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Attention towards chemistry agnostic and
explainable battery lifetime prediction
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Fuzhan Rahmanian 1,2,3,4,5 , Robert M. Lee6, Dominik Linzner6, Kathrin Michel6, Leon Merker1,2,
Balazs B. Berkes6, Leah Nuss1,3,4,5 & Helge Sören Stein 3,4,5

Predicting andmonitoring battery life early and across chemistries is a significant challenge due to the
plethora of degradation paths, form factors, and electrochemical testing protocols. Existing models
typically translate poorly across different electrode, electrolyte, and additive materials, mostly require
a fixed number of cycles, and are limited to a single discharge protocol. Here, an attention-based
recurrent algorithm for neural analysis (ARCANA) architecture is developed and trained on an ultra-
large, proprietary dataset from BASF and a large Li-ion dataset gathered from literature across the
globe. ARCANA generalizes well across this diverse set of chemistries, electrolyte formulations,
battery designs, and cycling protocols and thus allows for an extraction of data-driven knowledge of
the degradationmechanisms. Themodel’s adaptability is further demonstrated through fine-tuningon
Na-ion batteries. ARCANA advances the frontier of large-scale time series models in analytical
chemistry beyond textual data and holds the potential to significantly accelerate discovery-oriented
battery research endeavors.

Lithium-ion batteries (LIBs) enable the electrification of everything, yet
there is amaze of challenges thatmust be navigated in order to optimize the
batteries of the future1–4. Critical to the advancement of battery research is
the rapid understanding of why and how some batteries degrade and what
needs to be changed to prevent premature capacity fade5. Material degra-
dation can occur due to numerous factors, including unpreventable solid
electrolyte interphase growth, loss of active material, and other electro-
chemical phenomena6. However, investigating battery degradation is a
time-consuming task, as non-linear capacity loss can occur over hundreds
or thousands of cycles7. Another challenge in early lifetime prediction is the
diversity of battery chemistries in the anode, cathode, and electrolyte, along
with various form factors and testing protocols.

Battery lifetime can be evaluated through various methods, such as
conventional cycling until the end of life (EOL) under constant current-
constant voltage (CC–CV) conditions or cycling for a predetermined
number of cycles. From these data, measures such as coulombic efficiency
(CE) can be calculated8 and correlated to more in-depth techniques such as
electrochemical impedance spectroscopy (EIS)9 to fundamentally assess the
underlying degradation mechanisms. Accurate measurement of CE10,11

does, however, require bespoke instrumentation and a considerable amount

of time, i.e., cycling abattery for1000 cycles at 1C/1D takes approximately 11
weeks. Reducing the required number of cycles by a factor of 10 while
maintaining a high level of fidelity is, therefore, of great interest12. Machine
Learning (ML) anddeep learning (DL) canaccelerate testingby lowering the
number of cycles required to understand the underlying chemistries13. An
example of predicting the EOL of batteries using initial discharge capacity
curves was demonstrated by Severson et al.3, who used regression models.
They integrated data generation with data-driven models to forecast the
lifetime of LFP/graphite cells based on ΔQ(V) and classified their longevity.
In further work, Attia et al.12 employed a Bayesian algorithm to accelerate
the optimization of fast-charging protocols. By using early-cycle data for
low-fidelity predictions, the approach enabled the optimization of high-
fidelity experimental outcomes, thus significantly reducing the experimental
duration from 500 to 16 days.

Themost reliablemodels do not, however,merely predict just predict a
quantity but also allow assessment of the model’s uncertainty. Emblematic
of this is the work by Tong et al.14, who introducedADLSTM-MC, a hybrid
predictive model using adaptive dropout long short-termmemory (LSTM)
with Monte Carlo simulations. This approach, which requires minimal
training data, enhances robustness through Bayesian-optimized dropout
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rates and improves the remaining useful life of two types of LIBs. In a
correlative study15, a recurrent autoregressive deep ensemble network with
aleatoric and epistemic uncertainties was developed along with saliency
analysis to assess the impact of input parameters on output prediction. This
provided an intuitive understanding of feature importance. Another
advantage of using DL algorithms is their ability to use raw data, which has
gained interest in the estimation of battery State of Health (SOH). For
instance, Yang et al.16 developed a hybrid convolutional neural network
architecture with parallel residual connections, which utilizes raw data
across multiple dimensions. By incorporating attention mechanisms, their
model achieves remarkable accuracy in predicting the early stages of
degradation. These advances support the increased focus on more adaptive
and generative modeling frameworks, of which recent efforts include
reinforcement learning from human feedback (RLHF) and the prompt
paradigm in Generative Artificial Intelligence (GAI) techniques regarded
for their potential to unravel complex structure–activity relationships in
material behavior17. Although these approaches are applied in battery
research18,19, their prominence is not as widespread as in other scientific
fields. However, this lesser emphasis provides an opportunity for further
exploration and discovery.

Beyond these early lifetime prediction models, sequence-to-sequence
(Seq-to-Seq) models have been used to monitor battery lifetime and
(SOH)18,20,21. They leverage intrinsic temporal dependencies in degradation
data, providing high predictive accuracy and computational efficiency.
Li et al.20 developed a one-shot LSTM-based Seq-to-Seq framework that not
only predicts future capacities but also identifies knee points in the degra-
dation curve, maintaining stability even in the face of stochastic dis-
turbances. Although Seq-to-Seq models demonstrate robust predictions,
they also exhibit limitations in generalization and require large and diverse
datasets to enhance performance4.

Despite the promises made byML and DL for lifetime predictions22–24,
these models, while robust, face challenges of precision and
trustworthiness25. Existing models often focus on single-task learning,
neglecting the potential benefits of multi-objective learning for various
predictive settings4. In particular, data-driven approaches26,27 tend to over-
look the inherent variations between, for example, production batches or
individual cells28. Such discrepancies, originating from manufacturing
processes or agingmechanisms, canprofoundly impact lifetimepredictions.
Addressing these variations requires integrating domain knowledge into the
learning process to enhance the model’s ability to adapt and accurately
forecast across diverse conditions27. Furthermore, despite the assertions of
recent studies that they are chemistry-agnostic15,29, they often require
enhanced explainability to optimize their effectiveness in various chemistry
settings. Transfer learning offers a promising solution to the challenge of
scarce data but requires more investigation for transparency and
interpretability30. The acquisition of extensive datasets, essential for DL
algorithms31, remains a significant hurdle26,32,33. Nevertheless, innovative
strategies, such as the use of common features in databases and the doc-
umentation of various chemistries and protocols34, establish the foundation
for more in-depth research31. Our goal is to develop a model characterized
by its adaptable design and robustness, with the capability to provide both
uncertainty quantification and explainability. The model’s strength is
underlined by its adaptability in dynamically fine-tuning to specific che-
mical domains. Such a model would be invaluable to the academic com-
munity and would find marketable applications in the real world31,
accelerating battery design and data collection based on active learning.

Results
Data resources
Developing a model that generalizes well necessitates a diverse and large
dataset26 that ideally covers a spectrum of chemistries and formats given
high-dimensional correlations and cell variations30,35, obtained fromvarious
laboratories and measured under different operating conditions12. Data
diversity not only ensures an accurate representation of different cycling
behaviors but also tames the irreducible uncertainty in the predictionswhile

mitigating the risk of overfitting. However, the scarcity of large and com-
prehensive datasets25 that include both high and low-performing cells cre-
ates a challenge for training generalized models, i.e., to overcome a positive
bias30,36. Available data often exhibit noise, discontinuities, and varying
formats that require extensive curation, adding a layer of complexity.
Initiatives such as Battery Archive37 or other cloud services38 are therefore
commendable in promoting Findable, Accessible, Interoperable, and Reu-
sable (FAIR) data39,40 handling in battery research32,33.

In this study, we develop a model trained on ca. 17,400 batteries from
BASF research laboratories that cover a diverse range of LIBs chemistries
andmultiple cyclingprotocols. Exposure of ourmodel to such awide variety
of data enables robust generalization. Utilizing our pre-trained model on a
set of unseen data, we effectively predict the early degradation trajectory.
The ultimate test of our model, therefore, is to apply it to data from cells
produced in a different location and with varying chemistries. Due to
intellectual property constraints that prevent the authors from making the
model trained on the BASF dataset openly accessible, we have retrained our
model by leveraging a diverse array of publicly available datasets from
respected institutions and research groups, including the Toyota Research
Institute (TRI) in partnership with MIT and Stanford41,42, NASA43, the
Center forAdvancedLifeCycle Engineering (CALCE)44, Karlsruhe Institute
of Technology (KIT)45, Hawaii Natural Energy Institute (HNEI)46, and
Sandia National Laboratories (SNL)46. Furthermore, we have incorporated
data from our in-house cycled cells47–50 with successful and failed experi-
ments to further enrich model training and reduce bias. In Supplementary
Section1,weprovide an overviewof all datasets;we include a brief summary
in Table 1 with an indication of which datasets were used during training
and which remained completely unseen for model testing. This approach
ensures a thorough understanding of the data sources, thus improving the
transparency and reproducibility of our research.

Architecture overview
Central to this study is theAttention-basedReCurrentAlgorithm forNeural
Analysis with LSTM (ARCANA)model. This is an attention-based Seq-to-
Seq architecture specifically engineered to assess early-stage battery degra-
dation and perform lifecyclemonitoring. Themodel demonstrates superior
multi-output predictive capabilities, supported by its high modularity and
dynamic adaptability. It is designed to utilize a flexible range of past battery
cycle data, knownas historical temporal segments, for input. In addition, the
model includes predetermined parameters for future conditions, such as
discharge rates and cycle numbers. These parameters are known in advance
of the experiment, i.e., they are controlled by the measurement device and
are referred to as encoded temporal segments. This dual capability offers
multifaceted advantages, from cost and time savings to improved material
selection and protocol optimization.

TheARCANAmodel is augmentedwith additional features suchas the
attention mechanism, which provides insight into the decision-making
process of the model. This feature distinguishes between predictions based
onunderlyingpatterns and those arising fromstochastic variability. Saliency
analysis is additionally performed to emphasize the relative importance of
eachparameter througha computationof the absolute gradient of themodel
output relative to the input of the test set. It quantifies the sensitivity of the
input parameters, revealing how minor variations significantly alter the
output results15, thus aligning the internal logic of the model with domain-
specific knowledge. Adding another layer of robustness is uncertainty
quantification,which is valuable not only for understanding the reliability of
cycling protocols but also for assessing material performance across dif-
ferent battery chemistries.

As illustrated in the unified modeling language (UML) diagram (Fig.
1), theARCANAmodel consists of four principal classes, eachperforming a
different function, and is designed to accept rawdata, thus negating the need
for preliminary feature engineering. This design versatility extends to its
operational modes with Naive Training for initial experiments, Dynamic
Tuning for real-time adaptability via extensive hyperparameter optimiza-
tion, Fine-Tuning for integration of a pre-trained model with selective
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gradient updating, and prediction for efficient inference. Through mod-
ularity, a logging mechanism ensures data integrity and traceability,
adhering to FAIR data principles40. The open-source codebase uses the
PyTorch library51 for model development and the Optuna library52 for
hyperparameter optimization.

The encoder–decoder framework. The encoder (Fig. 2a) initiates the
Seq-to-Seq model in the ARCANA framework by processing historical
temporal segments of the past battery life cycles. Employing an LSTM
network, it is designed to capture complex, non-linear relationships and
time dependencies inherent in sequence data. The encoder processes the
input tensor to accommodate sequences of different lengths, employing a
padding mechanism that enables the LSTM to efficiently process these
sequences without being constrained by their varying lengths.Within the
LSTM, the temporal data is transformed into a tensor, constructing
hidden and cell states that capture sequential information. A skip con-
nection incorporates the initial input into the LSTM output, thus pre-
serving crucial temporal features and stabilizing the learning process.
Layer normalization, when applied to the LSTM output, not only
accelerates convergence but also leads to robust performance, mitigating
the challenges associated with long-sequence dependencies53. The
encoder returns a rich latent representation of the historical data, con-
sisting of the output tensor and the updated hidden and cell states, which
are then utilized by the decoder to enable accurate forecasting in sub-
sequent steps.

The decoder (Fig. 2a) takes on the task of generating future state
predictions. It is initialized with the hidden and cell states from the
encoder and begins by processing the most recent historical cycle data.
The model then integrates its own previous predictions and known
future conditions, such as the expected discharge current and the cycle
number. These two inputs are temporally encoded to capture their
positional relevance54, ensuring that the decoder is informed of the
predefined condition and the timing of each data point within the life
cycle. The decoder employs an attention mechanism that can dynami-
cally adjust sequence weights, identifying critical information at each
prediction step. This approach overcomes the limitations of static-
length vector representation in conventional encoder-decoder models55,
allowing the decoder to focus on the most relevant parts of historical
data. The attention mechanism then computes a context vector asso-
ciatedwith the encoder’s output, which highlights the encoder sequences
with the highest relevance to the current decoding task. This context
vector, combined with the current input, forms a feature-rich tensor that
is subsequently processed by an LSTM layer. Post-LSTM, the output
layer is passed through a fully connected layer with a leaky ReLU acti-
vation function, crucial in maintaining network stability, and enhanced
with a dropout layer placed to reduce overfitting risks. The culmination
of this process is a decoder that generates forecasts for the 0.1, 0.5, and
0.9 quantiles. These provide a probabilistic range indicative of the
inherent uncertainty and offer a statistical interpretation of the potential
future states of the degradation profile.

Table 1 | Collected cycling data for training and testing

Location Cell form Cell chemistry Protocol charge\discharge No.
cell

Cycle range Nominal
capacity [Ah]

Usage

BASF Coin Heterogenous Multimodal 17400 Multimodal Multimodal M(B) Train\Val

TRI41 Cylindrical
commercial

LFP\graphite CC1(Q1)CC2, CC–CV@1C, 4.2V \CC@4C 124 169–2235 1.1 M(P) Train\Val

TRI42 Cylindrical
commercial

LFP\graphite CC1(20%)CC2(40%)CC3(60%)CC4(80%),
CC–CV@1C, 4.2V\CC–CV@4C, 2V

233 100–862 1.1 M(P) Train\Val

CALCE44 Prismatic com-
mercial CX2

LCO\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C) 6 781–1082 1.35 Testing

CALCE44 Prismatic com-
mercial CS2

LCO\graphite CC–CV@0.5C, 4.2V, \CC@0.5C 6 1701–2016 1.1 M(P) Train\Val

KIT45 Cylindrical
commercial

NCA\graphite-Si CC–CV@(0.25C, 0.5C, 1C), 4.2V, \CC@1C 58 29–800 3.5 M(P) Train\Val

KIT45 Cylindrical
commercial

NCM\graphite–Si CC–CV@(0.25C, 0.5C, 1C), 4.2V, \CC@1C 55 43–1277 3.5 M(P) Train\Val

KIT45 Cylindrical
commercial

NCM+NCA
\graphite

CC–CV@0.5C, 4.2V,\CC@(1C, 2C, 4C) 9 912–1031 2.5 Testing

KIT47 Coin self-made LNO\graphite CC–CV@1C, 4.2V, \CC@1C 43 82–505 0.004618 60% for M(P)f, 40%
Testing

KIT48 Coin commercial LCO\graphite CC–CV@1C, 4.25V, \CC–CV@1C, 2.75V 26 150–600 0.045 M(P) Train\Val

KIT49 Coin self-made NMC622\graphite CC–CV@1C, 4.2V,\CC@1C 11 228–501 0.00328 Testing

KIT50 Coin self-made Na0.9[. . . ]O2

\graphite
CC@1C \CC@1C or C-rates test 44 40–140 0.00015 60% for M(P)Na and

M(B)Na, 40% Testing

NASA43 Cylindrical
commercial

NCA\graphite CC–CV@0.75C, 4.2V, \CC@(0.5C, 1C, 2C) 34 24–196 2.0 M(P) Train\Val

HNEI46 Cylindrical
commercial

LCO-NMC
\graphite

CC–CV@0.5C, 4.3V, \CC@1.5C 14 1102–1133 2.8 M(P) Train\Val

SNL46 Cylindrical
commercial

LFP\graphite CC–CV@0.5C, 4.2V,\CC@(0.5C, 1C, 2C, 3C) 28 2621–19,174 1.1 M(P) Train\Val

SNL46 Cylindrical
commercial

NCA\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C, 2C) 24 463–7877 3.2 M(P) Train\Val

SNL46 Cylindrical
commercial

NMC\graphite CC–CV@0.5C, 4.2V, \CC@(0.5C, 1C, 2C, 3C) 25 388–11,149 3.0 M(P) Train\Val

An overview of the collected cycling data utilized for training and testing. ThemodelM(B), was trained with data provided by BASF, and the modelM(P) was trained with publicly available data. Themodel
M(P)f represents a fine-tuned version ofM(P) for lithium-ion coin cell data.M(P)Na andM(B)Na models are fine-tunedM(B) andM(P), respectively, adapted for sodium coin cells.
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Seq-to-seq integration. In the broader Seq-to-Seq model, the encoder
and decoder are orchestrated to facilitate the overall predictions, as can be
seen in Fig. 2b. Here, the model processes the temporal data using a
sliding window approach that enhances the ability to discern local pat-
terns within long input sequences54. This technique allows for the inte-
gration of the last observed data or transitions to the decoder’s self-
generated predictions, supplemented with temporally encoded future
conditions. During training, a dynamic teacher forcing strategy is
employed, in which actual target outputs are used as inputs in lieu of
previous predictions to promote model convergence, prediction fidelity,
and generalizability in the model. This hybrid training strategy allows
effective learning from the ground truth while gradually becoming
equipped for self-guided predictions. At the end of the processing of this
sequence, quantile-based predictions are collected into a stack of tensors,
encapsulating a comprehensive forecast for subsequent decision-making
processes. Thus, this forward pass provides a fine-grained, probabilistic
understanding of the evolving battery life-cycle stages, with the potential
to inform risk assessment and optimize operational efficiency.

Experimental configuration
This study evaluates theARCANAarchitecturalmodel through a two-stage
experimental process. Our aim is to present findings that resonate across
multiple disciplines, highlighting both the complexity and versatility of our
approach. The first stage involved training model M with the coin cell
datasetB fromBASF.The resulting trainedmodel is here denotedM(B).We
encoded predetermined parameters, including cycle number and discharge
current, into temporal segments to capture past and future discharge con-
ditions. The training used an additive attention mechanism in the
ARCANA architecture for initial learning, with a detailed explanation in
Section “Methods”. In the second stage, the model M is re-trained from
scratch (parameters available in Supplementary Table 1), with publicly

available datasets asmentioned in Table 1 and denoted asM(P). This entails
various cell types, including 26 coin cells and 6 prismatic cells with
Lithium–Cobalt–Oxide (LCO) cathodes, with themajority being cylindrical
cells with Lithium–Iron–Phosphate (LFP), Nickel–Manganese–Cobalt
(NMC), and Nickel–Cobalt–Aluminum Oxide (NCA) cathode materials.
To address these cell chemistry variations, we introduced an additional
predefined parameter, the nominal capacity of each cell in logarithmic
format. This inclusion was critical for the model to effectively differentiate
and interpret response characteristics56. The public dataset selected forM(P)
was significantly smaller, comprising 627 cell entries and accounting for
only 3.35% of the total data size of the initial modelM(B). The dataset was
distributed with 65% for training, 30% for validation, and 5% for testing.

To emphasize generalizability and test model performance, we incor-
porated four distinct test datasets, each sourced fromdifferent locations and
created by various experts. Thefirst two test sets, denoted (DLNO) andDNMC,
comprise coin cell measurements made at the Institute of Physical Chem-
istry (IPC) of KIT, featuring the Lithium-Nickel-Oxide (LNO) and NMC
materials, respectively. The third dataset consisted of cylindrical cells from
the Institute of Applied Materials (IAM) of KIT, containing NMC blended
with NCA cathode materials (DNMC+NCA). The final dataset involved
prismatic cells of the CALCE institute with LCO materials (DLCO). The
complete description of these cells is provided in the Supplementary
Section1. This approach in dataset selection and testing allowed an in-depth
evaluation ofM(P) for its adaptability to various cell types and experimental
setups.

Thepublicly available data forM(P) presenteddistinctive challenges, as
they included prematurely failed cells and high experimental noise, in
contrast to the high-quality data used for trainingM(B). These complexities
required a change from an additive to a multihead attention mechanism in
M(P). We also encountered a wide range of cycles, from as few as 196 to as
many as 19176. However, most of the tests we considered had fewer than
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PredictProcedure

get_test_data()
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Sequence_to_Sequence
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create_additive_model()
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BaseEncoder

AdditiveEncoder MultiheadEncoder

BaseDecoder

AdditiveDecoder MultiheadDecoder

Attention

Fig. 1 | An UML diagram of the computational framework. The framework is
designed around three principal class clusters. The first includes aConfigHandler
engineered to manage a comprehensive set of user-defined configurations and
establishes a blueprint for handling various subconfigurations such as general set-
tings, data properties, and model specifications. During hyperparameter optimiza-
tion tasks, ConfigHandler interfaces with the Optuna optimization library to
adaptively create and update the tuning configuration. The second key class struc-
ture includes TrainProcedure, which serves as an architectural template for the
training process. Its attributes are employed throughout the computational pipeline,
starting with data preparation and extending to the instantiation of specialized loss
functions and Seq2Seq models via the LossFactory and Seq2SeqFactory.

FineTuning is a specialized subclass that inherits from TrainProcedure
while TuneProcedure and PredictProcedure, the latter of which uses the
QuantilePredictor, are incorporated into the pipeline depending on the
desired use case and settings. The tuning operates on single trials with a TPESampler
whenmultiple runs are desired. Lastly, Seq2SeqFactory is engineered to govern
the instantiation of encoder-decoder architectures. Depending on the user-defined
configurations, it can orchestrate a multihead or an additive encoder-decoder
mechanism. The inclusion of custom attention mechanisms within the architecture
is handled by the AdditiveDecoder class or the MultiheadDecoder, con-
ditional upon the configuration stipulations.
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500 cycles. This variability posed a potential risk of gradient instability and
inconsistent learning in the training process. To mitigate the risk of poor
convergence and the possibility of overfitting, we adopted a standardization
approach in which all cells were limited to a maximum of 500 cycles,
ensuring better balance in the training data and reducing bias, thus
increasing reliability.

Both M(B) and M(P) focused on predicting three parameters, which
were selected for their established significance in the existing literature and
their availability across the datasets. They included discharge capacity, crucial
for understanding the (SOH)3,CE, as emphasized in studies byBurns et al.57,58

as the key to understanding the impact of electrode additives and electrode
materials on battery long-termperformance, and the voltage drop during the
relaxationphase betweencharging anddischarging cycles.The last parameter
is less explored but, as described by e.g. Zhu et al.59, it offers valuable insights
independent of the charging process. This parameter is easily calculated from
cycling data, even if the studies where the data originated did not directly
measure it. In this section, we evaluate our model’s performance on various
scenarios, focusing on the impact of data quality onmodel generalization and
interpretability, investigating its adaptability to different chemistries, and
deriving insights from attention mechanisms and saliency analysis.

Fig. 2 | Architectural overview of Seq-to-Seq model. In this overview subfigure
a depicts the detailed architecture of the encoder and decoder components. The
LSTM-based encoder processes historical temporal segments to capture the intricate
pattern of battery life cycles. It integrates skip-connection and layer normalization to
preserve and stabilize essential key temporal features. The decoder is initialized with
the encoder’s final states and applies an attention mechanism to focus on relevant
temporal features from the encoder output and enrich the context of its predictions.
The attention-enhanced representations are combinedwith the initial decoder input
and subsequently propagated through LSTM layers. A fully connected layer with
leaky ReLU activation and a dropout layer—used solely during training and inactive

during inference—for regularization follow the LSTM outputs. The model outputs
are then fed into three separate fully connected layers for predicting a specific
quantile of the future distribution based on the pattern learned during training, thus
providing a probabilistic characterization of the forecast. Subfigure b illustrates the
integrated Seq-to-Seq model flow, depicting the progression from encoding his-
torical data to multi-output future forecasts. It highlights the sliding-window
approach that underpins the model’s capability to handle both the tail-end of his-
torical data and the integration of self-generated forecasts with known future con-
ditions. This process also captures the dynamic training process, which incorporates
teacher forcing to enhance the predictive fidelity of the model.
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Model performance across battery types
The hyperparameters of M(P) were selected using Optuna’s hyperpara-
meter tuning with 250 trials and are described in Supplementary Fig. 2,
along with its training performance (Supplementary Fig. 3). The model
generalization is evaluated on two datasets; cylindrical cells of DNMC+NCA

and prismatic cells ofDLCO, neither of whichwere seen by themodel during
training. Here, the objective was to determine how effectively the model
generalizes across different battery configurations despite the presence of
noisy data.

As shown in Fig. 3, the model handles multidimensional predictions
for both DNMC+NCA and DLCO well. For DNMC+NCA, it accurately forecasts
up to 500 cycles basedon 24 input cycles (see Panel I, Fig. 3) even though the
extracted data exhibits occasional jumps despite the discharge current
remaining constant throughout. Given that these unexpected jumps are not
annotated in the original dataset, we have chosen to acknowledge their
presence but not alter them for the sake of data integrity. Aggregated
attention weights in early cycles indicate their importance for long-term
forecasting. Emblematic isDLCO, which starts from a 23-cycle profile (Panel
II, Fig. 3); the model demonstrates robustness even in the presence of more
complex noise patterns. Here, the attention weights are distributed not only
in the initial cycles but also in later cycles, proving the necessity of incor-
porating an attention mechanism. Illustrating the model’s generalization
capabilities, a detailed analysis of Qdis in Fig. 4 is presented. In both
DNMC+NCA and DLCO, there is good agreement between the model’s pre-
dictions and actual values (Panel I & II, Fig. 4a), as complemented by the
density graphs in Fig. 4b. ForDNMC+NCA, the predicted and actual densities
closely overlap. For DLCO, the predicted density is highly similar, with a

slightly skewed distribution towards lower Qdis. The better density dis-
tributions for DNMC+NCA are likely attributable to the larger proportion of
cylindrical cells in the training data, which accounts for 94.9%of the total. A
detailed evaluation of the uncertainty of the modelM(P) is provided in Fig.
4c–e for both datasets. Panel I & II of Fig. 4c evaluate the calibration by
comparing the observed quantile proportions to the expected proportions
under the assumption of a normal distribution. This continuous curve
indicates the model’s general performance across the entire probability
distribution. The miscalibration area, quantified by the degree of deviation
from the ideal diagonal line, represents the aggregate of discrepancies60. For
DNMC+NCA, the predicted distribution of Qdis is well calibrated around the
median but diverges at the tail, with calibration points showing under-
confidence at higher quantiles. For DLCO, the individual calibration points
suggest a slight overconfidence in the 10th–50th percentile and under-
confidence in the ranges 50th-90th and 10th-90th percentile. The mis-
calibration area for DLCO is 0.16, which is slightly higher than DNMC+NCA,
likely due to noisier data. The overall calibration performance across both
datasets is comparable. Figure 4e) shows a histogram of prediction interval
quantiles, revealing the spread between the 10th and 90th percentiles and
evaluating the concentration of its predictive distribution as indicated by
sharpness. The lower values suggest higher confidence in the prediction61.
For DNMC+NCA, a bimodal distribution highlights variable prediction cer-
tainty across cycles, suggesting potential fluctuations in battery behavior.
DLCO shows two clusters of distributions, mostly around a central quantile
with a sharpness of 0.19, indicative of consistent uncertainty. Figure 4d
further supports thesefindingsby illustrating themodel’smedianprediction
uncertainty and the variability of these predictions by interquartile range

Fig. 3 | ARCANA’s predictive performance on cylindrical sample cells. The
performance of the proposed framework on two unseen datasets, namely cylindrical
DNMC+NCA in Panel I and prismatic DLCO in Panel II, when predicting battery
behavior over 500 cycles for three predictors of Voltage drop [V] (a), CE (b) andQdis

[Ah] (c). The uncertainty at the 10th and 90th percentiles effectively captures
underlying data variability and highlights the model’s predictive reliability and
adaptability across diverse unseen datasets, demonstrating deep insight into data
characteristics.

https://doi.org/10.1038/s41524-024-01286-7 Article

npj Computational Materials |          (2024) 10:100 6



(IQR). Here, DNMC+NCA in Panel I shows varying IQR, suggesting changes
in model confidence over the lifespan. In contrast, DLCO maintains a more
uniform IQR, indicating steadypredictionuncertainty and aligningwith the
model’s attention on later cycles to contend with the increased complexity
andnoise.Thesemetrics complement the informationprovided inFig. 4c–e,
serving as a benchmark for the model’s reliability and its capacity to gen-
eralize within a precise estimate range.

The multi-output predictive capabilities of M(P) are further high-
lighted by its performance in predicting the second parameter, voltage drop

(Supplementary Fig. 4). Themodel exhibits strong prediction accuracywith
both datasets. DNMC+NCA shows a smaller range of predictions over
increasing cycles, and DLCO shows a stable range with decreasing median
intervals, while the calibration accuracy and the reliability of the predictions
remain high across both datasets. The performance on the third predictor,
CE (Supplementary Figs. 6 and 11), shows consistency and low prediction
uncertainty, although the high measurement noise present in this dimen-
sion poses a challenge and makes convergence more demanding62. Addi-
tional examples are shown in Supplementary Figs. 5 and 9. The evaluation

Fig. 4 | Comparative analysis of model predictions and its uncertainty and
calibration for Qdis in cylindrical sample cells. Analytical comparison for Qdis for
two datasets; DNMC+NCA (Panel I) and DLCO (Panel II), where a depicts the rela-
tionship between predicted and actual values of Qdis, with the diagonal dashed line
indicating perfect prediction accuracy, b illustrates the density distributions of
predicted versus actualQdis. The calibration plot in c assumes a normal distribution,
where the mean and standard deviation are estimated from the 10th, 50th, and 90th
percentiles of predictions. It depicts the cumulative proportion of actual Qdis values
that fall at or below the predicted quantile values rather than within symmetric
intervals around the predictions. The ideal diagonal line represents perfect cali-
bration with the shaded area indicating the degree of miscalibration, denotedA. The
approximately diagonal trend of the calibration line up to the 0.5 quantile shows that
data with residuals below the median are well described by the predictive distribu-
tion. The jump from0.5 to 1 indicates that the predictive distribution extends further

to positive values than the observed distribution of residuals; almost all test data are
already covered by the predicted 0.6 quantiles for both datasets. However, the overall
miscalibration areas for both datasets are quite similar, indicating that despite dif-
ferent patterns of over- and underconfidence at specific quantiles, the general cali-
bration performance across both datasets is comparable. Box plots at d show the
prediction intervals over multiple cycles, demonstrating the median and variability
of themodel prediction uncertainty over the battery’s lifespan. e provides histograms
that depict the quantile-based prediction interval width between the 10th and 90th
percentiles as a measure of sharpness. The red dashed line indicates the sharpness as
the mean interval width and shows the concentration of the predictive distributions
that indicate narrower distribution and, consequently, higher confidence in pre-
dicting Qdis for DNMC+NCA in Panel I. Further comparisons are in Supplementary
Figs. 7, 8, 10, and 12.
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metrics for M(P) (Supplementary Table 2) demonstrate its predictive
strengths for both DNMC+NCA and DLCO. For the DLCO dataset, the voltage
drop is predicted with a root mean square error (RMSE) of 0.0335 and a
mean absolute percentage error (MAPE) of 6.6052. However, DNMC+NCA

outperformsCEwith significantly lower error rates of 0.0256 and 0.2489 for
the RMSE and MAPE, respectively. However, both datasets present higher
error rates in the predicted discharge capacity. To counteract the impact of
systematic noise, Median Absolute Error (medAE) is used along withMAE
for a more robust error analysis. These metrics highlight M(P)’s versatile
predictive capabilities in handling diverse dataset requirements formultiple
features and long-term predictions4,63.

We further examineM(P)’s performance on unseen coin cell datasets,
DLNO and DNMC. The model predicts the voltage drop and CE well but
shows limitations and high uncertainty when predicting the discharge
capacity with an RMSE of 0.5827. This may stem from the low repre-
sentation of coin cells in the training data, just 4.1% of the total. To alleviate
this problem,wefine-tuned thedecoderweights ofM(P) using thedata of 17
coin cells fromDLNO, resulting in anupdatedmodel,M(P)f. Thisfine-tuning
process and training performance are detailed in Supplementary Figs.
13 and 14 and led to a substantial improvement in predictingQdis, dropping
the RMSE to 0.0002, indicating a significantly enhanced precision.M(P)f’s
performance will be compared withM(B), trained with the BASF dataset B,
in the following section.

Model performance on coin cell data for generalization insights
While comparing the predictive performance ofmodelsM(B) andM(P)f on
subsets of unseenDLNO (Supplementary Figs. 15 and 20) andDNMC dataset
(Supplementary Figs. 21 and 23), M(P)f demonstrates reliable predictive
alignment for voltage drop, CE, and Qdis. In contrast, M(B) shows a
divergent pattern in voltage drop predictions, which may be due to its
training on data with inherently long relaxation time profiles compared to
those in DLNO, where measurements are taken shortly after state changes.
However, it maintains consistency in CE predictions and adjusts Qdis pre-
dictions in response to changes in the test protocol.

In our analysis ofDLNO forQdis, Fig. 5demonstrates thatM(P)f achieves
high predictive fidelity. This is evident from the dense alignment of the
predictions with the actual values in the scatter plot (Fig. 5a), and the
significant overlap in distributions seen in the density plot (Fig. 5b). The
model’s precision is further highlighted by concentratedprediction intervals
and a calibration curve that closely traces the diagonal (Fig. 5c–e). It achieves
a high proportion of data points within the predictive bounds, indicative of
accuracy, without excessivelywide intervals that could decrease the utility of
the predictions. Panel II forM(B) also demonstrates a close tracking of the
actual values, with a marginally broader prediction interval and higher
miscalibrated area of 0.16 compared to M(P)f’s of 0.022 (Panel I). Despite
this variance, M(B) maintains a reasonable estimate range. Qualitatively
(Table 2), M(P)f achieves a lower MAPE (9.2285) for predicting voltage
drop, indicating its capability for learning trends commonly observed in
training datasets with short relaxation times during cycling. On the other
hand, theM(B)modeldemonstrates a notably lowerMAPE inQdis (8.8914),
showcasing its superior ability to capture proportional changes across a
broader dataset. This performance illustrates the impact of prior knowledge
and training data diversity on the learning outcomes of themodels. Detailed
analyses of additional predictive dimensions forDLNO for both models and
the complete dataset DNMC are available in Supplementary Figs. 16–19, 22,
24, 25 and Supplementary Table 3. Despite theDLNO data originating from
another institute, the generalization ofM(B) highlights the potential of well-
trained DL models to overcome the variability of data sources.

Adaptive chemical modeling
ARCANA has so far been demonstrated to generalize well across battery
formats, electrolyte formulations, cathode chemistries, and cycling proce-
dures for LIBs. The ultimate generalization would be achieved if the model
could alsobe deployed toNa-ion batteries. Since the underlyingdegradation
mechanism of Na-ion batteries is very different, we performed fine-tuning

to test the adaptability of M(B) and M(P) to this distinct chemical
domain30,64. These fine-tunedmodels are denotedM(B)Na andM(P)Na, and
are trainedonNa-ion cyclingdatawithCC-CVandpulse discharge settings.
Details on the fine-tuning parameters and training performance for both
models are available in Supplementary Figs. 26–29.

In Figs. 6 and 7,we evaluate thefine-tunedM(B)Na andM(P)Namodels
on an unseen C-rate test protocol (Figs. 6a and 7a). Both models demon-
strate flexibility in adjusting to changes in C-rates, with voltage drop, CE,
and Qdis depicted in Figs. 6b–d and 7b–d. The model M(B)Na shows nar-
rower prediction intervals, indicative of lower uncertainty and greater
predictive robustness. This trend is consistent across all predictive dimen-
sions, and themodel is probably benefiting from the larger initial dataset on
which it was trained, since it provided a richer learning environment for the
model to becomemore ‘protocol-agnostic’. Its precision is especially notable
in predicting the voltage drop and CE estimations, closely following the
ground truth despite the substantial experimental noise. The aggregated
attention mechanism in M(B)Na (Fig. 7d) also appears more fine-tuned,
with greater weights on the latest cycle data, which is consistent with its
precise predictions.WhileM(P)Na is adaptable, it shows amarginally wider
uncertainty (Fig. 6b–d).

Sensitivity analysis, as shown in Figs. 7e–g and 6e–g evaluates the input
parameter influence on future predictions for M(B)Na and M(P)Na. Both
models demonstrate increased sensitivity to the most recent input data, i.e.,
cycles 7–9 in this provided example, aligned with their attention distribu-
tions, with cycle 9 receiving the highest attention. This increased emphasis
on the last input cycles corresponds to the rapid degradation patterns in this
sodium coin cell. As the model receives each successive cycle, the most
recent data, here in cycle 9, becomes important in shaping its predictions,
allowing the model to more accurately predict ongoing trends.

In Fig. 7,M(B)Na shows a greater overall sensitivity across input cycles,
particularly for the dimensions of voltage drop and Qdis. This is further
illustrated in sensitivity profiles and cumulative plots (Fig. 7h–j), high-
lighting a refined input-response relationship and a lower uncertainty
interval in the primary prediction (Fig. 7a–c). Such a distinct sensitivity
indicates M(B)Na’s ability to precisely identify and respond to subtle var-
iations. Despite the high experimental noise and limited battery perfor-
mance, the saliency and attention trends of bothmodels remain remarkably
similar. This suggests that both mechanisms are intrinsic to the model’s
architecture, enabling them to perform consistently in diverse scenarios.

To further substantiate our initial findings, the plots in Fig. 8, show
both models’ Qdis predictions aligning well with the ground truth.M(P)Na
exhibits a tighter clustering around the actual values,whileM(B)Na exhibits a
broader spread. The prediction intervals and the distribution of quantiles
across the 10th and 90th percentile for both models confirm their con-
sistency and calibrated confidence. Further assessments are found in Sup-
plementary Figs. 30–32 and Supplementary Table 4. These evaluations
provide insights into the model’s robustness. The performance ofM(B)Na’s
especially underscores the advantage of extensive and diverse pretraining
datasets in enhancing model generalization across different battery
chemistries.

Discussion
We demonstrated the chemistry-, format- and cycling procedure-agnostic
ARCANAframework and its ability to reliablymonitor battery life andSOH
by utilizing multitask learning with an attention mechanism. ARCANA
excelled across three predictive settings, demonstrating that augmenting the
model with diverse knowledge streams enhances its generalization across
virtually all variations possible in batteries, such as anode, cathode, elec-
trolyte, and shuttle ion chemistry and format. The ARCANA model inte-
grates uncertainty quantification and attention mechanisms for each and
every cycle to elucidate themodel’s focus for each prediction and is essential
for uncovering complex patterns associated with multiple factors. Further
evaluation involves saliency and sensitivity assessments, allowing us to
understand the impact of perturbation of input parameters on output
predictions. By examining whether saliency and attention are directly
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correlated or orthogonal to each other, we gain a comprehensive under-
standing of input–output relationships, increasing the model’s explain-
ability and reliability in extrapolation. Incorporating raw data and failed
experiments, as suggested in prior studies4,36 is a deliberate strategy to teach
our models to recognize variations across similar cell types and manu-
factures. This inclusion not only enables uncertainties to be quantifiedmore
accurately but also deepens reliability insights, reduces bias, and offers a
moremeaningful understandingof thedata.A conceptually straightforward
extension to this work would be to incorporate additional features, such as
the rate of change of voltage with respect to capacity (dQ/dV)34,65, and

leverage different characterization methods, like spectroscopy, to enhance
the predictive power of themodels. Thiswill not only enhancemulti-feature
predictions but also deepen the understanding of degradation processes3,4,63.

We observed that M(P), trained on public data, offers broader gen-
eralization across various battery types and protocols, albeit with increased
uncertainty. M(B), trained on a more extensive dataset, demonstrates a
lower uncertainty. This further motivates the importance of data sharing
andmanagement. Our findings also reveal that fine-tuning themodels with
few labels significantly improves their generalization to different chemis-
tries, especially forM(B). The methodology outlined in this paper presents

Fig. 5 | Performance analysis of M(P)f and M(B) for Qdis in coin sample cells.
Performance ofM(P)f (Panel I) andM(B) (Panel II) onDLNO forQdis prediction. Plot
a illustrates the relationship betweenmodels’ predictions and the actualQdiswith the
diagonal line representing perfect prediction accuracy, plot b compares the density
distribution of actual andpredictedQdis, plot cpresents calibration curves that reflect
the degree of alignment between predicted probabilities and observed frequencies
under a normal distribution assumption. The discrete points on the calibration curve
show the observed proportions of actual values that fall within three specific intervals
based on the quantiles: between the 10th and 50th, 50th and 90th, and 10th and 90th
percentiles. ModelM(P)f shows a high level of calibration for predictingQdis ofDLNO

samples with a minimal miscalibrated area of 0.022. The points for the 10th, 50th,
50th, and 90th percentiles lie close to the diagonal line, indicating a nearly perfect
calibration for these intervals. M(B) exhibits a slight overconfidence by deviating

from the ideal line, with a miscalibration area of 0.16. The three calibration markers
for M(B) are all positioned just below the diagonal line, showing uniform over-
confidence across these quantile ranges, yet they remain close to this line, indicating
a generally well-calibrated model. Plots d show the prediction intervals across life-
span cycles, highlighting models’ uncertainty over time, and plot e details the dis-
tribution of prediction intervals’ quantiles between the 10th and 90th percentiles,
which convey the models’ prediction uncertainty; a distribution skewed towards the
lower quantiles suggests a higher confidence in predictions at these quantiles. The
sharpness, as a measure of mean interval width, is approximately similar for both
models at 3.7 × 10−4 and 3.5 × 10−4 forM(P)f andM(B), respectively. Together, these
plots demonstrate the M(P)f ’s precision in capturing discharge capacity behavior
and M(B)’s robust generalization.
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an opportunity for other researchers to create their own high-performance
models. By retraining or fine-tuning with different datasets, researchers can
tailor these predictive models to their specific experimental setups and
desired outcomes. This flexibility allows for the exploration of different
perspectives and approaches, facilitating the development of more accurate
and specialized models. One could envision a model-sharing and transfer-
learning community similar to those found today in the fields of computer
vision and language modeling. Furthermore, the performance metrics
explored here raise the tantalizing prospect of further improving model
quality via a federated learning approach. This could enable researchers
from diverse backgrounds and institutions to pool their data and expertise,
leading to more powerful models.

The modular design of the ARCANA pipeline enables real-time
monitoring of battery degradation profiles, promoting timely and cost-
effective interventions. This proactive approach prevents prolonged sub-
optimal testing conditions, improves the R&D process, and contributes to
more informed material selection and protocol optimization. By automat-
ing data collection, processing, and analysis, researchers can streamline their
experimentalworkflows and reduce human error. Furthermore,MLmodels
can continuously learn fromupcomingdata, adapt to evolving experimental
conditions, and provide real-time insights. This integration of ML and
laboratory workflows has the potential to transform battery research,
enabling researchers to make data-driven decisions, uncover insights more
rapidly, and accelerate the pace of discovery.

Overall, we demonstrated that incorporating multitask learning with
an attention mechanism creates a framework that can achieve chemistry
agnosticism as envisioned by Battery 2030+1 and the interesting fact that a
DL architecture trainedon a smaller, noisier, butmore diverse dataset yields
better generalization at the cost of higher uncertainty. We hope that the
pipeline will emerge as an indispensable and transformative tool to bridge
the gap between lab-scale research and commercial viability and will
become essential for the development of applications and insightful pre-
dictive models in the energy storage field.

Methods
In the following section, some of the key components of the ARCANA
framework are explained to underscore their contribution to the overall
efficacy and reliability of the model. This includes an exploration of atten-
tion mechanisms, a teacher forcing scheduler, methods to quantify pre-
dictive uncertainty, a strategic early stopping protocol, a training procedure,
and evaluation metrics.

Attention mechanism
Within the proposed ARCANA framework, two distinct attention
mechanisms are implemented. The first, termed additive attention, is also
known as Bahdanau attention55. This mechanism aligns the hidden state of
the decoder ht at each time step twith the hidden states of the encoder (hs),
thus producing a context vector that encapsulates the weighted relevance of
eachhistorical temporal segment fromthepast cycles. This vectorprovides a

dynamically focused representation of the input sequence pertinent to the
current decoding step. This mechanism is functional through a para-
meterized attention model. The model calculates an attention score ets
(Eq. (1)) for each encoder state hs given by:

ets ¼ vT tanhðW1ht þ w2hsÞ ð1Þ

where W1 and W2 are the weight matrices that transform the respective
hidden states into a common feature space and v is a weight vector that
projects the activated sum into a scalar score. Attention weights αts are then
determined by normalizing these scores using the softmax function
(Eq. (2)):

αts ¼
expðetsÞPTe
k¼1 expðetkÞ

ð2Þ

here, Te is the total number of time steps in the encoder sequence.
The context vector ct results from aggregating the encoder hidden

states, each weighted by its respective attention weight, as can be seen in
Eq. (3), and can improve the model’s capacity for handling Seq-to-Seq
predictions66.

ct ¼
XTe

s¼1

αtshs ð3Þ

Another attention mechanism that can be employed within the ARCANA
architecture is multihead attention. This mechanism expands the model’s
capacity to focus on different positions of the input sequence
simultaneously67, which is crucial for capturing a wider range of depen-
dencies inherent in battery lifetimedata. This attentionmechanismoperates
by projecting the decoder’s hidden states and the encoder outputs, repre-
senting the past cycle’s information, into multiple subspaces. This is for-
mulated as: (Eq. (4))

MultiHeadðQ;K;VÞ ¼ Concat head1; . . . ; headh
� �

W0 ð4Þ

headi ¼ Attention QWiQ;KWiK ;VWiV
� � ð5Þ

where each head (headi) captures different aspects of the input data and is
computed as shown in Eq.(5). The operation applied in eachhead is defined
by the attention of the scaled dot product and is presented in Eq. (6).

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk
p

 !
V ð6Þ

Here,Q,K, andV are the query, key, and valuematrices, respectively.Q
is generated from thehidden statesof thedecoder,whileK andVarederived
from the encoder outputs. This arrangement enables the decoder to inte-
grate the current state information with historical data provided by the
encoder. The parameter matrices WQ

i , W
K
i , and W

V
i for each head i, along

with the output weight matrix W0, are optimized during the training pro-
cess. These matrices are instrumental in transforming the input data into
different representational subspaces to capture various aspects and depen-
dencieswithin thedata.Theparameterdk, representing thedimensionof the
key vectors, scales the dot product within the attention mechanism. In
Eq. (6), the softmax function is applied to these scaled attention scores,
which originate from the interactions between the query and key matrices.
This process results in the production of a context vector, which integrates
information fromdifferent representational subspaces and allows themodel
to consider multiple aspects of historical data54,68.

Table 2 | Evaluation metrics for M(P)f and M(B) using DLNO

M(P)f M(B)

Metrics Voltage
drop [V]

CE Qdis [Ah] Voltage
drop [V]

CE Qdis[Ah]

RMSE 0.0703 0.0331 0.0002 0.1247 0.0588 0.0003

MAPE 9.2285 1.1922 20.7946 34.8638 4.4560 8.8914

MAE 0.0353 0.0076 0.0001 0.0867 0.0335 0.0002

medAE 0.0181 0.0021 0.0001 0.0513 0.0104 0.0001

Summary of the evaluation metrics forM(P)f andM(B), tested on 26 unseen coin cells (DLNO), using
27 initial cycles of historical data, to predict the cell behavior up to the 500th cycle. Note that the
number of initial cycles was chosen randomly to resemble practical scenarios with limited initial
data. The user can specify any preferred number of initial cycles in the provided configuration file,
which is detailed at https://github.com/basf/ARCANA/blob/master/config/.
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Teacher forcing
Teacher forcing optimizes the learning of temporal dependencies. By inte-
grating the real data from previous time steps, the technique promotes rapid
stabilization and convergence of the model. In the present study, the
implementation of the teacher forcing strategy is applied through a calcu-
lated division of training epochs. This division is reflective of the model’s
incremental improvement inprocessing sequenceswith varying lengthsover
time by prioritizing shorter sequences at the early stages of training to ensure
intensive guidance. This preferential focus ensures that the model does not
prematurely plateau when learning to predict longer-term dependencies.

Toquantitatively define this approach, the trainingperiod consistingof
E epochs is divided into D equal segments s. Within the i-th segment, the
teacher forcing ratio is adjusted through a decay parameter λ, which
represents how quickly the training procedure switches fromusing real data
as decoder inputs to using model predictions from the previous cycle, as
depicted in Fig. 2b. The allocation of epochs per division di is calculated as
can be seen in Eq. (7)

di ¼ round
s � e�λiPD�1
j¼0 s � e�λj

� E
 !

ð7Þ

Following this, the teacher forcing ratio for the t-th epoch in the i-th
segment is linearly reduced froma starting ratioRstart to an ending ratioRend,

using the following equation, Eq. (8).

A ¼ Rstart�Rend
diþϵ

� �
Rti

¼ Rstart � A � t
ð8Þ

Here, Rti
indicates the teacher forcing ratio at epoch t for the ith

segment. The expression A represents the decrease per epoch in that seg-
ment. To ensure numerical stability and avoid division by zero, a small
constant ϵ, set to 10−8, is included in the calculation as indicated in Eq. (8).
The teacher forcing ratio, as a probabilistic measure, represents the like-
lihood that the model will utilize the actual observation from the training
data at a given prediction step. This approach modulates the ratio to facil-
itate a smooth transition fromguided to self-generated sequence prediction.
The adjusted ratios are indicative of the model’s learning trajectory,
enhancing its independent predictive accuracy across different sequence
lengths.

Uncertainty quantification
Thepinball loss, in this study, provides a robustmetric for predicting a range
of potential outcomes, rather than a single point estimation. This is an
effective measure for forecasting scenarios where the impacts of over-
prediction and underprediction are asymmetric69. It is defined for a set of
quantiles Q = {q1, q2, q3} where q1 < q2 < q3 and in this study, we select

Fig. 6 | Analysis of M(P)Na’s predictive accuracy and input sensitivity on Na-
ion data. Plot a presents the C-rate profile for cycling one battery, while plots
b–d compare the model’s prediction to actual data, showing consistency and
adaptability. Sensitivity to input parameters across predicted cycles is analyzed in
plots e–g on a logarithmic scale. The color intensity in these plots denotes the specific

cycles from which the input parameter originates. Plots h–j show the sum of the
logarithmic contribution of each input parameter towards predicting future cycles
with a selective representation of three past cycle data. These visualizations confirm
themodel’s attentive adjustment to the latest available input data and its capacity for
generalization, despite the high experimental noise and limited battery performance.
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Q = {0.1, 0.5, 0.9} corresponding to the 10th, 50th, and 90th percentiles,
respectively. For a given predicted value ŷ and the actual target value y, the
pinball loss for a single quantile q is calculated as:

Lqðŷ; yÞ ¼
ð1� qÞ � ðŷ � yÞ if y < ŷ

q � ðy � ŷÞ if y ≥ ŷ

�
ð9Þ

In the implementation of this loss function, a mask is provided and
applied to each quantile’s loss to selectively evaluate certain predictions,
allowing for the exclusion of outliers. The total pinball loss for multiple
quantiles is then the sum of the individual losses for each quantile, averaged
over all predictions, as shown inEq. (10), reflecting themodel’s performance
across the specified range of quantiles.

LðQ; Ŷ ;YÞ ¼ 1
N

XN
i¼1

X
q2Q

Lqðŷqi; yiÞ ð10Þ

Here,N is the number of observations, Ŷ is a stack of vectors, with each
vector containing the predictions for all observations at one of the specified
quantiles, and Y is the vector of the true target values. Each element ŷqi in Ŷ
denotes the predicted value for the ith observation at quantile q. This
configuration not only facilitates efficient computation of the loss function

across multiple quantiles and observations, but also captures the central
tendency and variability of the predictions, making it a comprehensive loss
function for probabilistic forecasting69,70.

Early stopping
To optimize training, a rigorous early stopping approach is incorporated.
This method was originally proposed by Prechelt et al.71 and combines
criteria to prevent overfitting while ensuring substantial training progress,
especially in the presence of noisy data. Here, a dual-criteria strategy is
implemented. The first criterion assesses the ratio between generalization
loss (GL) and training progress, which is shown in Eq. (11), where Eval
represents the validation error at the current epoch, Emin val is the lowest
validation error obtained up to the current epoch, and Etrain strip denotes the
training errors within a recent sequence of epochs. This sequence, or strip, is
a designated period in which the progress quotient (PQ) is measured. If the
generalization-loss-to-progress-quotient-ratio (GL/PQ) surpasses a pre-
defined value, it may indicate that further training will not be beneficial for
the model’s generalizability.

GL ¼ 100 � Eval
Emin val

� 1
� �

PQ ¼ 1000 � MeanðEtrain stripÞ
MinðEtrain stripÞ � 1

� � ð11Þ

Fig. 7 | Evaluation of M(B)Na’s predictive performance and input sensitivity on
our in-house Na-ion data. Plot a shows the discharge current profile, while plots
b–d depict the predictions for voltage drop, CE, and Qdis against the ground truth.
The color bar here shows the aggregated attention weights across the input data.

Plots e–g provide a detailed logarithmic sensitivity analysis per predictive cycle for
each input parameter, and plots h–j aggregate these sensitivities, highlighting the
model’s focus on different input cycles, especially the most recent ones, reflecting
M(B)Na’s protocol adaptability and robust response to experimental noise.

https://doi.org/10.1038/s41524-024-01286-7 Article

npj Computational Materials |          (2024) 10:100 12



The second criterion implements a conventional check and is applied
to monitor the trend in validation error. An increased trend over the epoch
sequence suggests that overfitting could be occurring. Training is dis-
continued when both the ratio criterion and the error-trend criterion
indicate that further training is unlikely to yield significant gains. In general,
this strategy offers a control mechanism that aligns the duration of training
with the achievement of a well-generalized model capable of accurate
predictions.

Training procedure
Expanding on Seq-to-Seq integration, the training phase begins by initi-
alizing the data loaders for batch processing and configuring the parameters

of the Seq-to-Seq model, the loss criteria, the optimizer, and a dynamic
learning rate scheduler62. Hyperparameter optimization, through a series of
trials using Optuna’s52 Tree-structured Parzen Estimator (TPE) Sampler,
employs a probabilistic model to specify the most promising parameter
configuration, navigating the search space while balancing exploration and
exploitation within a complex and high-dimensional domain72. Training
unfolds over several epochs, with each iteration starting with a reset of the
model’s hidden states and zeroing gradients to ensure clean computation for
the forward pass. The pinball loss function is selected for its effectiveness in
probabilistic forecasting, eliminating the need for a presumptive data dis-
tribution model70, unlike traditional metrics69, which are more sensitive to
noise and anomalies. These asymmetric and non-parametric criteria assess

Fig. 8 | Comparative analysis ofM(P)Na andM(B)Na onQdisprediction forNa-ion
batteries. Prediciton analysis for M(P)Na (Panel I) and M(B)Na (Panel II) for Qdis

prediction of Na-ion batteries. The scatter plots a illustrate the models' alignment
with actual measurements. Density plots b compare the distributions of predicted
and actual values, demonstrating the models' accuracy in estimating Qdis. Calibra-
tion plots in c depict how well the predicted probabilities match the observed out-
comes against the benchmark line, with the discrete points representing the observed
proportions of actual values that fall within three quantile intervals. Both models
demonstrate a pattern of marginal overconfidence below the 70th percentile and a
slight underconfidence above this percentile, as evidenced by the calibration points

positions beneath and above the diagonal line, respectively. M(P)Na shows a larger
area of divergence, A = 0.06, whileM(B)Na presents a closer fit with a miscalibration
of 0.053, highlighting both models’ well-calibrated prediction capabilities across
different chemistries. Boxplots d visualize the spread and consistency of prediction
intervals across predicted cycles. Histograms in e represent the distribution of the
quantile intervals of the models’ prediction, highlighting uncertainty; these dis-
tributions indicate where, within the prediction range, the models’ confidence is
concentrated, with sharpness values of 1.7 × 10−5 for M(P)Na and 2.0 × 10−5

forM(B)Na, demonstrating a precise estimation of uncertainty.
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forecast accuracy by penalizing deviations from three targeted quantiles,
namely 0.1, 0.5, and 0.9, enhancing robustness to outliers and the efficacy of
LSTM-based networks69. At the same time, a masking technique63 is
implemented to filter out padding-induced distortions from the loss cal-
culation, ensuring the integrity of the learning signal. Backpropagation
follows loss computation, incorporating gradient clipping to prevent
divergence and gradient explosion in recurrent network architectures.
Additionally, learning rate adjustments encourage robust convergence. The
validation phase alternates with training, where performance is assessed,
and early stopping criteria are applied to mitigate overfitting. Optuna
enhances optimization by pruning the less promising trials. Once the
training is completed, themodel parameters are saved and a comprehensive
report is generated detailing the training results. The training procedure
steps described are schematically depicted in Supplementary Fig. 1.

Evaluation metrics
For this study, the followingmetrics are implemented, includingboth average
errors andvariability of individual predictions, to evaluate theperformanceof
the model. These metrics are RMSE (Eq. (12)) which provides a measure of
the magnitude of prediction errors, MAPE (Eq. (13)), which measures the
averagemagnitude of errors as a percentage,medAE (Eq. (14)) to capture the
median error, reducing the influence of outliers, and mean absolute error
(MAE) (Eq. (15)) which represents the mean absolute differences.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � ŷiÞ2

r
ð12Þ

MAPE ¼ 100%
n

Xn
i¼1

∣
yi � ŷi
yi

∣ ð13Þ

medAE ¼ medianðjyi � ŷij : i ¼ 1; 2; . . . ; nÞ ð14Þ

MAE ¼ 1
n

Xn
i¼1

jyi � ŷij ð15Þ

Data availability
Open source data supporting the findings of this study are available online,
with access details provided in Table 1 and can be found in the corre-
sponding literature41–48,50. In addition, public pre-trainedmodel weights can
be accessed at https://doi.org/10.5281/zenodo.10293072.

Code availability
TheARCANAframework canbe installed usingpipinstallarcana-
batt or cloned from https://github.com/basf/ARCANA.
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