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Using single-sample networks to identify
the contrasting patterns of gene
interactions and reveal the radiation
dose-dependent effects in multiple
tissues of spaceflight mice

Check for updates

Yan Zhang , Lei Zhao & Yeqing Sun

Transcriptome profiles are sensitive to space stressors and serve as valuable indicators of the
biological effects during spaceflight. Herein, we transformed the expression profiles into gene
interaction patterns by single-sample networks (SSNs) and performed the integrated analysis on the
301 spaceflight and 290 ground control samples, which were obtained from the GeneLab platform.
Specifically, an individual SSN was established for each sample. Based on the topological structures
of 591 SSNs, the differentially interacted genes (DIGs) were identified between spaceflights and
ground controls. The results showed that spaceflight disrupted the gene interaction patterns in mice
and resulted in significant enrichment of biological processes such as protein/amino acidmetabolism
and nucleic acid (DNA/RNA) metabolism (P-value < 0.05). We observed that the mice exposed to
radiation doseswithin the three intervals (4.66–7.14, 7.592–8.295, 8.49–22.099mGy) exhibited similar
gene interaction patterns. Low and medium doses resulted in changes to the circadian rhythm, while
the damaging effects on genetic material became more pronounced in higher doses. The gene
interaction patterns in response to space stressors varied among different tissues, with the spleen,
lung, and skin being themost responsive to space radiation (P-value < 0.01). The changes observed in
gene networks during spaceflight conditionsmight contribute to the development of various diseases,
such as mental disorders, depression, and metabolic disorders, among others. Additionally,
organisms activated specific gene networks in response to virus reactivation. We identified several
hub genes that were associated with circadian rhythms, suggesting that spaceflight could lead to
substantial circadian rhythm dysregulation.

As space exploration advances, the health risks of astronauts induced by the
space environment are extensively concerning1. Exposure to space radiation
andmicrogravity are primary hazards to astronauts’health in long-duration
space missions2, where space radiation is mainly composed of high energy
protons produced from solar particle events (SPE), heavy ions originated
fromgalactic cosmic rays (GCR), and secondaryparticles generated through
interactions with spacecraft shielding3. Previous studies have determined

that the frequency of chromosome aberrations is substantially increased
after spaceflight when compared to preflight levels4. The change is even
more pronounced among individuals who have undergone long-term
flights, which indicates that the space environment can induce substantial
DNA damage5,6. Apart from the known risk of increased cancer from
spaceflight7, astronauts returning from the International Space Station (ISS)
contend with a range of health issues, including bone andmuscle mass loss,
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central nervous system problems, immune dysfunction, and cardiovascular
issues, etc.8. Therefore, it is necessary to employ advanced analytical
methods to further reveal the effects of spaceflight on organisms.

The accumulation of omics data has opened up new possibilities for
gaining a comprehensive understanding of the processes of molecular
changes induced by spaceflight. Overall, pathway analysis on the multi-
omics datasets showed substantial enrichment formitochondrial processes,
innate immunity, chronic inflammation, cell cycle, circadian rhythm, and
olfactory functions9. TheNASA twins study analyzed the omics data to find
that some changes persisted 6 months after astronauts returned to Earth,
including some genes’ expression levels2. McDonald et al. performed gene
set enrichment analysis (GSEA) onmultiple omics datasets from spaceflight
experiments in GeneLab and found the variation of different biological
signatures (functions) with radiation dose10. They discovered changes in
mitochondrial function, ribosomal assembly, and immune pathways as a
function of dose10. However, one issue with current commonly used omics
analyses is that when multiple datasets are incorporated, the results may be
impacted by data heterogeneity. Therefore, it is a challenge to mine the
patterns of gene changes from spaceflight samples under different exposure
conditions.

There is a growing recognition that phenotypic changes in organisms,
which are often driven by complex gene networks, cannot be fully explained
by each isolated gene11. It holds crucial significance for investigating the
mechanisms induced by space stressors from molecular networks and
deciphering howgene interactions change during spaceflight. Generally, the
gene networks are built from multiple samples, neglecting individual-
specific information12. To address this issue, the single-sample network
(SSN) has gained notable research interest in recent years. This approach
entails the creation of a network for each individual sample, wherein genes
are represented as nodes, and their interactions are denoted as edges.When
combined with the protein–protein interaction (PPI) network, the SNNs
can characterize individual-specific gene interaction patterns. Currently,
SSN analysis techniques have been shown as important tools in deciphering
complex molecular mechanisms. For example, the application of SSNs to
cancer data sourced from the cancer genome atlas (TCGA) enabled the
prediction of individual-specific disease genes, the identification of distinct
cancer phenotypes, and the subsequent classification of cancer subtypes12.
Chen et al. employed SSNs to identify cancer-related genes and discovered
two possible lung adenocarcinoma (LUAD) subtypes that exhibited distinct
clinical features and molecular mechanisms13. Other researchers identified
four new SSN-based subtypes in breast cancer, which showed strong het-
erogeneity in terms of prognosis, somatic mutations, phenotypic changes,
and enrichedpathways14. Besides, progress has beenmade in predictingpre-
disease states or critical states using the dynamic network biomarker (DNB)
technique developed based on SSN. Xiangtian et al. applied the DNB
technique to analyze omics data of H3N2 cohorts15. They successfully
detected early-warning signals of the influenza infection for each individual
both on the occurred time and event in an accurate manner15. Chengming
et al. employed landscape dynamic network biomarker (l-DNB) analysis to
reveal the complicated process of skin response to ultraviolet (UV) irra-
diation at both molecular and network levels16. They discovered a tipping
point before the critical transition state during the pigmentationprocess and
identified 13 core DNB genes to detect this tipping point as a network
biomarker16. From the promising results of the above research, it is evident
that SSNs can effectively reflect gene interaction (regulation) relationships.
We believe that the application of SSNs will have a positive impact on space
biology.

To comprehensively understand the gene interaction patterns within
mouse tissues under spaceflight conditions, we integrated 591 spaceflight
mouse samples (301 spaceflight and 290 ground control samples) from 30
datasets in NASA’s GeneLab platform17,18 and further constructed an SSN
for each individual. Specifically, we combined transcriptome with protein
interactome and employed "linear interpolation to obtain network estimates
for single samples (LIONESS)" to construct a set of reliable SSNs. LIONESS
is awidely usedmethod to reverse engineer SSNs fromaggregate networks11.

Next, we analyzed contrasting patterns of gene interactions between
spaceflights and ground controls, especially for gene interaction patterns in
ten tissues (adrenal glands, colon, eye, kidney, liver, lung, muscle, skin,
spleen, and thymus). Moreover, we examined the effects of radiation dose
levels on the gene interaction networks. The potential diseases induced by
spaceflight were also predicted.We identified hub genes in the differentially
interacted network (DIN) and analyzed the distinctions in the gene inter-
action networks between spaceflights and ground controls activated by hub
genes. This work employs a multi-omics (transcriptome and protein
interactome) single-sample network analysis to comprehensively delineate
the contrasting patterns of gene interactions between spaceflights and
ground controls, which makes a contribution to personalized aerospace
medicine.

Results
Single-sample networks in spaceflight and ground
control groups
The SSNs were constructed for 301 spaceflight samples and 290 ground
control samples using LIONESS (see Supplementary Table 1 for degree
vectors in 591 SSNs). To observe the structures of these SSNs, we con-
ducted visualizations for two SSNs (a ground control sample and a
spaceflight sample from OSD-47), as shown in Fig. 1A. The distance
relationships among the 301 spaceflight SSNs and 290 ground control
SSNs are illustrated in Fig. 1B, C respectively. Notably, SSNs from the
same tissue tend to cluster together, indicating that the same tissues
exhibit similar gene interaction networks. This result demonstrates that
our SSNs can effectively reflect the gene interaction patterns in mice.
Besides, the gene interaction patterns also exhibit tissue specificity,
potentially differing among various tissues.

Differentially interacted genes and their functions
Compared to the ground control group, there were 569 genes (DIGs)
(Supplementary Table 2A) that exhibited significant changes (P-value <
0.05) in their interaction patterns in the spaceflight group. To explore the
functions of these DIGs, we performed the GO enrichment analysis and
categorized the biological processes (P-value < 0.05), as depicted in Fig. 1D
and E. DIGs are mainly involved in metabolic process, immune system
process, DNA damage and repair, cell cycle, chromosome organization,
cellular process, biological regulation, rhythmic process, developmental
process, and autophagy (Fig. 1D). Note that metabolic process includes
proteinmetabolic process,RNAmetabolic process,DNAmetabolic process,
and amino acid metabolic process, etc. (Fig. 1E). Moreover, KEGG-
enrichment analysis shows that DIGs are mainly associated with five
pathways, including ubiquitin-mediated proteolysis, cell cycle, circadian
rhythm, progesterone-mediated oocyte maturation, and spliceosome
(Fig. 1F).

Contrasting patterns of gene interactions in low, medium, and
high-dose groups
Based on the best classification results from KNN, we obtained the criteria
for dividing dose groups: the low group is 4.66–7.14mGy (53 samples), the
medium group is 7.592–8.295mGy (68 samples), and the high group is
8.49–22.099mGy (180 samples) (Fig. 2A). The best KNN classifier for dose
grouping achieved excellent performance, with an F1 Score of 0.94, and the
AUC for the low, medium, and high classes were 0.99, 0.99, and 0.98,
respectively (Fig. 2B), indicating a high similarity in gene interaction pat-
terns within the dose groups.

We identified the DIGs for each dose group, respectively (namely,
finding the ground control samples corresponding to spaceflight samples in
each dose group, respectively, and conducting T-tests on the degree vectors
of each gene) (Supplementary Table 2B). As the dose gradient increased, the
number ofDIGs in the three groups gradually increased (Fig. 2C). TheDIGs
in the three groups exhibit distinct differences, with only 8 DIGs being
common to all groups, indicating a substantial dose effect on the gene
interaction patterns (Fig. 2D).
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The biological processes are more significant (smaller P-values) in the
medium and high-dose groups (especially in the metabolic process, cell
cycle, DNA damage, and repair). Notably, as the increase of radiation dose
levels, the significance of the cell cycle, DNA damage and repair, and DNA
metabolic process gradually increase (Fig. 2E). Among various metabolic
processes, the proteinmetabolic process, DNAmetabolic process, andRNA
metabolic process exhibit high significance (Fig. 2E). According to the
KEGG-enrichment results, medium and high doses will activate the cell
cycle pathway, and the FoxO signaling pathway appears in the high-dose
group.Moreover, circadian rhythmand rhythmic processes appeared in the
low and medium-dose groups (Fig. 2F).

Contrasting patterns of gene interactions in ten tissues
For ten tissues, the DIGs were also identified (between spaceflights and
ground controls) separately (Fig. 3A and Supplementary Table 2C). The
thymus has the highest number ofDIGs (1968), while the eye has the fewest
(148). Tissues with more than 1000 DIGs also include skin, muscle, and
liver.Whilemost of theDIGsbetween tissues are specific, there are still some
tissues that share common DIGs, such as thymus with skin, liver, and
muscle; skin with liver and muscle; liver with muscle (Fig. 3B).

Observing the biological processes ofDIGs in different tissues, it can be
seen that all 10 tissues contain metabolic processes, responses to stimulus,
and cellular processes. The cell cycle in the colon and skin, immune system
process, and metabolic process in the thymus have high significance (Fig.
3C). Further analysis shows that protein metabolism and nucleic acid
metabolism are more prominent in the metabolic process, and amino acid
metabolism appears in almost all tissues (except for lung) (Fig. 3D).

Radiation responsiveness of different tissues
According to the GSEA, we found that there were gene rankings in six
tissues were significantly associated with the radiation gene set: spleen (P-
value = 2.94E−04), lung (P-value = 5.69E−03), skin (P-value = 6.51E−03),

liver (P-value = 3.20E−02), muscle (P-value = 3.80E−02), and kidney (P-
value = 3.80E−02) (Fig. 4), indicating that above tissues exhibit higher
radiation responsiveness.

The diseases and virus-related pathways induced by spaceflight
We constructed a human gene–disease network using DisGeNET (Fig. 5A)
and calculated the degrees of all diseases in this network. Figure 5B displays
diseases with a degree > 20. Spaceflight can inducemental disorders, cancer,
depression, liver injury, inherited metabolic disorders, genetic disease,
dysplasia, mitochondrial disease, etc.

To validate the above human diseases, we obtained a human dataset
(OSD-546) under spaceflight conditions from GeneLab. Note that detailed
information about OSD-546 can be obtained from GeneLab (https://osdr.
nasa.gov/bio/repo/data/studies/OSD-546). We employed the samemethod
to construct SSNs for each sample of this dataset. Then the DIGs were
identified, and the corresponding diseases were predicted (Supplementary
Fig. 2). In OSD-546, we also found mental disorders (schizophrenia), can-
cers (malignant neoplasm of breast, malignant neoplasm of prostate, col-
orectal carcinoma, liver carcinoma, colorectal neoplasms, etc.), depression
(depressive disorder, mental depression, and bipolar disorder), genetic
diseases (Alzheimer disease, familial, type 3, amyotrophic lateral sclerosis,
ataxia telangiectasia, and cardio-facio-cutaneous syndrome), and liver cir-
rhosis. The above diseases are consistent with those found in the mouse
datasets, demonstrating the reliability of the results in this study.

Furthermore, KEGG-enrichment indicates that some virus-related
pathways or diseases appear in various tissues, including human T-cell
leukemia virus 1 infection, human cytomegalovirus infection, Kaposi
sarcoma-associated herpesvirus infection, human immunodeficiency virus
1 infection, Epstein-Barr virus infection, herpes simplex virus 1 infection,
prion disease, coronavirus disease, hepatitis B, hepatitis C, influenza A,
where herpes simplex virus 1 infection and Epstein-Barr virus infection are
the most significant (smaller P-values) (Fig. 5C).

Fig. 1 | Single-sample networks and DIGs’ enrichment results. A Schematic
diagram of a ground control SSN (green) and a spaceflight SSN (blue) fromOSD-47.
B A scatter plot of 290 ground control SSNs in two-dimensional space. C A scatter
plot of 301 spaceflight SSNs in two-dimensional space.DThe biological processes of
569 DIGs. Similar biological processes were integrated into a category by the GO

tree, and the significance (negative logarithm of P-value) of all biological processes
contained within a category was summed. E The metabolic processes of 569 DIGs.
F The KEGG pathways of 569 DIGs. The lines between genes and pathways
represent inclusion relationships. Genes are sorted by P-value, with lighter colors
indicating smaller P-values.
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Differentially interacted network and hub genes
We extracted edges with differential counts of more than 20 between
the ground control and spaceflight groups to form a DIN (Fig. 6A and
Supplementary Table 3). Where the top 9 edges with the highest dif-
ferential counts are as follows: (Hnf4a, Npas2), (Cdk16, Nfil3), (Rbl2,

Cdk1), (Npas2, Vdr), (Arntl, Usp2), (Nfil3, Zfp521), (Usp2, Per2),
(Wsb1, Hsp90aa1), (Psmd12, Htra3). Next, we calculated the
weighted-degree of each gene in the DIN and identified 10 hub genes:
Tef, Nfil3, Rbl2, Npas2, Actr8, Per2, Dbp, Wsb1, Tubb2a, Acvr1c
(Fig. 6B, C).

Fig. 2 | Three dose groups and their functions. A The doses of three groups (low,
medium, and high). Each point denotes the absorbed dose of a sample. B The
receiver operating characteristic (ROC) of dose grouping based on the KNN clas-
sifier.C The number of DIGs in three dose groups.D The Venn diagram of DIGs in

three dose groups.EThe biological processes in three dose groups. The size and color
of the bubbles denote the negative logarithm of the P-value. F The KEGG pathways
in three dose groups.
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To further analyze the central role of each hub gene in the interaction
network, we extracted the top 30 genes most connected to each hub gene in
the ground control and spaceflight groups, respectively (all genes with the
same number of connections were included). Therefore, there are two
networks centered aroundeachhubgene, referred to asGC-NET(anetwork
in ground control group) and SF-NET (a network in spaceflight group)
(Fig. 7), which are primarily involved in circadian rhythms, DNA damage
and repair, cell cycle,metabolic process (mainly protein/amino acid, nucleic
acid, and energy metabolism), immune process, development and differ-
entiation, nervous system processes, methylation, etc. (Table 1).

The hub genes activate distinct gene interaction networks between the
ground control group and the spaceflight group. For example, there are only
two common genes in the two networks activated by Tef. However, func-
tional analysis reveals that although GC-NET and SF-NET are not entirely
identical, theyperformsimilar functions. For instance, bothGC-NETandSF-
NET for Tef and Nfil3 are involved in development and differentiation, and
the two networks for Rbl2 are associated with the cell cycle, viral process, and
metabolic process. Similarly, networks activated by genes like Npas2, Actr8,
Per2, Dbp, and Acvr1 also exhibit similar functions. Therefore, spaceflight
leads to changes in the topological structure of these functional networks.

Discussion
The space environment, where microgravity and radiation continuously
persist, induces complex bio-effects. However, due to differences in

exposure duration and flight orbits, the impact of radiation and micro-
gravity on organisms varies across different missions, which makes it
challenging to gain an overall understanding of the bio-effects induced by
spaceflight. To address this challenge, we integrated datasets frommultiple
spaceflightmissions (with different exposure duration, orbits, and absorbed
doses) and conducted a comprehensive analysis of the gene interaction
patterns induced by spaceflight. Our approach involved a molecular net-
work perspective to elucidate the bio-effects of spaceflight and predict
potential health risks. In a gene interaction network, each node represents a
gene, while each edge denotes a gene-to-gene interaction. Herein, we ana-
lyzed changes in the topological structure of the gene interaction network
from both node and edge perspectives, which allows for a more compre-
hensive understanding of the changing characteristics in gene interaction
patterns induced by spaceflight and provides a more refined depiction of
network structures.

To explore the contrasting patterns of gene interactions between
spaceflights and ground controls, we developed a bioinformatics pipeline
based on SSNs and analyzed the mouse transcriptome profiles from mul-
tiple datasets in the GeneLab platform. Due to the fact that the mouse
samples are derived from various flight missions and involve differences in
sequencing technologies and experimental platforms, the transcriptome
profiles exhibit inherent heterogeneity, making direct comparisons unfea-
sible.Herein,we tackled this issue through a two-step approach: Initially, we
applied the rlogTransformation() in theDESeq2Rpackage tomitigate batch

Fig. 3 | The DIGs and their functions in different tissues. A The number of DIGs in 10 tissues. B The intersection of DIGs in ten tissues. The size and color of the fans
represent the number of overlapping DIGs in the two tissues. C The biological processes in 10 tissues. D The metabolic processes in 10 tissues.
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effects among the samples. Subsequently, the SSNmethodwas employed to
convert expression levels into gene interactionswithin individuals, ensuring
comparability across different samples. Above all, rlogTransformation()
transforms the count data to the log2 scale in a way that minimizes differ-
ences between sampleswith small counts andwhichnormalizeswith respect
to library size. Therefore, the rlogTransformation() can transform data to a
normal distribution in order to reduce the impact of batch effects and
heteroscedasticity between samples19. In addition, the authors of LIONESS
have experimentally demonstrated that this method is insensitive to the
choice of background samples, meaning that SSNs constructed by the same
sample in different backgrounddatasets are similar, andLIONESSperforms
robustly even when different subtypes are present in the background
samples11. Thus, even if the gene expression data after normalization is still
heterogeneous, LIONESS can construct an SSN with good performance,
which ensures the effectiveness of data integration and the reliability of the
SSN analysis in this paper. The scatter plot obtained fromMDS reveals that
SSNs from the same tissue tend to cluster together, demonstrating that our
SSNs can effectively capture the gene interaction patterns.

According to the enrichment results, spaceflight has induced sub-
stantial metabolic disruptions, particularly in biological processes related to
protein/amino acid metabolism and nucleic acid (DNA/RNA) metabolism
(Figs. 1E, 2E, and 3D). Previous studies have indicated that spaceflight
inhibits the protein metabolism network in mice20. Mao et al. found sub-
stantial changes in biochemicals associated with amino acid and carbohy-
drate metabolism in mice that underwent spaceflight and proposed that
these changes might be the consequence of increased regulation in cellular
antioxidants, ROS production, and tissue remodeling21. Besides, the meta-
bolism induced by DNA damage can be quite complex, and a number of
DNA metabolic proteins and pathways are involved22. Thus, some of the
alterations in the nucleic acid metabolic process may be associated with the

severe DNA damage induced by spaceflight. The above research also
highlighted the dysregulation of protein/amino acid and nucleic acid
metabolism during spaceflight, while we revealed the gene interaction
mechanisms driving these changes.

To observe the dose-dependent effects in gene interaction patterns,
KNNwas employed for dose grouping in this study.We strictly adhered to a
five-fold cross-validation and prudently reported our results. Nevertheless,
since the new test samples need to be transformed into SSNs for dose
prediction, their data distribution may affect the model’s performance.
Therefore, we assumed that the new test samples should be in a similar
distribution as required by LIONESS. We discovered a dose-dependent
effect in gene interaction patterns. With increasing doses, the number of
DIGsgradually increased, and the significanceofprocesses related to genetic
material damage (such as cell cycle, DNA damage repair, and DNA meta-
bolism) also increased progressively. Therefore, higher levels of space
radiation could lead to more pronounced disruptions in gene interaction
networks and result in stronger damage effects on genetic material. There
have been some reports on the bio-effects induced by radiation doses. Jain
et al. found that in chronic low-dose radiation exposure, the number of
differentially expressed genes (DEGs) increasedwith a dose-dependent, and
these geneswereprimarily associatedwithDNAdamage response signaling,
DNArepair, and cell cycle arrest23. It can be inferred that in a low-dose space
radiation environment, both the number of differential genes and the
magnitude of damage effects may escalate with increasing doses, which is
consistent with our findings. We also discovered that mice exposed to
radiation doses within the same range (4.66–7.14, 7.592–8.295,
8.49–22.099mGy) exhibited similar gene interaction patterns (with AUC
values of 0.99, 0.99, and 0.98, respectively). Notably, dose grouping may be
influenced by the mouse strains. Previous studies indicated that C57 and
BALB/c mice exhibited higher radiation sensitivity24,25. In our results, the

Fig. 4 | GSEA plots of radiation gene set in six tissues. AGSEA plots of radiation gene set in spleen. BGSEA plots of radiation gene set in lung. CGSEA plots of radiation
gene set in skin. D GSEA plots of radiation gene set in liver. E GSEA plots of radiation gene set in muscle. F GSEA plots of radiation gene set in kidney.
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high-dose group contains a larger number of samples with a wider range of
doses. C57BL/6NTacmicewith 8.49mGy andBALB/cmice with 8.97mGy
were both categorized in the high-dose group, possibly due to their higher
radiation sensitivity.

The gene interaction patterns induced by spaceflight exhibit specificity
in different tissues. According to the GSEA, we found a strong correlation
between gene rankings in the spleen, lung, skin and the radiation gene set,
suggesting that these three tissues were most strongly influenced by space
radiation. Based on relevant studies, the skin absorbs the highest radiation
doses and dose equivalents within spacecraft26, while the lung demonstrates
the highest nominal cancer risks induced by radiation27. Hence, it can be
inferred that the radiation responsiveness of a tissue may be related to both
the absorbed dose and its own anti-stress mechanism. Based on our results,
each tissue activates a specific gene interaction network to respond to space
stressors, and most of these networks participate in the metabolic process,
response to stimulus, cellular process, localization,DNAdamage and repair,
cell cycle, etc. As aforementioned, while the biological functions involved in
each tissue exhibit similarities, their stress-response mechanisms and
pathways are different (most of the DIGs between tissues are specific).

The KEGG-enrichment results reveal that spaceflight induces several
pathways or diseases associated with viruses. Many studies have already
reported viral reactivation during spaceflight: Astronauts shed Epstein-Barr
virus (EBV), varicella-zoster virus (VZV), andherpes-simplex-1 (HSV-1) in
saliva and cytomegalovirus (CMV) in urine. Larger quantities and increased
frequencies for these viruses are found during spaceflight as compared to
before or after flight samples and their matched healthy controls28. HSV-1
establishes latency in various cranial nerve ganglia and often reactivates in
response to stress-associated immune system dysregulation29. EBV reacti-
vates during spaceflight, with EBV shedding in saliva increasing to levels 10
times those observed pre- andpost-flight.During spaceflight, EBV infection
leads to an increase in cellDNAdamage, and cells infectedwithEBVare less
prone to apoptosis30. The reactivation of latent viruses during spaceflight is
commonly considered a consequence of immune system dysregulation31,
and the virus-specificT-cell function is depressed bothduring and following
spaceflight32. Our analysis of the gene interaction networks further confirms
the phenomenon of viral reactivation during spaceflight. What was more,
we revealed that mice would activate specific gene interaction networks to
respond to the viral reactivation during spaceflight.Moreover, we identified
new viruses (including prion, Hepatitis B virus, Hepatitis C virus, and

Fig. 5 | The diseases and virus-related pathways induced by spaceflight. A A
human gene–disease network. Nodes denote genes or diseases, edges denote the
relationships between diseases and genes, and colors denote the types of diseases.

The correspondence between colors and disease types can be found in Supple-
mentary Fig. 1. B The degrees of human diseases. C Virus-related pathways or
diseases in some tissues.
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influenza virus), and future studies could explore the reactivation of these
viruses during spaceflight in greater detail.

The cellular and molecular responses of spaceflight have substantial
physiological and systemic implications regarding astronaut health, such as
cardiovascular dysregulation, CNS impairments, increased cancer risk,
bone loss, increased liver disease, circadian rhythmdysregulation, etc.1 Over
the past five decades, psychiatric issues have been documented in orbital
spaceflight33. The extreme environments that astronauts face during
spaceflight can easily lead to symptoms such as sleep disturbance, fatigue,
and irritability, which may cause depression-like behavior and have a ser-
ious impact on the normal execution of space missions34,35. According to
DisGeNET analysis, numerous DIGs are associated with depression and

mental disorders, implying the possibility of using targeteddrugs to alleviate
mental and psychological issues among astronauts. While many of these
systemic and physiological health risks of spaceflight have been well
documented, much is left to be discovered36. Therefore, establishing multi-
omics approaches to further investigate these health risks is of paramount
importance and will advance the development of personalized aerospace
medicine36. In this work, we have predicted most of the known diseases
based on transcriptome and protein interactome, indicating that dis-
turbance in gene interaction patterns can reflect the occurrence and
development of diseases induced by spaceflight.

Remarkably, through the comparison of gene interaction patterns
under space and ground conditions, we have also identified some new

Fig. 6 |Differentially interacted network.AADINbetween the ground control and spaceflight groups. The thickness of the edges denotes differential counts.Hub genes are
prominently highlighted. B The weighted degrees of hub genes in the DIN. C The full names of hub genes.
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diseases, such as inherited metabolic disorders (IMD) (Niemann-Pick dis-
ease, glucose-6-phosphate transport defect, Donohue syndrome, Mucopo-
lysaccharidosis III B) and mitochondrial diseases (Leigh disease). Most
IMDs are caused by the absence or deficiency of a specific enzyme that
catalyzes a step in the biochemical pathway. Asmetabolism is controlled by
the input of genes and the environment, metabolic disorders result from
some disturbance in the interaction between genes and environmental
factors37. Our findings suggest that space stressors may lead to changes in
genes involved in metabolic pathways, thereby triggering severe metabolic
diseases. Our results are of great significance for the prevention and precise
treatment of potential diseases in astronauts, and assessment of
spaceflight risks.

We identified 10 new hub genes that played important roles in
spaceflight based on DIN. TEF is an element of the “cellular clock”, which
plays a key role in circadian rhythm38. Moreover, upregulation of TEF
expression substantially retards cancer cell growth by inhibiting the G1/S
transition via regulating AKT/FOXOs signaling39. NFIL3 is also a rhythm
gene, which is involved in energy metabolism and immune cell differ-
entiation, and its abnormal expression is related to metabolic diseases,
inflammation, and tumors40. RBL2 participates in multiple important
pathways of the cell cycle41,42. NPAS2 is one of the core genes that control the
rhythm of the biological clock43, which is associated with anxiety and
cancer44,45. PER2 is a core circadian clockprotein46,whichplays anactive role
in low-level radiation adaptive radioprotection47. Dbp is also related to

Fig. 7 | GC-NET and SF-NET activated by genes in the ground control and
spaceflight groups. The green networks represent the GC-NETs, the blue networks
represent the SF-NETs, and the red nodes indicate hub genes. The Venn diagrams

represent the overlap of genes betweenGC-NETs and SF-NETs, and the overlapping
genes are annotated with red font.
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circadian rhythm, which governs the circadian transcription of a number of
hepatic detoxification andmetabolic enzymes prior to the activityphase and
subsequent food intake of mice48. WSB-1 is involved in DNA damage
response by targeting homeodomain-interacting protein kinase 2 (HIPK2)
for ubiquitination and degradation49. TUBB2A is a gene related to structural
abnormalities in the brain50, which may play a role in neurologic damage
under spaceflight. ACVR1C is associated with skin diseases, and studies
have shown that it may be a target for preventing or treating UV-induced
disruptions in lipid metabolism and associated skin disorders51. Therefore,
many hub genes are related to circadian rhythms, while other hub genes are
associated with the cell cycle, DNA damage response, nervous system dis-
orders, and skin injuries. Further analysis reveals that hub genes activate
distinct gene interaction networks between the ground control and space-
flight group, regulating processes such as circadian rhythms, DNA damage
and repair, cell cycle,metabolic process (mainly protein/amino acid, nucleic
acid, and energy metabolism), immune process, development and differ-
entiation, nervous system processes, methylation, etc. Note that most of the
hub genes’ functions are contained within the networks they activate, pro-
viding evidence that genes function throughnetworks.Thesehubgenesmay
play crucial roles in the organism’s response to spaceflight and can serve as
potential targets for risk mitigation.

Many studies reported circadian rhythmdisruptionduring spaceflight,
which was visible in many physiological aspects, for example, shorter sleep
durations52, musculoskeletal atrophy53, physiological aspects54, etc. Da Sil-
veira et al. also discovered substantial enrichment of circadian rhythm
through the multi-omics profiles9. We have identified that genes related to
circadian rhythms play a central role in the DIN during spaceflight.
Therefore, there is an urgent need to establish preventive measures for
astronauts using circadian biology to minimize the effect of space missions
on their health and performance55.

In summary, by developing a bioinformatics pipeline based on SSNs,
this study provides a comprehensive insight into gene interaction patterns
within mouse tissues under spaceflight conditions. Spaceflight disrupts the
gene interaction patterns in mice, with this alteration exhibiting a radiation
dose-dependent effect. Different tissues exhibit varying gene interaction
patterns in response to spaceflight, with the spleen, lung, and skin being the
most responsive to space radiation. Ten hub genes that played key roles in
DIN were identified, which activated gene networks involved in circadian

rhythms, DNA damage and repair, cell cycle, metabolism, etc., under
spaceflight.

Methods
Collection and preprocessing of transcriptome profiles
The transcriptomedatasets ofmice utilized in this studywere obtained from
NASA’s GeneLab platform (genelab.nasa.gov). We collected all existing
datasets including spaceflight samples and providing raw counts of RNA-
Seq from GeneLab (accessed on July 1, 2023). There were 30 datasets
encompassing 10 tissues (adrenal glands, colon, eye, kidney, liver, lung,
muscle, skin, spleen, thymus) from RNA-sequencing, including 301 sam-
ples from spaceflight conditions and 290 samples from ground control
conditions (Supplementary Table 4). We removed genes with zero
expression levels in over 20% of the samples. Then the
rlogTransformation()19 in the DESeq2 R package was used to transform the
count data to log2 scale (data normalization).

Construction of single-sample networks
The SSNs were constructed for 591 mouse samples using LIONESS,
respectively. LIONESS constructs the state transitionnetworkby calculating
the edge statistical significance between all samples and the samples without
a given single sample. The network specific to a sample s was calculated
according to the following equation:

esij ¼ NðeNij � eN�s
ij Þ þ eN�s

ij ð1Þ

where esij is the correlation between gene i and j in sample s, eNij is thePearson
correlation coefficient (PCC) of gene i and j inN samples, eN�s

ij is the PCCof
gene i and j after removing sample s, and N is the total number of samples.

After obtaining the distributionD of the esij (absolute values) of all gene
pairs, it is necessary to choose a threshold to determine the edges in an SSN.
Following ref. 56, we set the threshold as

w ¼ μðDÞ þ 2δðDÞ ð2Þ

where μðDÞ and δðDÞ are the mean and standard deviation of the D in
sample s. Namely, in the sample s, if the jesijj of two genes is greater than w,
then there is an edge between them in the SSN.

Table 1 | The biological processes in GC-NETs and SF-NETs activated by 10 hub genes

Gene GC-NET SF-NET

Tef DNA damage and repair, differentiation Circadian rhythm, cell cycle, development, RNAmetabolic process, apoptosis,
chromosome organization

Nfil3 Development and differentiation, RNAmetabolic process, cell cycle, response
to stimulus, immune process

Development and differentiation, RNAmetabolic process, cell cycle, response
to stimulus, chromosome organization

Rbl2 Cell cycle, virus process, protein metabolic process, DNA metabolic process,
amino acid metabolic process, immune process, phosphorylation, develop-
ment, response to stimulus

Cell cycle, viral process, protein metabolic process, DNA metabolic process,
immune process, phosphorylation, differentiation, response to stimulus,
apoptosis

Npas2 Circadian rhythm, DNA damage and repair, cell cycle, metabolic process,
immune process, development and differentiation, response to stimulus

Circadian rhythm, DNA damage and repair, cell cycle, metabolic process,
immune process, development and differentiation, homeostatic process

Actr8 DNA damage and repair, muscle process, development DNA damage and repair, muscle process, development, metabolic process,
locomotion, response to stimulus, signaling pathway

Per2 Circadian rhythm, DNA damage and repair, cell cycle, response to stimulus,
metabolic process, development, phosphorylation, homeostatic process,
oxidative stress, immune process

Circadian rhythm, DNA damage and repair, cell cycle, response to stimulus,
metabolic process, development and differentiation, phosphorylation, apop-
tosis, homeostatic process, oxidative stress

Dbp Metabolic process, development and differentiation, immune process,
homeostatic process

Metabolic processes, development and differentiation, immune process

Wsb1 Methylation, protein metabolic process, development and differentiation,
chromosome organization

Energy metabolic process, protein metabolic process, nucleic acid metabolic
process, development, chromosome organization, homeostatic process

Tubb2a Energy metabolic process, nucleic acid metabolic process, cell cycle, apop-
tosis, chromosome organization

Nervous system process, energy metabolic process, nucleic acid metabolic
process, protein metabolic process, cell cycle, chromosome organization,
autophagy

Acvr1c Nervous systemprocesses, phosphorylation, development and differentiation,
immune process, response to stimulus

Nervous system process, phosphorylation, development and differentiation,
immune process, response to stimulus, apoptosis
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Characterization of gene interaction patterns
To obtain the gene interaction patterns for each sample, we intersected the
SSNs constructed by LIONESS (transcriptome) with the PPI network
(protein interactome) (i.e., only retaining the nodes and edges that were
common to both the SSNandPPInetwork), resulting in afinal SSNused for
downstream analysis. The PPI network was obtained from the STRING
(string-db.org), and only experimentally confirmed gene interactions were
retained, which not only ensured the reliability of interactions in the SSNs
but also enabled SSNs to characterize individual-specific gene interaction
patterns.

To observe the distribution of SSNs, the distances between all SSNs in
the spaceflight group were calculated. For two SSNs, G1ðV1; E1Þ and
G2ðV2; E2Þ, where V was the set of nodes and E was the set of edges, the
distance between them was calculated using Eq. (3):

dist ¼ 1� E1 \ E2

E1 ∪ E2
ð3Þ

where the latter part of Eq. (3) denotes the Jaccard similarity coefficient.
After obtaining the distance matrix between all SSNs, multi-

dimensional scaling (MDS) was employed to reduce the SSNs to a two-
dimensional space, and a scatter plot was generated using the matplotlib
Python package. MDS accomplishes dimensionality reduction by mini-
mizing the error between distances in the original data (SSNs) and distances
in a two-dimensional space, which faithfully preserves the relative distances

between SSNs in the lower-dimensional space57. In this study, theMDS() in
sklearn python package was employed to implement MDS.

Extraction of node features in SSN and identification of differ-
entially interacted genes
Herein, thedegreeswere represented asnode features.Givenanode v, where
NðvÞ denoted the collection of its neighbors in an SSN, the degree of v was
defined as follows:

DegreeðvÞ ¼ jNðvÞj ð4Þ

where |∙| denotes the number of elements in the set.
Next, we took the union of genes present in all SSNs and constructed a

degree vector d for each gene (Eq. (5)). Here, n denotes the number of
samples (which is 591 inourwork). For anygivengene,didenotes thedegree
of this gene in the ith SSN (if this gene is not present in the ith SSN, then
di = 0).

d ¼ ðd1; d2; � � � ; dnÞ ð5Þ

Finally, we conducted a two-sided T-test on the dGC ¼
ðd1; d2; � � � ; d290Þ (degree vector of a gene in the ground control group) and
dSF ¼ ðd291; d2; � � � ; d591Þ (degree vector of a gene in the spaceflight group),
defining genes with a P-value < 0.05 as differentially interacted genes
(DIGs). Specifically, homogeneity of variances was tested using levene() in

Fig. 8 | Schematic representation of the analysis workflow to identify DIGs.
591 spaceflight mouse samples (301 spaceflight and 290 ground control samples)
from 30 datasets were integrated, and a SSN was constructed for each individual. To
obtain the gene interaction patterns for each sample, the SSNs that constructed by

LIONESS were intersected with the PPI network. The degrees were represented as
node features. A two-sided T-test was conducted on the degree vectors of a gene in
the ground control and spaceflight groups, and the genes with P-values < 0.05 were
defined as DIGs.
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scipypythonpackage, and then theT-testwas performedusing ttest_ind() in
scipy python package. The workflow of identifying DIGs is shown in Fig. 8.

Dose grouping based on K-nearest neighbors classifiers
The radiation dose absorbed by each sample was obtained from the
“Environmental Data” of the GeneLab platform (genelab.nasa.gov/
environmental/radiation) (Supplementary Table 4). To explore the effect
of different space radiation doses on gene interaction patterns, we used
machine learning to divide all the samples into three dose groups,
including low (L), medium (M), and high (H), respectively. To obtain the
optimal radiation dose groups, we exhausted all partitioning schemes, i.e.,
different cutoff thresholds were used to divide all doses into three groups
while ensuring that h >m > l; 8 h 2 H;m 2 M; l 2 L. For every parti-
tioning scheme, the same classifier (K-Nearest Neighbors, KNN) was
employed for classification, and the best choice was the partitioning
scheme that yielded the highest F1 score. The KNN classifier was imple-
mentedusingKNeighborsClassifier() in sklearnpythonpackage. The input
features for the classifier were the degree vectors of all SSNs, while the
classification labels were the dose groups to which these SSNs belong. Of
note, the experiment employed a five-fold cross-validation method. We
believed that this classifier-based grouping carried greater biological
significance.

Prediction of spaceflight-induced diseases
DisGeNET (disgenet.org) was used to predict human diseases that space-
flight might induce, and the specific steps were as follows: Initially, we
downloaded the mapping file for mouse-human homologous genes from
theEnsembldatabase (asia.ensembl.org) andmappedDIGs tohumangenes
(human-DIGs). Subsequently, the human DIGs were inputted into the
DisGeNET cytoscape app58 to construct a gene–disease network.Where the
parameters “Score” were set from 0.3 to 1, and “EI” was set from 0 to 1.
Lastly, we computed the degree of eachdisease in the gene–disease network,
where a higher degree indicated a potentially stronger association with
spaceflight.

Identification of hub genes in contrasting patterns of gene
interactions
We counted the occurrences of each edge in 301 spaceflight SSNs and 290
groundcontrol SSNs, respectively.Next, the edgeswithdifferential counts of
more than 20 between the two groupswere extracted to form a differentially
interacted network (DIN). In the DIN, the edge weights represented the
difference inoccurrence counts. For instance, if an edge appearedn1 times in
the ground control group and n2 times in the spaceflight group, its weight
would be jn1 � n2j. We summed the weights of edges connected to each
gene in the DIN (referred to as weighted-degree of a gene) and defined the
top 10 genes with the highest weighted-degree as hub genes.

Enrichment analysis
GO and KEGG-enrichment analyses were performed on the DIGs using
Metascape (metascape.org)59, and the P-value < 0.05 was considered sta-
tistically significant. Furthermore, to investigate the radiation responsive-
ness of different tissues, we curated a radiation gene set and identifiedwhich
tissue’s gene list was associated with this gene set (P-value < 0.05) using
GSEA60. To note, GSEAwas implemented usingGSEA() in clusterProfilerR
package and plotted using gseaplot2() in enrichplot R package. The gene list
was sorted in descending order according to Fold Change (FC), and the FC
of the ith gene could be calculated according to Eq. (6).

FCi ¼
meanðdSFi Þ
meanðdGCi Þ ð6Þ

Here, meanðdSFi Þ and meanðdGC
i Þ represent the mean degree of gene i

in the spaceflight group and ground control group of a specific tissue,
respectively. The method for curating the radiation gene set was as follows:
firstly, we identified four GO terms related to space radiation: GO:0009314

(Response to radiation), GO:0010212 (Response to ionizing radiation),
GO:0071478 (Cellular response to radiation), GO:0071479 (Cellular
response to ionizing radiation). Next, we obtained genes annotated to these
GO terms from the STRINGand combined these genes to create a radiation
gene set (Supplementary Table 5).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Source data for this study are publicly available in the GeneLab data repo-
sitory (genelab.nasa.gov) under the Accession codes OSD-47, OSD-98,
OSD-99, OSD-100, OSD-101, OSD-102, OSD-103, OSD-104, OSD-105,
OSD-137, OSD-162, OSD-163, OSD-164, OSD-168, OSD-173, OSD-194,
OSD-238, OSD-240, OSD-241, OSD-242, OSD-243, OSD-244, OSD-245,
OSD-246, OSD-247, OSD-248, OSD-253, OSD-288, OSD-379, OSD-401.
All relevant data are available from the authors.

Code availability
All programs, packages, and functions used in this manuscript are freely
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