and 0.75, respectively. For the ANNmodel, the hyper-parameters

play a crucial role in the ability of the model to capture intricate patterns
from input samples. Few hidden layers and nodes may lead to incomplete
feature acquisition. Conversely, excessive hidden layers and nodes can
introduce unnecessary noise and lead to overfitting. Therefore, a grid search
was conducted on the number of hidden layers and the nodes in each layer.
In the case of the SVC model, the kernel type, and the regularization
parameter (denoted as C) are optimized. The C parameter determines the
tolerance for misclassification errors. For the RFCmodel, the random state
and the number of decision trees are refined to enhance its performance.
The random state ensures reproducibility of results, while the number of
decision trees affects the model’s complexity and predictive power. These
three methods, including SVC with hyperplane, ANN with a brain-like
structure, and RFC with a tree structure, provide different perspectives. By
fine-tuning these parameters and methods, we aim to improve the model’s
ability to classify data accurately.

As shown in Fig. 3, compared to the testing-to-training ratios of 0.15,
0.20, and 0.25, all three models achieved their respective optimal validation
accuracies at a ratio of 0.15. Both the RFC and SVC models achieved a
validation accuracy score of 1.000, while the ANNmodel shows a relatively
lower validation accuracy score of 0.857, as depicted in Fig. 3. Meanwhile,
the ANN under the PyTorch framework and under the scikit-learn Python
package exhibit similar accuracies, as shown in Supplementary Figure 1. To
determine the most suitable model for this study, the evaluation metrics of
RFC and SVC are further compared, such as the confusion matrices, the
receiver operator characteristic (ROC) curve, and AUC (area under the
curve). The confusion matrices of RFC and SVC models display similar
patterns (Fig. 4a and b), as evidenced by the summation of true positive rate
(TPR) and true negative rate (TNR). Additionally, from the AUC-ROC
curve (Fig. 4c andd), RFCexhibits higher classification qualitywith anAUC
score of 1.00, in contrast to the AUC score of 0.93 for SVC. Therefore, RFC
demonstrates better performance than SVC.

Then, the trained SVC, RFC, andANNmodels are used to identify the
formation capability of the pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, with
their phase composition predicted by the RFC model in Table 2, as well as
the ones for SVC and ANN in Supplementary Table 1. Among the 33
predicted samples in the RFC model, 17 samples are identified as pure
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, in which three compounds are β-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 and 14 ones are γ-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. The ML framework offers a high accu-
racy in prediction but is often perceived as a black-box model. To interpret
the prediction process of the RFC model, researchers commonly employ
feature importance, which visually reflects the contribution of each feature
in enhancing the model’s predictive ability43,44. Meanwhile, although the
Pearson coefficient identifies influential features, it does not provide an
explanation of how these features affect the predictions. To address this
limitation, the SHAP (Shapley Additive exPlanetions) is introduced to
explain the key mechanism of the formation of pure
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7.

TheSHAPvalue and its importance for all features are visualized inFig.
5. The importance of features is reflected by their average absolute SHAP
values (|SHAP|), where the larger the |SHAP| value is, the greater the impact
of the feature on the prediction of pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7

is. Figure 5 (a) illustrates the impact of input features on the prediction by
graphing the SHAP values for each feature-sample pair, with each row and
dot representing a feature and sample, respectively. Thepositionof thepoint
on the x-axis is determined by its SHAP value, reflecting the impact of
features on target attribute prediction. In addition, the point color corre-
sponds to the feature values represented by the color code from low to high,
and their specific analysis is described in Supplementary Note 1 and Sup-
plementary Figure 2. The importance of input features that influence the
formation capability of pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is ranked in
increasing order and displayed in Fig. 5 (b). It is identified that the value of�r
is the most critical factor in predicting the formation capability of pure
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. In addition, the value of σr also holds
significance in the prediction results. The specific values of σr and�r for each

Table 1 | Input features and their corresponding descriptions

Feature Description

σr RE Ionic radius deviation of constituent RE2Si2O7

�r Average RE Ionic radius of constituent RE2Si2O7 per formula unit

σm Mass deviation of constituent RE2Si2O7

�m Average mass of constituent RE2Si2O7 per formula unit

σX Electronegativity deviation of constituent RE2Si2O7

�X Average electronegativity of constituent RE2Si2O7 per formula unit

4S Mixing entropy

Fig. 2 | Pearson correlation coefficients for all features. The two features with
Pearson coefficients close to 1 or −1 indicate a strong correlation between them,
whereas those with coefficients close to 0 indicate a weak correlation between them.

https://doi.org/10.1038/s41524-024-01282-x Article

npj Computational Materials |           (2024) 10:95 3



predicted (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 are summarized in Supple-
mentary Table 2.

As shown in Fig. 6, β-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 corresponds
to smaller �r values, while γ-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 tends to
formas the�r increases. There is a potential boundary between the dominant
regionsof the β and γphases at “�r = 8.885Å”. This suggests that todesignβ-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, the�r feature for multiple combinations
of RE3+ should be kept below 0.885Å, which is consistent with the
experimental result inferred by Luo et al. 13. Furthermore, as indicated by
Fig. 6, the formation of pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 compound
can only occur when the value of σr is small enough, while large σr values
lead to element segregation and phase separation. In the ML prediction
results, the σr values for pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 are all
smaller than 0.066, which is consistent with the reported results45. In fact,
when multiple RE elements reside within the target lattice, a phenomenon
known as “imperfect isomorphism” occurs46. For example, RE elements
apart fromYbandLu can be incorporated into the β-type lattice. Therefore,
it is expected that the size mismatch and property differences among

multiple RE3+ will introduce extensive disturbances in the lattice, resulting
in competition among different phases during the formation of solid
solutions. The lattice can tolerate small differences in size between various
RE3+, thus forming a thermodynamically favorable pure multicomponent
solid solution. However, excessive differences will lead to element segre-
gation and phase separation.

It can be concluded that the insights obtained through SHAP analysis
are of great significance for the design of synthetic pure materials. Specifi-
cally, the formation ability of the pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7

depends on the average�r and theσr , following thepotential phase formation
and possible phase transitions at sufficiently high temperatures in experi-
mental conditions. Since there are no reports on these predicted
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 compounds before, the first-principles
calculation is used to validate our prediction via the ML models.

Verification of pure (RE10.25 RE20.25Yb0.25Lu0.25)2Si2O7

Based on the predicted results of the RFCmodel (as shown in Table 2), the
structures of 17 pure (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 compounds are

Fig. 3 | Grid search of Machine Learning models. Parameters of (a–c) ANN, (d–f) SVC, and (g–i) RFC models, respectively.The first, second, and third columns are the
testing proportions of 0.15, 0.2 and 0.25, respectively.
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constructed, including three β phases and fourteen γ ones. As described in
Fig. 7, the β-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 consists of corner-sharing
Si-O tetrahedra that form [Si2O7] units, which are stacked along the y-axis.
The rare earth atoms are coordinated with six oxygen atoms, with a Si-
Obridge-Si bond angle of 180°. The bridging oxygen atoms in the [Si2O7] unit
do not bond with the rare earth atoms. The γ-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is similar to the β phase, while the
[Si2O7] units are arranged in a staggered pattern, resembling a sinusoidal
waveform. The lattice parameters of 17 materials and related RE2Si2O7 are
listed in Supplementary Table 3, in which the calculated lattice parameters
are close to the reported values8.

The thermodynamic stability of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is
analyzed through a linear optimization program to verify the stable phases
screened by the ML method. Supplementary Table 4 summarizes the cal-
culated formation enthalpies ΔHcomp of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7

via a linear optimizationprocedure.As illustrated in Fig. 8, theΔHcomp values
of predicted (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 are all negative, indicating
their thermodynamic stability.Among theγphases, theΔHcomp values follow
the order of (Dy0.25Y0.25Yb0.25Lu0.25)2Si2O7 < (Tb0.25RE20.25Yb0.25Lu0.25)2
Si2O7 < (Gd0.25RE20.25Yb0.25Lu0.25)2Si2O7 < (Eu0.25RE20.25Yb0.25Lu0.25)2Si2-
O7with the increasing of�r and σr (Supplementary Table 2). Itmeans that the
thermodynamics stability of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 synthesis

raises with the increasing �r and σr , while the multiple-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 will be formed above a certain threshold
of �r and σr . This is consistent with reported results13 and the present ML
analysis.

Then, the mixing Gibbs free energy is also introduced to calculate the
phase stability of materials against temperatures47, which can be expressed
as:

Gmix ¼ Hmix � T4S ð3Þ

where, Hmix and ΔS represent the mixing enthalpy and mixing entropy,
respectively. T is the temperature. The mixing enthalpy of
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is defined as the energy relative to four
single-componentREdisilicateswith the same space group, according to the
following equation:

Hmix ¼
Etotal ðRE10:25RE20:25Yb0:25Lu0:25Þ2Si2O7

� �� Etotal RE2Si2O7

� �
n

ð4Þ

where Etotal((RE10.25RE20.25Yb0.25Lu0.25)2Si2O7) and Etotal(RE2Si2O7) are
the total energy of multicomponent and single rare-earth disilicates,

Fig. 4 | The evaluation metrics of (a, c) SVC and (b, d) RFC models. a, b Confusion matrix and c, d ROC-AUC curves.
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respectively. n represents the atom number of the calculated
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. In addition, the mixing entropy of the
supercells (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is calculated by Eq. (5). As
depicted in Fig. 9, themixingGibbs free energies are negative, suggesting the
stability of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 above 0 K. Also, Chen et. al
successfully synthesized the γ-(Gd1/4Dy/4Yb1/4Lu1/4)2Si2O7, which verifies
our ML prediction of this material48.

In summary, all 17 predicted (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7

selected by the RFC model exhibit stability through ΔHcomp and mixing
Gibbs free energy. This verifies the reliability of the present ML model.

Extendedphase prediction of (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/
6)2Si2O7 based on decision fusion
As the component of RE elements increases, the difficulty of synthesizing
multi-component rare earth silicates escalates. Therefore, based on the
validated data of quaternary rare earth disilicates, we retrained the RFC
model in ML to predict the single-phase formation capability of (RE11/
6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7. To replace computationally

expensive DFT verification calculations, two decision fusion theories based
on cross-validation, i.e., relative voting and Bayesian theory, are incorpo-
rated into the retrained model to enhance its reliability in this study.
Compared with the proportional division approach used in
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, the k-fold strategy is considered to take
full advantage of decision fusion and improves the results by accentuating
decision fusion based on the validated effective algorithms. After the
parameter testing, the training model with high precision (0.875), namely
k = 80 andn = 200 (Fig. 10) are selected. The retrainedRFCmodel exhibits a
favorable performance, which indicates its generalization ability for high-
throughput predictions.

To enhance the accuracy of phase stability prediction, decision fusion is
applied to integrate and leverage multiple well-trained models. We mainly
evaluate two distinct fusion strategies: a voting-based approach and a Baye-
sian fusion-based method. The former utilizes the common majority voting
scheme, treating the classification result of each model as one vote and
integrating the results. The latter effectively combines experimental results
and prior information and provides specific prediction probabilities for each

Fig. 5 | The feature visualization via the SHAP value.The SHAPmodel of (a) SHAP values for each feature and (b) feature importance for (RE11/4RE21/4Yb1/4Lu1/4)2Si2O7.

Table 2 | Predicted phase composition for some selected (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 via RFC models

Material Phase Material Phase

(La0.25Eu0.25Yb0.25Lu0.25)2Si2O7 Multiple (Eu0.25Tb0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Gd0.25Yb0.25Lu0.25)2Si2O7 Multiple (Eu0.25Dy0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Tb0.25Yb0.25Lu0.25)2Si2O7 Multiple (Eu0.25Ho0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Dy0.25Yb0.25Lu0.25)2Si2O7 Multiple (Eu0.25Er0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Ho0.25Yb0.25Lu0.25)2Si2O7 Multiple (Eu0.25Y0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Er0.25Yb0.25Lu0.25)2Si2O7 Multiple (Gd0.25Tb0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Tm0.25Yb0.25Lu0.25)2Si2O7 Multiple (Gd0.25Dy0.25Yb0.25Lu0.25)2Si2O7 γ

(La0.25Y0.25Yb0.25Lu0.25)2Si2O7 Multiple (Gd0.25Er0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Eu0.25Yb0.25Lu0.25)2Si2O7 Multiple (Gd0.25Y0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Gd0.25Yb0.25Lu0.25)2Si2O7 Multiple (Tb0.25Dy0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Tb0.25Yb0.25Lu0.25)2Si2O7 Multiple (Tb0.25Ho0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Dy0.25Yb0.25Lu0.25)2Si2O7 Multiple (Tb0.25Y0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Ho0.25Yb0.25Lu0.25)2Si2O7 Multiple (Dy0.25Y0.25Yb0.25Lu0.25)2Si2O7 γ

(Ce0.25Er0.25Yb0.25Lu0.25)2Si2O7 Multiple (Ho0.25Y0.25Yb0.25Lu0.25)2Si2O7 β

(Ce0.25Tm0.25Yb0.25Lu0.25)2Si2O7 Multiple (Er0.25Y0.25Yb0.25Lu0.25)2Si2O7 β

(Ce0.25Y0.25Yb0.25Lu0.25)2Si2O7 Multiple (Tm0.25Y0.25Yb0.25Lu0.25)2Si2O7 β

(Eu0.25Gd0.25Yb0.25Lu0.25)2Si2O7 γ
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class49–51. Table 3 presents the results obtained from the above two decision
fusionmethods, revealing that the outputs frombothmethods are consistent.
Among them,PMul,Pβ, andPγ represent theprobabilities of formingmultiple,
β, and γ classes after Bayesian fusion, respectively, while VMul, Vβ, and Vγ

denote the number of votes obtained by multiple, β, and γ classes after
majority voting, respectively. Among the studied 84 (RE11/6RE21/6RE31/
6Gd1/6Yb1/6Lu1/6)2Si2O7 materials, 35 ones are predicted to be single phases,
including 7 β and 28 γ phases. In experiments, Sun et al. have successfully

synthesized γ-(Tb1/6Dy1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 that is predicted as a
single γ phase in this work40, validating our ML prediction results.

To further analyze the theoretical implications of the ML prediction
results, we selected one of the cross-validation models with high validation
accuracy to analyze its SHAP values. As shown in Fig. 11a, there is a negative
correlation between σr and the formation ability of pure (RE11/6RE21/6RE31/
6Gd1/6Yb1/6Lu1/6)2Si2O7. Additionally, Fig. 11b shows that being similar to
the SHAPmodel of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, the features related to
ionic radii still play a crucial role, with the greatly increased importance of σX .

The specific values of σr , �r, �m and σX for each predicted (RE11/6RE21/
6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 are plotted in Supplementary Table 5. It can
be found that σr plays a decisive role in the formation of pure (RE11/6RE21/
6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7, as the predicted σr values for the 35 pure
materials are all below 4.0% (as displayed in Fig. 12a), which is consistent
with the reported literature47. The reported key transition point for the β-
and γ-(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 is �r = 0.885 Å13. According to the
SHAPmodel, �m and σX also play a crucial role in (RE11/6RE21/6RE31/6Gd1/
6Yb1/6Lu1/6)2Si2O7 located at the boundary for�r = 0.885 Å.Asplotted inFig.
12b, the �r values of β-(RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 are all
smaller than 0.900 Å (around 0.885 Å), and the σX values of them are less
than 0.046. Furthermore, the σX values of all the materials predicted as β
phase are less than 478.5 g·mol−1. This also explains why the materials
satisfied theσX ,σr and�r conditions (as listed in SupplementaryTable 5). For
example, (Dy1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 and (Dy1/6Ho1/6Tm1/

6Gd1/6Yb1/6Lu1/6)2Si2O7, are predicted as γ phases. Figure 13 presents the
frequencyof eachRE element in predicted β-(RE11/6RE21/6RE31/6Gd1/6Yb1/
6Lu1/6)2Si2O7. The Y element shows the highest frequency, indicating its
positive contribution to the formation of β-(RE11/6RE21/6RE31/6Gd1/6Yb1/
6Lu1/6)2Si2O7,while the frequencyofTb, La, andCe elements is 0, suggesting
that these elements hinder the formation of β phases.

In a word, the formation of pure (RE11/6RE21/6RE31/6Gd1/6Yb1/
6Lu1/6)2Si2O7 cannot be determined solely based on �r, with increase of

Fig. 6 |The relationship between the feature values related to the ionic radius (σr and
�r) and the predicted phases.

Fig. 7 | The crystal structure of
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. a, c Crystal
structure of β- and γ-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7, respectively;
b, d projection of β- and γ-
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 along the c axis,
respectively.
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the RE component. It requires considering various factors, such as �m and
σX of the materials. Moreover, by examining the predicted probabilities
of different phases via Bayesian theory in Table 3, there is small differ-
ence in the predicted probabilities of β- and γ-(RE11/6RE21/6RE31/6Gd1/
6Yb1/6Lu1/6)2Si2O7 by the decision fusion-based RFC model for these β-
(RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7. This indicates that the
prediction results show a certain degree of tolerance for the prediction
errors.

Discussion
To verify the accuracy and robustness of the RFC model based on decision
fusion for the predictionofmulticomponent rare earth disilicates, the results
of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 phase stability are re-predicted by an
optimizedRFCmodel. After parameter testing, the results of themodelwith
thehighest accuracy are listed inTable 4. Specifically, themodel achieved the
optimal performance when the k = 20 is selected.

Combined with Table 2, the inclusion of decision fusion does not
change the results of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 with true labels.

This indicates that the RFC model based on decision fusion exhibits high
accuracy and generalization in predicting multicomponent disilicates.
Additionally, it has been reported that the results obtained through the
model based on decision fusion are equal to and/or better than those of the
individual models49,50. Therefore, the RFC model based on decision fusion
demonstrates theoretical and experimental feasibility in the prediction of
multicomponent disilicates. In addition, althoughMLmethods are applied
to predict the mechanical and thermal properties of different material
systems19–21,24, research on mechanical and thermal properties of high-
entropy rare earthdisilicatesviaMLmethods is still rare. The foundation for
exploring themechanical and thermal properties of high-entropy rare earth
disilicates lies in the investigation of their compositional design and phase
formation capability (i.e. phase stability). Thus, this work is expected to lay
the foundation for further studying the mechanical and thermal properties
of stable high-entropy rare earth silicates.

This work successfully establishes a series of models based on Artificial
NeuralNetwork,RandomForestClassification, andSupportVectorMachine
with a high accuracy for predicting the single-phase formation ability of
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 compounds. The results indicate that σr
and �r are the most significant impact on the formation of pure
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. Specifically, β phases can be formed and
further stabilized at high temperatures when satisfying the criteria of (1)
�r < 0.885Å and (2) sufficiently small σr . Then, the predictions validated via
DFT calculations show excellent agreement with experimental results. Fur-
thermore, by combining two decision fusion approaches (Bayesian theory
and the majority voting method), we further optimize the Random Forest
Classification model and successfully predict the single-phase formation
ability of 84 un-synthesized (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7

compounds. Among them, 7 β and 28 γ phases are predicted. The results
reveal that, unlike (RE11/4RE21/4Yb1/4Lu1/4)2Si2O7, (RE11/6RE21/6RE31/6Gd1/
6Yb1/6Lu1/6)2Si2O7 also require additional attention to the factors of σX and
�m. The β phases can be formedwhen satisfying the criteria of (1)�r < 0.900 Å,
(2) sufficiently small σr , (3) σX < 0.046, and (4) �m < 478 g·mol−1. Finally, by
re-predicting the phase formation ability of (RE10.25
RE20.25Yb0.25Lu0.25)2Si2O7 via the RandomForest Classificationmodel based
on decision fusion, the effectiveness of the decision fusion strategy and the

Fig. 9 | The mixing Gibbs free energy of (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 at
different temperatures. The calculated mixing enthalpies and mixing entropy of
various (RE10.25RE20.25Yb0.25Lu0.25)2Si2O7 are all listed in the figure, respectively.

Fig. 8 | Calculated formation enthalpies (eV per atom) of
(RE10.25RE20.25Yb0.25Lu0.25)2Si2O7. The red, orange, purple, and green dashed
circles point out the (Dy0.25Y0.25Yb0.25Lu0.25)2Si2O7,
(Tb0.25RE20.25Yb0.25Lu0.25)2Si2O7, (Gd0.25RE20.25Yb0.25Lu0.25)2Si2O7 and
(Eu0.25RE20.25Yb0.25Lu0.25)2Si2O7 classification, respectively.

Fig. 10 | Grid search of optimized RFC Machine Learning models. The green,
yellow, blue, red, and purple bars represent validation accuracy below 0.840,
0.840~0.850, 0.850~0.860, 0.860-0.870, and above 0.870, respectively.
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Table 3 | Predicted phase composition for some selected (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 via RFCmodels based on
decision fusion

Material Bayesian fusion Majority voting

Phase PMul. Pβ Pγ Phase VMul. Vβ Vγ

(La1/6Ce1/6Eu1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.854 0.043 0.103 Multiple 80 0 0

(La1/6Ce1/6Tb1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.897 0.033 0.070 Multiple 80 0 0

(La1/6Ce1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.869 0.039 0.092 Multiple 80 0 0

(La1/6Ce1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.896 0.035 0.069 Multiple 80 0 0

(La1/6Ce1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.954 0.037 0.009 Multiple 80 0 0

(La1/6Ce1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.955 0.036 0.009 Multiple 80 0 0

(La1/6Ce1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.856 0.047 0.097 Multiple 80 0 0

(La1/6Eu1/6Tb1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.834 0.048 0.118 Multiple 80 0 0

(La1/6Eu1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.784 0.044 0.173 Multiple 80 0 0

(La1/6Eu1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.801 0.043 0.155 Multiple 80 0 0

(La1/6Eu1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.799 0.051 0.150 Multiple 80 0 0

(La1/6Eu1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.832 0.048 0.119 Multiple 80 0 0

(La1/6Eu1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.783 0.060 0.158 Multiple 80 0 0

(La1/6Tb1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.879 0.050 0.070 Multiple 80 0 0

(La1/6Tb1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.880 0.050 0.069 Multiple 80 0 0

(La1/6Tb1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.875 0.057 0.068 Multiple 80 0 0

(La1/6Tb1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.950 0.039 0.011 Multiple 80 0 0

(La1/6Tb1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.867 0.060 0.073 Multiple 80 0 0

(La1/6Dy1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.783 0.056 0.161 Multiple 80 0 0

(La1/6Dy1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.775 0.057 0.167 Multiple 80 0 0

(La1/6Dy1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.840 0.041 0.119 Multiple 80 0 0

(La1/6Dy1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.806 0.055 0.139 Multiple 80 0 0

(La1/6Ho1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.766 0.056 0.178 Multiple 80 0 0

(La1/6Ho1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.844 0.046 0.110 Multiple 80 0 0

(La1/6Ho1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.807 0.064 0.129 Multiple 80 0 0

(La1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.901 0.050 0.049 Multiple 80 0 0

(La1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.795 0.065 0.140 Multiple 80 0 0

(La1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.853 0.058 0.089 Multiple 80 0 0

(Ce1/6Eu1/6Tb1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.789 0.050 0.162 Multiple 80 0 0

(Ce1/6Eu1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.756 0.051 0.193 Multiple 80 0 0

(Ce1/6Eu1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.740 0.053 0.207 Multiple 80 0 0

(Ce1/6Eu1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.740 0.047 0.213 Multiple 80 0 0

(Ce1/6Eu1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.739 0.047 0.214 Multiple 80 0 0

(Ce1/6Eu1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.747 0.078 0.175 Multiple 80 0 0

(Ce1/6Tb1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.691 0.048 0.261 Multiple 79 0 1

(Ce1/6Tb1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.749 0.048 0.203 Multiple 80 0 0

(Ce1/6Tb1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.826 0.050 0.123 Multiple 80 0 0

(Ce1/6Tb1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.879 0.050 0.071 Multiple 80 0 0

(Ce1/6Tb1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.805 0.054 0.142 Multiple 80 0 0

(Ce1/6Dy1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.650 0.047 0.303 Multiple 79 0 1

(Ce1/6Dy1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.662 0.047 0.291 Multiple 80 0 0

(Ce1/6Dy1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.699 0.048 0.253 Multiple 80 0 0

(Ce1/6Dy1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.729 0.071 0.200 Multiple 80 0 0

(Ce1/6Ho1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.674 0.049 0.277 Multiple 80 0 0

(Ce1/6Ho1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.708 0.056 0.236 Multiple 80 0 0

(Ce1/6Ho1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.739 0.061 0.200 Multiple 80 0 0

(Ce1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.750 0.066 0.183 Multiple 80 0 0

(Ce1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.733 0.068 0.198 Multiple 80 0 0

(Ce1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 Multiple 0.763 0.067 0.170 Multiple 80 0 0
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robustness of the optimized model is demonstrated. In summary, this paper
explores a materials-oriented machine learning approach that incorporates
the mechanisms behind the phase formation of multicomponent rare-earth
disilicates into materials design. It also opens avenues for rational design of
multicomponent rare-earth disilicates within the embedded phase space,
thereby allowing for effective tuning of their properties.

Methods
Machine Learning
The training dataset was derived from various published
sources7,8,13,23,40,41,52–56. In the process of ML model training, samples repre-
senting themix phase, βphase, and γphaseweremarked as “0”, “1”, and “2”
respectively. These sampleswere characterized by 7 input features (Table 1),
which captured the properties of potential multicomponent RE2Si2O7.
Notably, these input features were selected based on their proven

effectiveness in predicting other multicomponent materials57,58. In the cal-
culations, the RE2Si2O7 was all composed of equiatomic ratios of the con-
stituent elements, whose mixing entropy was estimated as:

ΔS ¼ �R
X
i

ciInci
� �

ð5Þ

where R represented the molar gas constant, and ci was the molecular
concentration of the i-th RE2Si2O7. The mean value of a specific property
(prop) was expressed by:

prop ¼
Xn
1

cipropi ð6Þ

where propi was considered as the values of each constituent RE2Si2O7. To
account for the variation in the constituent RE2Si2O7, the deviation (σprop)

Table 3 (continued) | Predicted phase composition for some selected (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7 via RFC
models based on decision fusion

Material Bayesian fusion Majority voting

Phase PMul. Pβ Pγ Phase VMul. Vβ Vγ

(Eu1/6Tb1/6Dy1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.358 0.051 0.592 γ 0 0 80

(Eu1/6Tb1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.362 0.049 0.589 γ 0 0 80

(Eu1/6Tb1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.340 0.076 0.584 γ 0 0 80

(Eu1/6Tb1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.226 0.079 0.695 γ 0 0 80

(Eu1/6Tb1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.418 0.104 0.479 γ 11 0 69

(Eu1/6Dy1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.288 0.093 0.618 γ 0 0 80

(Eu1/6Dy1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.144 0.284 0.572 γ 0 0 80

(Eu1/6Dy1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.075 0.401 0.524 γ 0 0 80

(Eu1/6Dy1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.283 0.168 0.549 γ 0 0 80

(Eu1/6Ho1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.075 0.377 0.549 γ 0 0 80

(Eu1/6Ho1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.034 0.459 0.507 γ 0 14 66

(Eu1/6Ho1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.269 0.180 0.551 γ 0 0 80

(Eu1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.019 0.464 0.517 γ 0 12 68

(Eu1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.156 0.409 0.435 γ 0 23 57

(Eu1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.075 0.524 0.401 β 0 78 2

(Tb1/6Dy1/6Ho1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.112 0.057 0.831 γ 0 0 80

(Tb1/6Dy1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.027 0.056 0.917 γ 0 0 80

(Tb1/6Dy1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.016 0.046 0.938 γ 0 0 80

(Tb1/6Dy1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.244 0.134 0.622 γ 0 0 80

(Tb1/6Ho1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.022 0.05 0.928 γ 0 0 80

(Tb1/6Ho1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.010 0.056 0.934 γ 0 0 80

(Tb1/6Ho1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.109 0.173 0.718 γ 0 0 80

(Tb1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.020 0.075 0.905 γ 0 0 80

(Tb1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.095 0.176 0.729 γ 0 0 80

(Tb1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.096 0.173 0.731 γ 0 0 80

(Dy1/6Ho1/6Er1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.013 0.359 0.628 γ 0 0 80

(Dy1/6Ho1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.011 0.366 0.622 γ 0 0 80

(Dy1/6Ho1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.042 0.516 0.442 β 0 74 6

(Dy1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.010 0.369 0.621 γ 0 0 80

(Dy1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.039 0.559 0.402 β 0 78 2

(Dy1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.034 0.582 0.384 β 0 79 1

(Ho1/6Er1/6Tm1/6Gd1/6Yb1/6Lu1/6)2Si2O7 γ 0.010 0.378 0.612 γ 0 0 80

(Ho1/6Er1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.033 0.583 0.383 β 0 79 1

(Ho1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.031 0.592 0.377 β 0 79 1

(Er1/6Tm1/6Y1/6Gd1/6Yb1/6Lu1/6)2Si2O7 β 0.040 0.593 0.367 β 0 79 1
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of the considered properties was calculated as following:

σprop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

1
ci 1� propi

propÞ

� �2
s

ð7Þ

As shown in Fig. 1, the collected samples were used to extract
features, which were then transformed into vectors. These input vectors
were randomly shuffled and supplied as input to the ANN, SVC, and
RFC models. These trained ML models were employed to predict the
phase formation ability of multicomponent RE disilicates, with the
subsequent validation using first-principles calculations for selected
quaternary multicomponent RE disilicates. The validation results could
be leveraged to improve the robustness of the ML models and extended
the prediction capability to six-RE-principal-component disilicates by
including the MLmodels based on decision fusion in the future training
dataset.

The SVC and RFC models were employed utilizing the Scikit-learn
(sklearn) Python package59,60. The former used a linear kernel with a C
parameter of 1.5, which enabled it to effectively find a hyperplane for
separating the input samples by mapping them to a higher-dimensional

space, while the latter consisted of 200decision trees, with the predictions by
combining the results from all the trees. The ANN models were imple-
mentedusing twoapproaches: one utilizing thePyTorch framework and the
other employing the sklearn Python package, both with three densely
connected hidden layers. The calculation process for obtaining the output
vectors in each layer was described as follows:

Xlþ1 ¼ σ WXl þ b
� � ð8Þ

where Xlþ1 and Xl corresponded to the feature representations in the
(l+ 1)-th and lth layers, respectively.When lwas 0,Xl represented the input
feature vector. Theweightmatrix and bias vector were denoted byW and b,
respectively. The softmax activation function (σ zð Þ) was applied to map the
perceptron outputs into a non-linear space. During the training process, the
PyTorch-based ANN model employed the Adam optimizer to iteratively
minimize the cross-entropy loss function. The loss (H p; q

� �
) between the

labels and predictions was calculated as follows:

H p; q
� � ¼ �

X
x

p xð Þ log q xð Þ� �
ð9Þ

Fig. 11 | The feature visualization via the SHAP value.The SHAPmodel of (a) SHAP values for each feature and (b) feature importance for (RE11/6RE21/6RE31/6Gd1/6Yb1/6
Lu1/6)2Si2O7.

Fig. 12 | The relevant features and phase formation of (RE11/6RE21/6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7. a The relationship between the σX and �r for the predicted phases, in
which the blue area highlights the β and γ phases. bThe relationship among the σX , �m and�r values for the predicted phases, in which the dashed box points out the β phases.
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wherep xð Þ represented theone-hot encodingof real label,while q xð Þwas the
predict distribution.

The paper employed two training strategies, namely k-fold cross-
validation and random sampling61, to make optimal use of the limited
available data. In the former, the number of folds was set to 20 for the
selected quaternary multicomponent RE disilicates and 80 for six-RE-
principal-component disilicates, based on training accuracy. Multiple
models obtained from these strategies could be further combined for the
subsequent decision fusion to achieve more accurate results. In the latter, a
fixed seedwas set to ensure that differentmodels canbe comparedunder the
same data partitioning conditions.

The ROC curve, AUC, and confusion matrix were commonly utilized
for classifier performance evaluation. The former plotted the true positive
rate (TPR) against the false positive rate (FPR) at different discrimination
thresholds, while a higher AUC value of the ROC curve, particularly in the
top-left region, generally signified better statistical performance of the
classifier62.

Decision fusion is a process of forming unified decisions by integrating
the outputs of multiple sensors, systems, or algorithms. The decision fusion
used in this work is implemented by synthesizing outcomes from diverse
trained models through majority voting and Bayesian fusion. It can max-
imize the information contained in the current data, provide a compre-
hensive and accurate decision-making, and construct an appropriate
material-orientedmodeling approach.For themajority votingmethod, each
classifier casted a vote for a class label, which with the highest number of
voteswas selected as thefinal output51. The ensemble’s output class labelwas
represented as follows:

H xð Þ ¼ c
argmax

j

PT
i¼1

hji xð Þ ð10Þ

where hji xð Þ represented predictive output for classifier hi on category
marker cj. T was the number of a classifier.

For the Bayesian fusion algorithm, the validation accuracy
obtained under the k-fold cross-validation method was served as
prior information in this paper, while the predicted probabilities was
used as the experimental information50. The probability fusion for-
mula was as follows and the specific derivation process is shown in

Supplementary Note 2:

P B1;B2; . . . ;BnjAj

	 

¼

Pn
i¼1P AjjBi

	 

P Bi

� �
Pc

j¼1

Pn
i¼1 AjjBi

	 

P Bi

� � ð11Þ

where Aj and Bi represented the jth category and the ith model,
respectively. n was consistent with the number of cross-validation,
which was the number of models. During the implementation of the
Bayesian fusion algorithm, the validation accuracy of models was
taken as the weights for each model, with the adjusted results to
calculate the final predicted probabilities.

As a post-hoc model interpretation method, the SHAP model
analysis is a component of interpretable machine learning63,64. It
establishes a connection between the model’s output and input,
offering insights into “black box models” from both overall and local
situations. Regarded as a paramount method for visual analysis and
model interpretation, the SHAP was approached for interpreting
predictions generated by the RFC and SVC models to shed light on
complex models, with assigning an important value to each feature of
a sample in the dataset. These SHAP values acted as sensitivity
coefficients, providing insights into the most significant features of
the ML model and illustrating how each feature influenced the
predictions64. Notably, a positive SHAP value indicated that a feature
increased the predicted value and had a positive effect, and vice versa.
In this way, these SHAP values allowed for a delicately understanding
of feature contributions and their impact on the predictions.

DFT calculation
All calculations in this study were conducted utilizing the Vienna Ab Initio
Simulation Package (VASP), which implemented the density functional
theory (DFT). The projector augmented wave (PAW) potentials were
employed for an accurate description of the electron-ion interactions,with an
energy cutoff of 520 eV that converged the energy uncertainty below 1meV
per atom. Valence electrons were 5p65d16s2, 3s23p2, and 2s22p4 for RE, Si, and
O atoms, respectively. The Perdew-Burke-Ernzerhof (PBE) functional was
employed to describe the exchange and correlation interactions within the
generalized gradient approximation (GGA)37–39. The Brillouin zone (BZ) was
sampled using a Γ- centered 2×3×3 and 3×2×2Monkhorst-Pack k-mesh for
β and γ phase multicomponent rare earth disilicates and RE2Si2O7. During
the geometric optimization process, electronic self-consistency was obtained
when the energydifference fell below10–6 eV.As for ionicoptimization, itwas
terminatedwhen the forces acting on atoms reached a value less than 0.01 eV
·Å−1. During the geometrical optimization, the atomic positions, super-cell
volume, and supercell shapes were fully relaxed.

To construct special quasirandom structures (SQS) of multi-
component RE disilicates, Monte-Carlo simulations were
employed65,66. The random swap process was confined to the cation
sublattice and excluded swaps between cations and anions. To ensure
the convergence of lattice constants and energies concerning the local
environments, three independent SQS (Special Quasirandom Struc-
ture) structures were computed for each rare earth (RE) disilicate.

The phase stability was analyzed by examining their thermodynamics,
in which the targeted phases should show a lower energy than all the other
competing ones and their combinations. In the study, a linear optimization
procedure introduced by Dahlqvist et al. 67. was employed:

4Hcomp ¼ E � Ecomp bRE1; bRE2; bYb; bLu; bSi; bO
� � ¼ E �min

Xn

i
xiEi

n
ð12Þ

where E and Ei represented the total energy of predicted and competing
phases, respectively. bRE1, bRE2, bYb, bLu, bSi and bO correspond to the
elemental fraction of the RE1, RE2, Yb, Lu, Si, and O elements, respectively.

Fig. 13 | Frequencies of various RE elements appeared in the β-(RE11/6RE21/
6RE31/6Gd1/6Yb1/6Lu1/6)2Si2O7. The numbers in this figure represent the fre-
quencies of the elements, in which the red and blue square areas denote the highest
and lowest elemental frequencies, respectively.
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Ecomp should be minimized subject to the constraints:

xi ≥ 0;
Xn
i

xi ¼ 1 ð13Þ

Pn
i xib

RE1
i ¼ bRE1;

Pn
i xib

RE2
i ¼ bRE2;

Pn
i xib

Yb
i ¼ bYbPn

i xib
Lu
i ¼ bLu;

Pn
i xib

Si
i ¼ bSi;

Pn
i xib

O
i ¼ bO

(
ð14Þ

bRE1 þ bRE2þbYb þ bLu þ bSi þ bO ¼ 1 ð15Þ

where, bRE1i was the proportion of RE1 atomic number in compound i, etc.

Data availability
All data used in this work are publicly available. Original datasets could be
found in corresponding literature7,8,13,23,40,41,52–56. Besides, the original and
processed datasets used in this work are also available at https://github.com/
Yun-Fann/ML-HEC.

Code availability
The codes developed for this work are available at https://github.com/Yun-
Fann/ML-HEC.
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