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Frequent and unobtrusive monitoring of cardiovascular conditions with consumer electronics is a
widely pursued goal, since it provides the most economic and effective way of preventing and
managing cardiovascular diseases (CVDs) ─ the leading causes of death worldwide. However, most
current wearable and flexible devices can only support the measurement of one or two types of vital
signs, such as heart rate and blood oxygen level, due to the lack of physiological models to link the
measured signals to cardiovascular conditions. Here, we report a stroke-volume allocation (SVA)
model to quantify the cushioning function of arteries and empower nearly all existing cardiac sensors
with new functions, including arterial stiffness evaluation, dynamic blood pressure tracking and
classification ofCVD-related heart damage. Large-scale clinical data testing involving a hybrid dataset
taken from 6 hospitals/research institutes (9 open databases and 4 self-built databases from 878
subjects in total) anddiversemeasurement approacheswascarried out to validate theSVAmodel. The
results show that the SVA-based parameters correlate well with the gold-standard measurements in
arterial stiffness and blood pressure and outperform the commonly used vital sign (e.g., blood
pressure) alone in detecting abnormalities in cardiovascular systems.

Population ageing and prevalence of cardiovascular diseases (CVD) have
imposed enormous economic and societal burden worldwide1–3. Low-cost
and mobile health-monitoring devices that can be deployed to individuals
for early detection or longitudinalmonitoring of CVDswill allow for timely
intervention and treatment. Wearable devices that are currently commer-
cially available or that have been developed in laboratories use various
techniques for the monitoring of basic vital signs, including electro-
cardiogram (ECG)4 for heart rate monitoring and atrial fibrillation detec-
tion, epidermal pulse5 for heart rate and pressure measurement, and
photoplethysmography (PPG)6,7 for heart rate and blood oxygen level
monitoring (Fig. 1a). Although these vital signs are essential physiological
parameters, they are still inadequate for a comprehensive evaluation of
potentialCVDsdue to the lack of readily available indicators for the vascular
dysfunction often linked with such conditions8–10. Furthermore, most
wearable and flexible sensors only capture a single physiological parameter
due to the limitation of the physiological models used.

In this work, we introduce a stroke-volume allocation (SVA) model
that enables the application of wearable and flexible sensors for simulta-
neous evaluation of arterial stiffness (AS), dynamically tracking blood

pressure and assessing CVD-related heart damage (CHD). AS reflects
generalized thickening and stiffening of arterial walls, which results in the
gradual loss of arterial compliance or the cushioning function of healthy
elastic arteries9.Ageing-induced reduction of arterialwall elastic component
is amajor cause of highAS,which is associatedwith increased risk ofCVD11.
However, the conventional method of AS measurement, i.e., the
carotid–femoral pulse wave velocity (cfPWV) test, cannot be performed by
wearable and flexible devices; the test must be performed by a medical
professional on a patient lying supine in a quiet environment12.

Conversely, the SVAmeasurementmethod proposed herein is simple.
Specifically, the SVA-based AS (SVA-AS) assessment requires only passive
measurements made by a single wearable device for continuous cardiac
rhythm monitoring and a once-daily blood pressure (BP) measurement.
Hence, the method could be used with various cardiac sensors (Fig. 1a).
Changes in BP are a key factor predicting CVD events, especially in indi-
viduals with hypertension and poor cardiovascular function10. Although the
well-known pulse transit time (PTT) and data-driven BP measurement
methods can achieve continuous cuffless monitoring, whether these wear-
able devices have sufficient performance to replace intermittent cuff-based
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measurements is still being debated13,14. One of the main problems with
these methods is that they cannot precisely interpret BP-related hemody-
namics from the crosstalk between macrocirculation and microcirculation,
which may result in their performance decreasing over time14. By contrast,
the proposed SVA model directly describes the dynamic changes in blood
volume distribution between the elastic arteries and peripheral arterioles
during each heartbeat cycle (Fig. 1c), and this description facilitates the
tracking of changes in BP.

A framework of risk of arterial wall dysfunction for using wearable
devices to assess SVA-basedAS, BP, andCHDabnormalities is presented in
Fig. 1. In practice, SVA measurements are performed by a wearable device
(e.g., by recording an ECG with an Apple Watch) and a cuff-based BP
measurement device, as shown in Fig. 1b. By combining a single BP mea-
surement with continuous cardiac monitoring, an SVA-AS measurement
can be made for various daily activities (Fig. 1d). Furthermore, by accu-
mulating measurement points, a transformation between the SVA and the
pulse stiffening of blood pressures can be constructed to obtain a reliable
SVA-BP model for 24-h BP tracking (Fig. 1e). Finally, by statistically dis-
tinguishing the elasticity of the arterial walls of subjects with and without
CHD through the SVA measurements, a CHD assessment model can be
established for disease alert (Fig. 1f).

In order to realize the application scenarios in Fig. 1, we conducted
both theoretical and clinical studies to validate the SVAmodel and enable its
use withwearable platforms with both rigid and flexible sensing units. First,
the physiological model for SVA extraction was established and the

correlations of SVA with clinically determined cfPWV, BP and CHD were
validated. Next, we revealed that the cardiac parameters in the SVA model
can be obtained with a variety of sensors, namely flexible epidermal pres-
sure, PPG, andECGsensors. Basedon thediscoveries,wedemonstrated that
the SVA model can readily extend the functions of current commercial
wearable devices (such as smart watches), enabling assessment of dynamic
arterial stiffening and vascular aging, continuous tracking of BP and iden-
tification of CHD. The SVA-based tools for alerting patients to high arterial
wall risk can be used to increase early access toCVDsurveillanceworldwide.

Results
Relation between SVA and arterial wall stiffening
Figure 2a presents the mechanisms underlying the correlations between
SVA (i.e., the cushioning function of arteries) and ageing-induced arterial
wall stiffening, SVA and BP as well as SVA and CHD severity9. Vascular
tissue mainly comprises elastin, vascular smooth muscle, and collagen;
hence, the total Young’s modulus of an artery is the combined elastic
strengthof these components15. In general, elastin andcollagen contribute to
the static arterial Young’s modulus, whereas vascular smooth muscle
dynamically adjusts the degree of AS under transient neural or hormonal
influences16. An experimental study revealed that the Young’s modulus of
elastin fibers Ee is much smaller than that of collagen fibers Ec (i.e., Ee ∼ 1/
1000 Ec)

17. Hence, the Young’s modulus E of an artery can be expressed as
the compositionof the recruitment fractionof elastic and collagenfibers and
a constant contribution from vascular smooth muscle (denoted ζ) under a

Fig. 1 | Overview of stroke-volume allocation (SVA) measurement system for
arterial wall risk assessment. a Arterial wall models for health and diseased car-
diovascular systems and examples of wearable and flexible cardiac sensors. Rep-
rinted with permission from ref. 5 Copyright 2017 Wiley. b Illustration of a daily
SVA measurement performed using a wearable ECG device and a home cuff-based

BP monitor. c Physiological model of stroke volume distribution within one
heartbeat cycle (i.e., within systole and diastole phases). d–f Illustration on SVA
model enabled (d) daily arterial stiffening evaluation, (e) 24-h BP tracking, and (f)
alarming of CVD-related heart damage.
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holding internal pressure in the artery as follows:

E ¼ Ec � xc þ Ee � xe þ ζ ð1Þ

where xc and xe are the volume fractions of elastin and collagen fibers,
respectively, and xc = 1− xe. The proportion of elasticfibers in a large artery
decreases with age18; accordingly, the aorta becomes stiffer. Vascular
mechanics analysis (SupplementaryNote 1) indicates that when the aorta is
stiff, vessels are dilated to a smaller radius compared with the radius of an
elastic aorta under the samepressure conditions; this results in a lowerbuffer
volume stored in the aorta. Thus, the essential difference in AS between an
elastic and stiff aorta generally leads to a change in the cushioning function
of elastic arteries. Notably, an increase in AS accelerates BP elevation and is
associated with adverse clinical outcomes, such as CVDs associated with
myocardial infarction (MI)19 and valvular aortic stenosis (VAS)20.

SVA Model
For quantifying the cushioning function of an artery, we propose a basic
SVAmodel (Fig. 2b), which is an extension of theWindkessel model of the
cardiovascular system21. The classical two-element Windkessel model is
constructed from the total arterial compliance and peripheral resistance; the
arterial compliancemainly buffers the blood volume then support adequate
energy to organ during the diastolic phase, whereas the resistance is the

peripheral vascular resistance (Fig. 2b left). In contrast to the conduit
function of pulse propagation along the arterial tree in the cfPWVmethod,
the cushioning function of elastic arteries buffers the energy released from
theheart and supports theprovisionof blood volume to target organswithin
a heartbeat cycle. Hence, the SVA, or the blood volume distribution in the
circulation, can be defined as the ratio of the stroke volume in the arterial
compliance during the systole phase to the total stroke volume pumped by
the heart during the same cardiac cycle22. Mathematically, SVA is derived
from the static aortic compliance (i.e., C = SV/PP, where C is the arterial
compliance, SV is the stroke volume, and PP is the pulse pressure23; Fig. 2b
middle) in the constrained Windkessel model (detailed derivation in Sup-
plementary Note 2). Hence, the SVA equals the area ratio of the BP wave-
form (Fig. 2b right, Methods and Supplementary Note 3).

SVA ¼ SVc

SV
¼ Ad

As þ Ad
ð2Þ

where SVc is the stored volume of the aorta during the systolic period, SV is
the stroke volume during each heartbeat, andAd andAs are the areas of the
BP waveform during the diastolic and systolic phases, respectively.

In practice, to calculate the SVA,we furthermodeled the ratio of theBP
waveform area from Eq. (2) as a function of the systolic duration Ts and

Fig. 2 | Working principles and modeling and measurement procedure of SVA. a The correlation of the cushioning and conduit functions with ageing-induced arterial
wall stiffening, BP variation and organ damage. b SVA extraction model. c SVA measurement process for wearable devices.

https://doi.org/10.1038/s41528-024-00307-1 Article

npj Flexible Electronics |            (2024) 8:24 3



cardiac duration Tc (Supplementary Note 4) as follows:

SVA≜δ � 1� Ts

Tc

� �
ð3Þ

where δ ¼ DBP
MBP � κ. Here the constant factor κ is the ratio of the area under

the diastolic BP curve to the rectangularized pressure area during the dia-
stolic period (pink region inFig. 2b right) and canbe computed froma single
BP measurement;MBP is the mean BP; δ is a constant that varies between
individuals and is related to BP values (e.g., Supplementary Equation (23));
and Ts/Tc is the primary variable that affects the SVA.

Furthermore, because of the lower percentage of the elastic component
in the peripheralmuscular conduit arteries than the central elastic arteries24,
the central arteries are expected to have a superior cushioning function than
the peripheral muscular conduit arteries (Supplementary Note 5);
hence, SVAcentral > SVAperipheral .

Finally, by introducing the pulse stiffening relationships between the
systolic BP (SBP), dicrotic notch pressure, and diastolic BP (DBP) in the
basic SVAmodel, we can link the SVA with BP (Supplementary Note 6) as
follows:

BP ¼ b�s � SVA � b
SVA PSR� 1ð Þ þ 1� k�s

ð4Þ

where b�s and k�s are linear coefficients relating DBP and dicrotic notch
pressure Pdn

s , whereas PSR (i.e., pulse stiffening ratio) and b are linear
coefficients relating DBP and SBP25. All of these coefficients (i.e., b�s , b, PSR
and k�s ) are stable for more than 24 h because systolic, diastolic and dicrotic
notch BP are influenced by similar factors, such as physical activity,
respiratory rhythm, and stress, and thus fluctuate simultaneously26. More
details regarding the SVA-BP model and PSR are available in Supplemen-
tary Notes 6 and 9. In addition, because both the SVA and cfPWV change
with BP, an inverse relationship between the SVA and cfPWV can be
constructed (Supplementary Note 7).

Clinical validation of SVAmodel and SVA-based AS, BP andCHD
assessment
Based on the physiological model illustrated in Fig. 2a, we propose two
hypotheses that lay the theoretical foundation of our SVA based measure-
ments: 1) SVA is lower in the distal artery than in the central artery and 2)
SVA (i.e., the area ratio of the BP curve) can bemodeledusingEq. (3), which
is primarily related toTs/Tc. Proving thefirst hypothesis requires verification
that SVA decreases along the arterial tree because of the lower elastic
component in the peripheral arteries24. Proving the second hypothesis
requires verification that SVA is related to Ts/Tc measurements. Accord-
ingly, invasive central aortic and peripheral radial continuous BP mea-
surements of patientswereperformed at thePrinceofWalesHospital,Hong
Kong. Themeasurement sites andBPwaveforms are shown in Fig. 3a andb.
The SVA is calculated using the area ratio of the BP waveform, as described
in Eq. (2). The result shows a higher SVA in the aortic artery (orange circle)
than in the radial artery (blue circle) (Fig. 3c), which is consistent with our
first hypothesis. Furthermore, using Eq. (3), the SVA in both the aorta (red
star) and radial artery (purple star) can be precisely predicted from Ts/Tc
with a linear regression. We further analyzed these two parameters in an
open MIMIC-I data set, which includes an average of more than 20 h
continuous recordingof physiological vital signs andBPwaveforms for nine
ICUpatients. Similar case-by-case relationships between SVA andTs/Tc are
found (Supplementary Fig. 1), and a linear relationship between the
dynamic range of Ts/Tc [i.e., max(Ts/Tc) − min(Ts/Tc)] and the dynamic
range of SVA [i.e., max(SVA)−min(SVA)] is identified (Fig. 3d; r = 0.9705,
p = 1.41 × 10−5).

Subsequently, we conducted SVA-AS and SVA-CHD risk correla-
tion studies onmixed open clinical datasets; themeasured parameters are
listed in Supplementary Table 1 under IDs 6–13. The snapshot SBP and
DBP (measured fromanauscultatory or oscillometric device)wereused to

calculate the person-specific constant δ in Eq. (3); thus enabling the cal-
culation of SVA by combining the constant with dynamic Ts/Tc. Once
SVA is determined, the AS can be immediately evaluated, and as will be
illustrated later, the combination of SVA with its related hemodynamic
parameters can be used to well predict the static CVD risk. Figure 3e
unambiguously reveals the inverse relationship between cfPWVand SVA;
the regression line is expressed as cfPWV = −0.396 × SVA+ 33.195
(r =−0.7899, p = 9.63 × 10−5) and the precise expression is

cfPWV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:048þ1:188�SVA

SVA 1:03592�1ð Þþ1�1:01666 þ 0:4079
h i

=0:9965

r
(see detailed

description in Supplementary note 7). This inverse relation connects the
cushioning and conduit functions, which represent the two basic prop-
erties of arteries, e.g., an increased PWV and a decreased SVA both point
to vascular ageing.Wenext compared SVA inhealthy individuals (control
group), patients with valvular aortic stenosis (VAS), and patients with
aortic incompetence (AI) (Fig. 3f). The average SVA in the control group
is 60.93%, whereas that in the VAS and AI groups is 52.13% and 49.06%,
respectively; hence, SVA is significantly lower (p = 6.04 × 10−12) in the
patients with aorta and aortic valve damage than it is in the control group.

Finally, we demonstrate how SVA can be used to estimate BP con-
tinuously. Again, we tested it with the openMIMIC-I dataset. To enable BP
tracking, for each subject, we used the 5 sets ofmeasured SVAand reference
BPs (with the reference BP’s dynamic range encompassing around 70% of
the total BP variation for the subject) to calibrate the coefficients in Eq. (4).
The total mean absolute errors (MAEs) between the estimated and ground
truth SBPandDBPareMAESBP = 7.92mmHgandMAEDBP = 3.77mmHg,
indicating that the model’s estimation accuracy is approaching the IEEE
standard of 7mmHg27. (Supplementary Fig. 2). Rapid hemodynamic fluc-
tuations induced by external interventions during ICU operations28, as well
as natural changes in ultradian (12-, 8-, and 6-h) factors29,30 such as the
sympathetic nervous system activity, salt and volume balance, and activa-
tion of the renin-angiotensin system, can both lead to the relatively larger
errors in this long-term BP dataset. To further improve the measurement
accuracy in such scenarios, it may be necessary to include related physio-
logical parameters in the BP estimation model. Figure 3g shows a specific
example (patient ID 211 in theMIMIC-I data set, who had amean SBP and
DBP of 170/59mmHg) of long-term ( > 20 h) continuous BP tracking with
the SVAmethod (based on Eq. (4)). Here we select a challenging case where
the hypertensive patient experienced an extremely large BP fluctuation
(max(SBP)-min(SBP) ≈ 150mmHg) during the measurement. The SVA-
BP model achieved MAESBP of 9.99mmHg, which is only 6.66% of the
ground truth BP dynamic range and 33% of the ground truth SBP standard
derivation (30.68mmHg). TheMAEDBP is as low as 4.26mmHg due to the
relatively small fluctuation of DBP. The comparison between the ground
truth BP and estimated BP distributions (Fig. 3h) validates the capability of
the SVA method in tracking BP fluctuation over a large dynamic change.
Finally, the variations of SVA and Ts/Tc over time are shown in the lower
panel of Fig. 3g, which displays highly consistent patterns (r =−0.9714,
p < 0.001) and demonstrates the long-term reliability of the method for BP
tracking.

Extraction of dynamic SVA using wearable sensor signals
In the previous sections we used the SVA values calculated from BP
waveforms, in the following we will demonstrate SVA extraction using
wearable sensor signals. The implementation of the SVA method in a
wearable device is shown in Fig. 2c. Initially, the user measures his/her
cardiac signals (e.g., ECG, PPG, or epidermal pulse) with a wearable or
flexible device, thus enabling extraction of the systolic ejection time Ts and
cardiac duration Tc. The ratio of Ts to Tc and a snapshot BP will be used to
infer SVA in Eq. (3).

To validate the aforementioned protocol, we simultaneouslymeasured
the BP waveform (which will be used to provide the reference SVA) and
ECG, PPG, and epidermal pulse signals of a human subject. During the
measurement, the subject was asked to take several deep breaths at random
time points, with each deep breath lasting no less than 8 s, to induce signal
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variations associated with daily activity-triggered hemodynamic changes.
To enable SVA calculation in Eq. (3) with ECG, PPG, and epidermal pulse
signals, we added a snapshot BP set (i.e., SBP and DBP values) extracted
from the BP waveform. The temporally aligned signals for the systolic
duration and extracted cardiac cycles are shown inFig. 4a. The ST interval in

theECGsignal [corresponding to left ventricle (LV) contractility] represents
the systolic time interval Ts, whereas the ECG RR interval is the heartbeat
cycle Tc

31,32. Regarding the waveform-based PPG and epidermal pulse sig-
nals, the foot-to-dicrotic notch (DN) interval representsTs, and the foot-to-
foot interval represents Tc

10,32. We use second-order derivative of the pulse

Fig. 3 | Validation of the SVA method on clinical data sets. a Illustration of the
arterial tree in a human body. From central to peripheral sites: aorta, brachial artery,
and radial artery. b Typical clinical recordings of aortic and brachial BP waveforms.
c Inverse relationship between Ts/Tc and the measured/estimated aortic or brachial
SVA (%). d Relation between the ranges of SVA and Ts/Tc. The shaded areas cor-
respond to the 95% CIs of the scope of SVA with Ts/Tc. e Significant inverse rela-
tionship between SVA and cfPWV implying that SVA can be used as an alternative

for AS assessment (p = 9.63 × 10−5). The shaded areas correspond to the 95% CIs of
the scope of cfPWVwith SVA. fDifferences in the SVA of the normal, VAS, and AI
groups, indicating that SVA can be applied for CHD assessment (p = 6.04 × 10−12).
g Long-term dynamic BP tracking (>20 h) based on the SVA-BP model. h Data
distributions of the ground truth BP (GT BP) and estimated BP (EST BP) by the
SVA-BP model. The 95% intervals of the data distributions are provided for
reference.
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waveform to determine DN point33. As shown in Fig. 4b, consistent fluc-
tuations are observed in the SVA acquired from standard BPwaveform and
various wearable and flexible sensor signals for 383 heartbeat cycles. A
comparison of the estimated error and correlation coefficient for the
extractedSVAare shown inFig. 4c, d. The results show that all the estimated
SVAs are comparable and that the MAEs are smaller than 1.3%. It is worth
noting that despite the PPG and epidermal pulse signals being collected
from peripheral sites, which display waveforms differing from the central
arterialwaveform, they can still be utilized for SVAcalculation.This is due to
the near-identical time features Ts and Tc observed in both the central BP
waveform and peripheral pulse waveforms34.

Clinical applications of SVA model-integrated wearable devices
Basedon the aforementionedfindings,we test the clinical applications of the
SVA method with two wearable products, Apple Watch (Apple Inc., Cali-
fornia, USA) for providing ECG and INTS finger ring prototype (Intelligent
sensing Inc., Hong Kong SAR, China) for providing PPG signals, as shown
in Fig. 5a. In the first part of the clinical study, 48 subjects were recruited in
Prince of Wales Hospital, Hong Kong, for comparing the vascular aging
assessment by SVA and cfPWV. Both INTS-PPG and Apple Watch-ECG
are worn by the subjects for acquiring the PPG and ECG signals, and the
corresponding snapshot BP and gold standard cfPWVwere measured by a
commercial Vicorder system simultaneously. Here the SVA was directly
calculated using the Ts/Tc values acquired from the wearable device and a
snapshot MBP/DBP value. A close relation between age and ECG/PPG-
based SVA, identified among subjects of various ages, is observed (upper
panel of Fig. 5b). The consistent trends in the increase of (1 – SVA) and
cfPWV with the increasing age agree with the theoretical expectation that

the proportion of elasticfibers decreases as the arterial wall ages, leading to a
decrease in SVA and an increase in cfPWV. Moreover, the lower panel of
Fig. 5b reveals that SVA is better correlated with the age groups than is
cfPWV, especially for the old-middle and old-young age groups, suggesting
that SVA could be a more accurate metric for determining vascular age in
middle-aged and elderly patients. Furthermore, we compared the cfPWV
and SVA of patients with 34 myocardial infarction who had undergone
percutaneous coronary intervention (PCI) and 14 normal individuals (Fig.
5c). The significantly lower SVA of the patients with myocardial infarction
who had undergone PCI is consistent with their higher cfPWV, again
demonstrating that the SVA method may enable very convenient but
clinically valuable AS assessment with wearable consumer electronics.

In the second part of the clinical study, we validated the SVA mea-
surementwith the INTSfinger ring-acquiredPPGand tested its BP tracking
performances on 13 subjects. By combining δ and reference BP measure-
ments inEqs. (3,4), the coefficients formappingSVA intoBPcanbederived,
thus enabling BP tracking. The reference continuous BPwas collected using
a Finometer device (FinapresMedical System, Enschede, Netherlands), and
the PPG signal was synchronically recorded with the reference BP. The
dynamic SVA was extracted from the PPG signal using the dicrotic notch
point-to-foot and foot-to-foot intervals as illustrated in Fig. 4, and the BP
was then calculated by feeding the SVA and initial BP values. For each
subject, we used the 5 sets of measured SVA and reference BPs (with the
reference BP’s dynamic range encompassing around 70% of the total BP
variation for the subject) to calibrate the coefficients inEq. (4). Figure 5d and
e compares the BP estimation result with the reference, showing excellent
agreement with lowMAE values of 3.71 and 2.03mmHg for SBP and DBP
respectively (Fig. 5e). These results, together with the long-term BP

Fig. 4 | SVAmeasured by wearable and flexible sensors. a Reference BP waveform
and ECG, PPG, and flexible epidermal pressure signalsmeasured by a Biopac system
(BIOPAC Systems Inc., California, USA) from the same subject. Scale bar 100 ms.
b SVA trends extracted by the sensors during deep breath-induced SVA fluctuations.

The reference SVA is extracted from the BP waveform according to Eq. (2). The
yellow region indicates deep breathing. c, d Correlation and Bland–Altman plots of
SVA estimation accuracy for different sensors.
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estimation with the MIMIC-I dataset, demonstrate that the SVA method
may enable BP tracking with a single sensing device.

Finally, we classified normal and poor cushioning function in the
control group and patient groups (i.e., valvular aortic stenosis35, aortic
incompetence36, and myocardial infarction) through logistic regression
involving SVA and various vital signs. The survey studies are listed in the
Supplementary Table 1 under IDs 3 and 5–7. As shown in Fig. 5f, the larger
area under the receiver operating characteristic (ROC) curve (Area under
the curve (AUC): 0.8513) for SVA indicates that SVA is a better classifier
than is BP, Ts (i.e., left ventricular ejection time LVET), or Tc (i.e., HR). In
particular, we note that BP is a limited but relevant indicator for predicting
CHD; its AUC is only 0.6504. Combining BP, LVET, HR, and SVA in the
logistic regression to produce an all-feature model leads to an AUC of
0.9118. These results confirm that SVA-based wearable devices may be
effective for clinical CHD assessment.

Discussion
In this work, we developed an SVA model that exploits the cushioning
function of arteries to identify and track variations in arterial volume. The
SVA method can add clinically accurate vascular ageing and CVD assess-
ment functions (i.e., measurements of dynamic arterial stiffness, daily BP
fluctuation and CHD severity) to existing wearable/flexible electronics
without requiring any modifications to the hardware. In particular, when
used with different sensing techniques (e.g., ECG, PPG, and flexible epi-
dermal pulse sensors, etc.), the SVA model was capable of providing con-
sistent and reliable measurement results. Hence, the method can be
implemented to nearly all wearable and flexible sensors that can measure
heart rhythms; some commercially available examples include the Apple
watch4, Oura-rings7, Sensora digital stethoscope37, Withings body cardio
scale38 and smart ears39. Although some of these devices require continuous
body touch for physiologicalmeasurements, e.g., the ECGmeasurements by

Fig. 5 | Clinical trials of SVA measurement using commercial wearable devices.
a SVA evaluation through the ECGmeasurements performed with an AppleWatch
and PPG measurements performed with an INTS finger ring. b Correlations of
vascular ageing with SVA and cfPWV. Error bars denote s.d. from the mean.
c cfPWV and SVA for patients with MI and normal individuals (no. 34/14). d, e

Dynamic BP tracking performance and statistical BP estimation accuracy of the SVA
measurement performed with the PPG-based INTS finger ring. f AUCs of various
methods for distinguishing normal from poor arterial systems (i.e., patients without
and with CHD, no. 41/104).
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Apple Watch, they can still be used frequently enough to perform CVD
evaluation through the SVAmodel.Thismeans that the technology couldbe
widely deployed at very low cost and with a short launch time.

The results in this study may have important implications for clinical
methods in evaluating thedevelopment ofCVDandCHD.For instance, our
experiments show that the SVA (extracted fromAppleWatch ECG signals)
is better correlatedwith the age groups than is cfPWV, especially for the old-
middle and old-young age groups, suggesting that SVA could be a more
accurate metric for determining vascular age in middle-aged and elderly
patients. Combing the SVA with a snapshot BPmeasurement, we achieved
continuousBPmonitoring at an error levelwell below the IEEEstandard.As
the parameters in the SVA-BP model are determined through initial cali-
bration measurements on each subject, it may need to be recalibrated if
some hemodynamic changes occur. We note that the SVAmodel does not
include the parameters related to complex neural and humoral regulation of
hemodynamic changes over longer time spans, this may lead to deteriora-
tion of the performance of the SVA method for BP estimation in some
circumstance. Nevertheless, since the core parameters, such as PSR, b, b�s ,
and k�s , associated with BP estimation (Supplementary note 9) are typically
stable for at least a day, we expect themethod can support applications such
as 24-h ambulatory BP tracking, especially the nocturnal non-dipping BP
monitoring. The SVA performance on the MIMIC-I dataset also supports
this speculation. Finally, we found that SVA outperforms the commonly
used cardiovascular parameters (e.g., BP, heart rate and LVET) in distin-
guishing CHD. In summary, the SVA model expands the functions of
current wearable devices to perform passive, unobtrusive, and clinically
meaningful assessment of cardiovascular systems, thus providing a cost-
effective telemedicine measurement unit to enable accurate and timely
diagnosis and intervention.

Methods
Arterial cushioning function described by SVA model
In the systole phase of the cardiac cycle (0 < t < Ts), blood is pumped from
the left ventricle into the aorta. Some blood is stored in the aorta if the vessel
has sufficient compliance, and the remainder is pushed through the actionof
peripheral vascular resistance (mainly capillaries). The initial pressure is the
DBP andQin is the input blood flow. The physical process can be described
mathematically as follows:

C dP tð Þ
dt þ P tð Þ

R ¼ I tð Þ
P 0ð Þ ¼ DBP as t ¼ 0ð Þ

I tð Þ ¼ Qin

8><
>: ð5Þ

In thediastolic phase (Ts < tT ), the aortic valve is closed; hence, noblood
is pumped to theperipheral vascular artery.Volume stored in the elastic aorta
(compliance) is transferred to the peripheral artery and organ during the
diastolic period. The initial pressure corresponds to the pressure once the
aortic valve has closed. The diastolic phase can be described as follows:

C dP tð Þ
dt þ P tð Þ

R ¼ I tð Þ
P Ts

� � ¼ Pdn
s as t ¼ Ts

� �
I tð Þ ¼ 0

8><
>: ð6Þ

whereC is arterial compliance,R is the systematic vascular resistance, IðtÞ is
the aortic blood flow, P is the aortic pressure, and Pdn

s is dicrotic notch
pressure. By solving Eqs. (5) and (6) under the constraint that the aortic
compliance is SV/PP23, SVA can be obtained (details in Supplementary
Note 2).

Invasive aorta and radial pressure measurements for SVA
validation
The central pressure in the aorta and the radial BP were measured from a
patient with CVD through invasive Millar pressure monitoring at a

sampling rate of 1000Hz.The clinical trialwas conducted inPrinceofWales
Hospital, Hong Kong. The experiment was approved by the Joint Chinese
University of Hong Kong–New Territories East Cluster Clinical Research
Ethics Committee and received consent from the patient. For cross-
validation we also tested our model on the radial BP data from the open
MIMIC-I database provided by Boston’s Beth Israel Hospital, United
States28,40, which includes real-time clinical recordings from the ICU
patients. This database provides long data recordings (average duration >
20 h), which are suitable for validating SVA and BP tracking. All collected
signals had a sampling rate of 125Hz. In this study, we focused on patients
with an obvious DN of the arterial BP to extract Ts and Tc for validating the
SVAmodel. Hence, the nine data recordings were analyzed. The measured
parameters are summarized in the Supplementary Table 1 under
IDs 2 and 5.

Clinical measurement of SVA and its relation with AS and
organ damage
We conducted clinical studies on open data sets to explore the relationship
between cfPWV and SVA for patients from different studies and popula-
tions, such as healthy individuals, patients with end-stage renal disease41–43,
normotensive men and women44, and subjects with hypertension45; the
results are summarized in the Supplementary Table 1 under IDs 9–13. In
addition, we explored using SVA to evaluate heart damage in valvular aortic
stenosis35, aortic incompetence36, and normal groups46 by using data from
open data sets. The data are summarized in the Supplementary Table 1
under IDs 6–8. The data sets contained the key cardiovascular parameters—
BP, Ts (i.e., LVET), and Tc (i.e., heartbeat period)—for each patient; hence,
individual-specific SVAs could be calculated using Eq. (3).

SVA estimation-based wearable and flexible sensor signals
ECG,PPG,flexible epidermal pulse, andBPmeasurementswere collected to
compare the accuracy of each technique for SVA estimation. In this
experiment, one participant was recruited. During data collection, the
participant was asked to relax and sit in a chair. The Biopac MP150 system
(BIOPAC system inc. California, USA) with ECG100C, PPG100C,
RSP100C, and Cnap-NIBP 100D with BP waveform measurement was
employed. On the other hand, a flexible epidermal pulse sensor developed
fromour previous studywas carried out tomeasure the pressure pulse5. The
signals are recorded and synchronized based on the specific time slots that
mark the start and endof data recording.Hence, this allowsus tomakeECG,
PPG, andflexible epidermal pulse recordings and tomeasure the respiratory
rate and BP simultaneously in two physiological states (rest and deep
breathing). Data were collected for about 5min at a sampling rate of
1000 Hz for Biopac system and of about 50Hz for the epidermal pulse
recording system (through a high-speed Keithley sourcemeter - Model
2612 A, up to 50 KHz sampling rate5). This data set was constructedmainly
to determine whether the SVA method could track abrupt respiratory
changes. All extracted parameters are summarized in the Supplementary
Table 1 under ID 1.

Clinical trials on vascular age and CVD assessment using com-
mercial wearable devices
We recruited 48 subjects (34 patients with myocardial infarction and 14
healthy individuals as control subjects) covering the age range of 20–90
years at the Prince of Wales Hospital in Hong Kong to conduct vascular
ageing, AS and organ damage studies with a wearable device (Joint CUHK-
NTECCRECRef.No.: 2022.335).Weused commercially availablewearable
products (i.e., Apple Watch and INTS finger ring) to extract each partici-
pant’s cardiac rhythmand thusmeasure their SVA.Tobe specific, before the
measurement, the participant was asked to rest and lie on a bed. The
Vicorder systemwas used to perform gold standard cfPWVmeasurements
for AS assessment. Two deflatable cuffs were carefully attached to their
carotid and femoral artery sites, and the operator checked the position of the
cuffs andmeasured the distance between the aforementioned sites. After all
required patient information had been collected and entered into the
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Vicorder system, the system began recording carotid and femoral pulses
simultaneously. The system calculated the ratio of the distance between the
carotid and femoral pulses and their foot-to-foot time interval and output
the cfPWV at a sampling rate of 556 Hz. Besides, for comparison, A 30-
second ECG signal was recorded with 512Hz sampling rate by holding a
finger from the nonwatch hand on the Apple watch. Meanwhile, the INTS
finger ring with 250Hz sampling rate was attached to the subject’s index
finger to acquire the PPG signal within 1min. Cuff-based BP was simul-
taneouslymeasured using theVicorder system. In viewof the fact that signal
acquisition can be accomplished within a time span of under 1minute, it
guarantees the uniformity of physiological parameters by both wearable
devices. All extracted parameters are summarized in the Supplementary
Table 1 under ID 3.

Furthermore, we also demonstrated the INTS PPG-based wearable
finger ring can be used on daily BP tracking. The PPG ring has a wired
connection between the PPG module with a photodetector and a digital
processing chip. Real-time PPG data are compressed, transmitted over
Bluetooth, and eventually stored in the cloud. In our protocol, the PPG
signal was collected in reflection mode while the PPG ring was attached to
the subject’s index finger. We recruited 13 participants aged >65 years. At
the beginningof themeasurement, the participantwas asked to remain calm
and relax their left armandfingers for 2minutes. The PPGand referenceBP
(obtained using a noninvasive continuous BP measurement Finapres sys-
tem) were recorded for approximately 10minutes. The Finapres BP mea-
surement signals and ring PPG signals could be set to record at the same
heartbeat cycle, ensuring that the devices were synchronized. The foot-to-
DN and foot-to-foot intervals of the ring PPG signal were used to calculate
SVA. All extracted parameters in this dataset are summarized in the Sup-
plementary Table 1 under ID 4.

Statistical analysis
Signal parameters were extracted and calculated using MATLAB R2022a.
Various statistical analysis metrics were calculated, including ROC, AUC,
sensitivity, specificity, and 95% CI, and correlation plots were produced
using MATLAB. Simple correlation analysis was performed using the
Pearson correlation method, and methodological consistency was tested
using the two-sample t-test. A linear regression equation for SVA and
cfPWV was obtained and used to analyze the consistency of the estimated
and reference SVA. Statistical significance was indicated by p < 0.05
(*), < 0.01 (**), and < 0.001 (***). The MAE was used to evaluate the
accuracy of SVA for BP estimation.

Data availability
Data generated in this study are provided in the Main Text and the Sup-
plementary Information. Additional data are available from the corre-
sponding author upon request.

Code availability
All codes that support the findings of this study are available from the
corresponding authors upon reasonable request.
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