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Thestructure andmechanismof thehumanvisual systemcontain rich treasures, andsurprising effects
can be achieved by simulating the human visual system. In this article, starting from the human visual
system, we compare and discuss the discrepancies between the human visual system and traditional
machine vision systems. Given thewide variety and large volume of visual information, the use of non-
von Neumann structured, flexible neuromorphic vision sensors can effectively compensate for the
limitations of traditional machine vision systems based on the von Neumann architecture. Firstly, this
article addresses the emulation of retinal functionality and provides an overview of the principles and
circuit implementation methods of non-von Neumann computing architectures. Secondly, in terms of
mimicking the retinal surface structure, this article introduces the fabrication approach for flexible
sensor arrays. Finally, this article analyzes the challengescurrently facedbynon-vonNeumann flexible
neuromorphic vision sensors and offers a perspective on their future development.

With the rapid development of deep learning, existing machine vision
systemshave achieveda certain level of performance in various areas such as
autonomous driving1,2, face recognition3,4, unmanned aerial vehicle (UAV)
navigation5,6, industrial inspection7,8, and video surveillance9,10. However, In
the face of the demand for high precision and high speed inmachine vision
systems for complex real-world scenarios (for example, in high-speed
motion scenes orunder extremelydimconditions), the algorithmic iteration
and upgrade of machine vision systems relying on the traditional von
Neumann architecture have encountered bottlenecks11. To develop higher-
performance machine vision systems, it is necessary to conduct in-depth
analysis of the challenges faced by existingmachine vision and eliminate the
obstacles to improving machine vision performance.

The vonNeumann architecture represents a foundational paradigm in
computer system design. Its key elements encompass stored programs, a
binary system, a central processing unit (CPU), sequential execution, and
input/output devices. Within the framework of the von Neumann archi-
tecture, the performance of machine vision systems is intricately linked to
factors such as optical hardware devices, CPU processing capabilities,
memory, and data transfer speed between processors. In essence, to attain
elevated performance levels, machine vision systems must grapple with
three pivotal challenges.

Firstly, the outstanding performance of machine vision systems
largely depends on the effective acquisition of visual data. The more

comprehensive and higher quality of the collected data, the better the
resulting outcomes are likely to be. This aspect is typically achieved
through the use of optoelectronic sensor arrays. Currently, most arrays
are designed in a planar fashion, with some limitations compared to
curved sensor arrays. Traditional rigid electronics, when transitioning
from a two-dimensional plane to three-dimensional space, often
encounter failures at bent points due to the compression or even
breakage of individual sensors. Introducing flexible electronic devices
into machine vision systems reduces the occurrence of failures, thereby
obtaining superior visual data.

Secondly, achieving higher performance in machine vision systems
requires more advanced algorithms, and these advanced algorithms
demand processors with higher capabilities. The performance of an
individual processor is typically supported by its integrated density level.
However, silicon-based semiconductor technology has reached its limits
in keeping up with Moore’s Law12. This means that traditional pro-
cessors are approaching their maximum capacity. To sustain the
development trend ofMoore’s Law and enhance processor performance,
it is necessary to go beyond the realm of silicon semiconductors and
explore new materials.

Lastly, for high-level processors, the efficiency of communication
between the processor and storage chips is crucial for fully leveraging the
existing performance of the processor13. The diversity and richness of
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visual information result in large volumes and high complexity of visual
data. Under the vonNeumann architecture, once the data transfer speed
reaches its limit, the system, due to its sequential execution nature, has to
wait for the data transfer to complete before proceeding to the next
operation. This is critical in fields with high real-time requirements, such
as autonomous driving and drone visual navigation.

Addressing all three of these issues simultaneously is quite challenging.
Fortunately, nature has provided uswith the solution.As themost advanced
intelligent beings on Earth, humans process an enormous amount of
information every day. As the most vital component of our perceptual
system, the human visual system is responsible for perceiving and proces-
sing over 80% of the information processed by the human body. In the face
of such a vast amount of information, in contrast, the human visual system
exhibits superior performance in terms of low redundancy, low power
consumption, and strong robustness, which the existing machine vision
systems cannot match14. Therefore, as the development of machine vision
hardware reaches a bottleneck, reexamining the human visual system and
drawing inspiration from its mechanisms for perception and information
processing can help in the development of higher-performance machine
vision systems. Figure 1 shows a comparison between human visual system,
traditional machine vision system, and the flexible non von Neumann
machine vision system that this article focuses on.

Human visual system
The human visual system can be broadly divided into two parts. The first
part is the visual information perception module represented by the eyes,
and the secondpart is the visual informationprocessingmodule represented
by the visual cortex in the brain. When light reflected from external objects
passes through the optical structures, such as the lens, it stimulates the
retina,which is the light-sensitive tissue at thebackof the eye.The cells in the
retina, including cone cells and rod cells, respond to light stimuli. The visual
information is then transmitted through the fibers of the optic nerve, car-
rying the electrical signals of the light stimuli to the visual cortex in the brain.
It is in the visual cortex that the final process of visual perception and
cognition takes place.

In the complete visual pathway, the retina plays a dual role in both
perception and preprocessing. Therefore, delving into the structure
and information-processing mechanisms of the retina is meaningful.

This contributes to addressing the first and third challenges. Addi-
tionally, efficient data processing methods in the visual cortex should
also be considered, aiding in enhancing the computational capabilities
of chips.

The curved structure of the retina
From an optical perspective, the retina serves as the imaging screen of the
human visual system, taking the form of a concave sphere. Various optical
systems, including the eyes, inherently have a fundamental curvature in
their field of view, known as the famous Petzval surface15. Consequently, the
image field is naturally curved. For flat structures, more lenses are required
to correct aberrations. In contrast, a curved structure can address this issue
with little or no correction needed. Furthermore, the curved structure of the
retina can match the spherical shape of the eye, allowing the visual focus to
move without the need to shift the head. This contributes to obtaining a
larger perceptual range. Overall, to achieve higher performance, there are
manynoteworthy details in the “imaging screen” aspect of the human visual
system16–19.

The information processing mechanism of the retina
The retina can preliminarily process visual information. As a crucial com-
ponent of the photosensitive transduction system, the retina has a well-
defined hierarchical structure. As shown in Fig. 2, the retina can be roughly
divided into three layers: photoreceptor cells, bipolar cells, and ganglion
cells. Horizontal cells and amacrine cells form a network in the horizontal
direction of the retina20.

Thephotoreceptor cells on the retina convert light signals into electrical
signals and transmit them further. The photoreceptor cells on the retina
mainly include cone cells and rod cells, corresponding to the cone system
(also known as photopic or daylight vision system) and the rod system (also
known as scotopic or night vision system), respectively21. The cone system
consists of cone cells, bipolar cells that connect to them, and ganglion cells. It
has color discrimination ability and high resolution for object details but is
less sensitive to light. In contrast, the rod system consists of rod cells, bipolar
cells, and ganglion cells. Its characteristics are opposite to the cone system.
The coordination between the cone and rod systems allows the human
visual system to have excellent visual capabilities in both bright and dim
environments.

Fig. 1 | Comparison of human vision system and machine vision system processes. a Human visual system workflow. b Traditional machine vision system workflow.
c Non-von Neumann machine vision system.
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The dispersed electrical signals obtained after the conversion of
light signals by photoreceptor cells are integrated into bipolar cells.
In this process, horizontal cells regulate the signal transmission
between photoreceptor cells and bipolar cells through lateral inhi-
bition mechanisms, enhancing the perception of edges and contrast22.
This marks the starting point of information preprocessing in the
retina. The integrated electrical signals, regulated by amacrine cells,
are then transmitted to ganglion cells for the encoding of specific
features23. It’s worth emphasizing that horizontal cells primarily exist
in the outer nuclear layer of the retina, synaptically connected to
photoreceptor cells and bipolar cells, participating in bidirectional
information transmission, mainly functioning in the early stages of
visual signal processing. On the other hand, amacrine cells are dis-
tributed throughout various layers of the retina, connected to various
neurons (including photoreceptor cells and ganglion cells), partici-
pating in the information transmission between photoreceptor cells
and ganglion cells, involving higher-level visual processing.

In fact, there are ~30 types of ganglion cells that play a role in
the functioning of the retina, allowing it to encode various attributes
of the visual scene24. Ganglion cells are mainly classified into Par-
vocellular cells (P Cells) and Magnocellular cells (M Cells)25. The
former are more sensitive to color and high-resolution, detail-rich
visual information, while the latter are more sensitive to motion and
low-contrast stimuli. This sensitivity is determined by their cell
structure, response characteristics, and receptive field size. Both types
extract information relevant to their sensitivity from the received
light signals and process it in parallel. The corresponding pathways
are known as the parvocellular (p) pathway and the magnocellular
(m) pathway26. The former is better suited for processing details,
color recognition, and static object information, while the latter is
more suitable for processing overall motion, depth perception, and
sensitivity to dynamic scenes. This aligns with the characteristics of
the corresponding cells.

In the perceptual process of the above light signals, signals gradually
propagate fromphotoreceptor cells to higher-level neurons. This hierarchical
processing allows the retina to adapt to different lighting conditions, motion
scenarios, andcomplexvisual scenes.Moreover, theprocessing in the retina is
achieved through gradient signals, not electrical potentials like in the central
nervous system. By detecting and encoding gradient signals, the retina can
achieve efficient specificity and accuracy inperceiving visual information. For

instance, when there is a sudden change in light intensity or color, gradient
signals exhibit significant variations, enabling the retina to precisely locate
edges in the image. This is crucial for perceiving the shape and structure of
objects. Compared to directly transmitting the overall brightness or color
information of the entire image, information transmitted through gradient
signals is more compact and precise, facilitating efficient transmission and
processing of information in the nervous system. This processing approach
provides clear and organized input for subsequent stages of visual processing,
allowing the brain to more effectively interpret the visual world.

The data processing mechanism of the visual cortex
The visual cortex is divided into multiple regions, and its mechanisms are
continuously being investigated27–29, leading to the development of various
bio-inspired models and algorithms30–32.

During the process of data processing in the human brain, various
types of neurons are involved in learning concepts and information trans-
mission. A typical neuron consists of dendrites, cell body, axons, and
synapses, with synapsesprimarily responsible for information transmission.
During the transmission process, the presynaptic neuron undergoes
changes in electrical potential and releases neurotransmitters. The post-
synaptic neuron receives the neurotransmitters, leading to changes in its
electrical potential. Many complex logical operations, such as Boolean logic
operations33, are performed at the presynaptic terminals before the signal is
transmitted to the cell body. The persistent changes in the morphology,
function, strength, and efficiency of synapses are referred to as “synaptic
plasticity.”Based on the duration of these changes, synaptic plasticity can be
divided into short-term plasticity (STP) and long-term plasticity (LTP),
corresponding to short-term memory (STM) and long-term memory
(LTM) in the human brain34. Brief visual stimuli can activate short-term
plasticity synapses,while increasing the frequency, duration, and intensityof
visual stimuli can activate long-term plasticity synapses. If such stimulation
is actively generated, this process is referred to as experiential learning in the
human brain, which is also one of the most significant differences between
the human brain and computers35

Discrepancies in human and machine vision systems
Existing machine vision systems are based on the von Neumann archi-
tecture, utilizing cameras, memory, processors, and algorithms to perform
visual-related tasks. In comparison to the human visual system, these two
systems exhibit significant differences in the following aspects:

Fig. 2 | Retinal pathway schematic diagram. Reproduced under the terms of CC BY 4.0 license20. Copyright 2021, Elsevier.
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Sensing and preprocessing module. The sensing module of machine
vision systems generally consists of a camera and a photosensitive device.
Its purpose is to convert light signals reflected from objects or emitted
directly by objects into electrical signals using the photosensitive prop-
erties of the device. Typically, the sensing module does not have any
additional functions. In contrast, the sensing

part of the human visual system, represented by the retina, not only
performs the phototransduction function but also conducts preprocessing
of the converted electrical signals. This preprocessing significantly enhances
the efficiency of visual data processing.Machine vision systems, on theother
hand, require additional preprocessing modules to address this issue. This
approach inevitably leads to disadvantages such as highly redundant data
and slower processing efficiency. To address this issue, the widely adopted
approach in the industry is to maximize the amount of information (“info-
max” approach) contained in the input data36. This involves simplifying the
quantity of data sent and processed to align with the current capabilities of
materials and sensor hardware. While this approach may provide a tem-
porary solution, it might not be a long-term strategy, given the ever-
increasing demands on machine vision systems. Undoubtedly, the volume
of data will increase with the growing demand, and someday, the amount of
data will surpass the maximum threshold that “info-max” approach can
handle. After reaching this point, addressing the information bandwidth
issue will remain unavoidable.

Furthermore, the photosensitive devices used in machine vision sys-
tems are typically two-dimensional flat structures, which inherently have a
disadvantage compared to the curved structure of the retina. To focus the
light onto the sensor plane, complexmulti-lens optical devices are required,
posing integration challenges37. At the same time, to shift the visual focus,
machine vision systems typically need tomove the entire device rather than
a single array of photodetectors. This poses a challenge to the durability of
machine vision systems. Table 1 provides a comparison of the sensing
modules of the two visual systems.

In summary, the retina serves as both the endpoint of human visual
perception and the starting point of visual information processing. It
accomplishes the tasks that would require separate sensing and pre-
processing modules in a machine vision system. The capabilities of the
retina and its curved photosensitive structure have clear implications for
high-performance machine vision systems. By emulating the functionality
of the retina, integrating the information sensing and preprocessing mod-
ules into a singlemodule becomes possible. This approach not only reduces
the number of components, facilitating device integration, but also mini-
mizes data transmission processes, thereby improving the overall system
speed38–40.

Overall processing module
Machine vision systems rely on algorithms to process visual information.
With the increasing level of everyday demands, there is a wide range of
related algorithms available. Among them, themost typical visual algorithm
is Convolutional Neural Network (CNN)41–43. These types of algorithms are
basedonArtificialNeuralNetworks (ANN)andare implementedby adding
and improving network structure layers. ANN learns from samples, stores
experiences, and simulates the learning process of the human brain.

However, this approach focusesmore on improving algorithmperformance
and overlooks the biological plausibility of the algorithm itself44. The human
brain processes information through the transmission of pulse signals
between synapses. When not receiving corresponding stimuli, the next
neural synapse or even the entire region remains inactivated. In contrast,
after successful training of anANNnetwork, all the hidden layerweights are
in an activated state, resulting in higher energy consumption. To better
describe the differences between the processing modules of the human
visual system and the machine vision system, we have compared them in
Table 2.

Summary
This section introduced the photoreceptor and processing units of the
human visual system and highlighted the shortcomings of machine vision
systems in perceiving and processing optical data. To address these short-
comings, the next step can be focused in two directions: taking inspiration
from the functionality and structure of the retina and drawing insights from
the neural synapses in the brain for algorithm and circuit design.

Mimicking retinal preprocessing function
Traditional neuromorphic vision sensors
Neuromorphic vision, as a visual perception system incorporating hard-
ware, software, and biological neural models, differs from the mainstream
direction ofmachine vision,which follows the paradigmof “video camera+
computer + algorithm = machine vision.” Since its introduction, it has
garnered widespread attention from industry professionals14. Compared to
traditionalmachine vision systems, the greatest advantage of neuromorphic
vision systems lies in their exploration of the biological foundation of vision.
They have introduced a novel concept of frameless transient vision sensors,
which differs from the frame-based approach commonly used in traditional
machine vision systems.

In traditional machine vision, video data is processed based on frames,
which leads to the generation of a significant amount of redundant data,
limiting the pixel bandwidth. In contrast, neuromorphic vision sensors,
based on event- and data-driven principles, discard irrelevant light source
information, resulting in a higher-performance machine vision system.
These sensors operate by focusing on events and relevant changes in the
visual scene, rather than processing entire frames, thereby reducing
redundancy and improving efficiency.

The formal introduction of neuromorphic vision sensors into people’s
awareness can be traced back to 1991 when Mahowald and Mead created
the first silicon retina45. In the pursuit of imitating, approximating, and
surpassing the retina in terms of structure, device functionality, and intel-
ligent capabilities, the requirements for neuromorphic vision sensors can be
summarized as “smaller, faster, and more intelligent”46. Since the intro-
duction of thefirst silicon retina, scholars have conducted extensive research
on this sensor. In 2005, theDynamicVision Sensor (DVS) developed by the
Delbruck team marked a milestone in the commercialization of neuro-
morphic vision sensors47. In 2008, Posh et al.48 introduced the Asynchro-
nous Time-based Image Sensor (ATIS), which demonstrated the possibility
of parallel acquisition of static and dynamic image information. In 2013, the
Delbruck team developed the Dynamic and Active pixel Vision Sensor
(DAVIS) based on theDVS, and later expanded it to the colorDAVIS346 in
201749,50. Until now, DVSs are still being developed51.

Table 1 | Comparison of the sensingmodules between human
visual system and machine vision system

Human visual
system

Machine vision
system

Focusing effect Better Worse

Preprocessing function Functional Non-functional

Structure Curved surface Plane

Imaging of light and dark scenes Better Worse

Redundant data Less More

Table 2 | Comparison of processing modules between human
visual system and machine vision system

Human visual system Machine vision system

Biological plausibility Adequacy inadequacy

Calculation basis Neurosynapses Matrix vector multiplication

Energy loss lower higher

Robustness stronger weaker
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The aforementioned sensors adopt a differential visual sampling
model, mainly simulating the peripheral motion perception function of the
retina,while lacking in simulating thefine texture perception function of the
central fovea of the retina. However, the octopus retina model52 and the
Vidarmodel53, whichuse an integrative visual samplingmodel, demonstrate
significant advantages in fine texture perception. Each of these neuro-
morphic vision sensors has its own advantages, but they share a common
drawback: complex circuitry, large pixel area, and low fill factor54.

Although the aforementioned sensors have beenwidely used in various
machine vision and robotics applications, they still face challenges in low
integration, high power consumption, and large latency. As sensors based
on silicon semiconductor technology, they are also bound byMoore’s Law.
At the same time, while they imitate the functionality of the retina at a
certain level, their imitation of the structural shape of the retina is minimal.

Non-von Neumann computing architecture
While traditional neuromorphic vision sensors have successfully reduced
much of the redundant data, they still face challenges when it comes to real-
time applications with high demands for data throughput, such as auton-
omous driving and UAV visual navigation. In these domains, there is a risk
of hitting the memory wall due to the large amount of data that needs to be
processed within a short period.

To address this issue, the concept of “non-vonNeumann architecture”
has captured the attention of relevant researchers. The core idea of this
concept involves integrating the foundational matrix operations into spe-
cific circuits, endowing sensors with inherent computational capabilities,
and reducing the overall amountof information that needs tobe transmitted
andprocessed (Fig. 3a)55. If this concept is introduced to thefield ofmachine
vision, a novel type of non-vonNeumann neuromorphic vision sensor with
intrinsic computational abilities emerges. In this device, sensors cannotonly
capture visual information but also perform certain computations, miti-
gating the performance waste caused by visual information transmission
andachievingmore efficientprocessing.Common implementations of non-
von Neumann architecture for vision sensors are as follows:

Analog circuitry. The concept of resistive crossbar arrays was initially
proposed by Bell Labs researchers in the 1960s. Since then, it has evolved
and expanded to include V-R logic gates,V-V logic gates, R-R logic gates,
and more (Fig. 3b)56. Although the individual resistor device structure in
the array may differ from the electrical units utilized (voltage, current,
resistance), the basic operating logic of the array remains the same.

Resistive crossbar arrays are computing devices based on resistance
modulation at cross-points and are used for matrix multiplication-based
computations, making them suitable for various types of neural
networks57–67. In this array, resistors serve as switching components. By
dynamically adjusting the resistance values at the crosspoints, different
weighted multiplication operations can be achieved through the simple
application of Kirchhoff’s law andOhm’s law(Bottom of Fig. 3b). The reuse
of resistors for interconnecting neurons enables forward and backward
propagation processes in neural networks. Resistive crossbar arrays offer
advantages such as high reconFigureurability, high integration density, low
power consumption, and strong stability, making themwidely applicable in
artificial intelligence, analog computing, and biomedical fields.

However, the disadvantages of resistive crossbar arrays are also quite
evident. For a completed resistive crossbar array, modifying the weights
(resistance values) can be rather challenging.With the rapid development of
the materials industry, researchers have discovered certain materials that
exhibit memristive effects, wherein the resistance of the material changes
under the influence of an electricfield or current. This resistance variation is
dependent on the appliedvoltage or current68.Devices fabricatedusing these
materials with memristive properties are known as memristors. Utilizing
memristors and their characteristics, memristive neural networks can be
constructed, which share similarities with resistive crossbar arrays69–79.
Compared to resistive crossbar arrays,memristive neural networks not only
exhibit stronger adaptability but also, with memristors serving as non-

volatilememory devices, can storeweights to achieve integrated storage and
computation69,80. Furthermore, compared to traditional computing devices
such as CPUs and GPUs, memristive neural networks can significantly
reduce power consumption.

Taking the simplest example of a single-layer perceptron, it can be used
for classification and recognition of images with nine pixels81. As shown in
Fig. 4a, the nine pixels are input as voltages (V1–V9) in the algorithm
structure. Additionally, a bias voltage (V10) is also input to update the
weights (i.e., resistances at each cross point). The size of the weight matrix,
which implements the neural network algorithm, needs to be adjusted
according to the specific input-output requirements. Assuming the final
output is a three-dimensional vector, the size of the weight matrix would be
10 × 3. The actual circuit is shown in Fig. 4b, where Gij represents the
effective conductance of each resistor. Within one cycle, the weight calcu-
lation formula is as follows:

Wij ¼ Gþ
ij � G�

ij ð1Þ

Afterwards, the obtained signal (or data) is represented in the formof a
current and then passed through an activation function for output. The
formulas for the activation function are shown as (2) and (3):

Ii ¼
X10

j¼1

WijVj ð2Þ

f i ¼ tanhðβIiÞ ð3Þ
In this way, one training process is completed. Since the initial weights

may not be correct, a single iterationmay not guarantee the desired output.
It is necessary to adjust the resistors in the array to achieve weight updates.
Taking the letter “Z” as an example, let’s define the voltage of the pixels
occupiedby the letter as positive andnegativeotherwise. Following the input
pattern shown in Fig. 4b, the weight update ΔWij is given by the following
formula:

ΔWij ¼ ηsgn
XN

n¼1

ΔijðnÞ ð4Þ

δiðnÞ ¼ f ðgÞi ðnÞ � f iðnÞ
h idf

dI

����
I¼IiðnÞ

ð5Þ

ΔijðnÞ ¼ δiðnÞVjðnÞ ð6Þ
After computing ΔWij, it is necessary to modify the weights of each

column of the crossbar switch based on the actual situation. This mod-
ification can be done by applying a “reset” pulse. The process is repeated
continuously until the output reaches the desired accuracy. For a specific
resistive crossbar array, different pixel images (i.e., different output signals)
will yield different output results. Based on this characteristic, it is possible to
achieve classification and recognition for specific letters or characters. It is
defined that classification is considered successful when the output signal f i
corresponding to the correct category for the applied pattern is greater than
all otheroutputs. In this paper, perfect classificationwas achievedonaverage
after 23 epochs, with a standard deviation of 10 epochs. The final classifi-
cation results are expressed in the form of currents (Fig. 4c). Expanding this
concept further, it can effectively replace each weight layer in complex
neural networks55. Furthermore, this can enable the implementation of
various types of neural networks82.

Digital circuitry. While the emergence of memristive devices has pro-
vided excellent insights for hardware-based neural networks, the current
manufacturing and integration technologies for memristors may not yet
support large-scale applications within neural networks. Additionally,
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although analog circuits exhibit rich dynamic characteristics and can
simulate the continuous updating of neural network states, there is still a
gap in achieving control and communication-related functions com-
pared to digital circuits. Therefore, the recent research focus has also been
on how to use digital circuits to implement non-von Neumann
computing.

To be frank, the key to achieving non-vonNeumann computing lies in
using circuits formatrix calculations. The use of logic gates in digital circuits
hasmade this idea a reality. Figure 3c is an example ofmatrixmultiplication
using Digital circuitry55. For the input vector [0 1 3 2], it is first converted to
binary, resulting in two input binary vectors [0 1 10] and [0 0 11]. Similarly,
thematrix [3 6 2 1] that is multiplied with the input vector is also converted
into 3 binary vectors. The two input vectors are multiplied element-wise

Fig. 3 | Non-von Neumann computing architecture. a Comparison between von
Neumann and non-von Neumann architectures. Reproduced with permission55.
Copyright 2020, Springer Nature. b–d Three typical non-von Neumann archi-
tectures. b Non-von Neumann architecture based on analog circuits. Reproduced
with permission56. Copyright 2018, Springer Nature. c non-von Neumann

architecture based on digital circuits. Reproduced with permission53. Copyright
2020, Springer Nature. Reproduced with permission84. Copyright 2022, John Wiley
and Sons. d Non-von Neumann architecture based on optical neural networks.
Reproduced under the terms of CC BY 4.0 license90. Copyright 2022, Springer
Nature.
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with the three system state matrix vectors and converted from binary to
decimal (which can be achieved using logic gate circuits). Finally, the results
are added together to obtain the final output. Building upon this, neural
networks can be integrated into hardware. At the bottom of Fig. 3c is a
binary image processing circuit83.

Similar to resistive crossbar arrays, circuits made using logic gates also
face the challenge of limited adaptability. The current industry-recognized
approach for programming logic gate arrays is to use FPGA (field-pro-
grammable gate array). As shown in Fig. 5, implementing non-von Neu-
mann computing with FPGA involves five steps: CircuitModeling, Neuron
Simulation and Synaptic Weight Programming, Network Topology and
AlgorithmTraining, InterfaceControl andDebugging, andApplication83–86.
In many hardware circuit implementations of neural networks (essentially
non-vonNeumann architectures), memristor models play a significant role
in the initial circuit element modeling stage. In fact, these digital memristor

models only simulate certain aspects of memristor performance, achieving
significant computational advantages by avoiding the use of complex
mathematical functions83.

Optical neural networks. Optical neural networks are a method that
applies optical technology to the implementation of neural networks. By
using optical devices to simulate the functions of neurons and their
connection weights, it is possible to achieve high-speed and energy-
efficient neural network computations.

In the early stages, optical neural networks primarily relied on the
photo-tunable synaptic properties of specificmaterials. As shown in Fig. 6a,
compared to the traditional image sensor represented by the red line,
transistors with photo-tunable synaptic properties represented by the blue
line exhibit a time-dependent response in the relationship between output
current and illumination time. This represents the possibility of replicating

Fig. 4 | Complete weight update process. a Pixel information input in the form of
voltage, along with bias voltage. b Actual circuit diagram and the training process.
cTraining results and implementation mode of multi-layer neural network. a, b and

left side of c Reproduced with permission81. Copyright 2018, Springer Nature. Right
side of c reproduced with permission55. Copyright 2020, Springer Nature.

https://doi.org/10.1038/s41528-024-00313-3 Review article

npj Flexible Electronics |            (2024) 8:28 7



the mechanism of synaptic plasticity through such responses, ultimately
mimicking the learning and memory functions of the human brain87.

An unsatisfactory aspect of this approach is that such specificmaterials
generally achieve tunable light responsiveness through ionmigration,which
has a relatively slow rate ofmigration88. Toovercome this drawback,Mennel
et al.89 created a dual-gate transistor (Fig. 6b). Each transistor operates in
short circuit, with its responsiveness individually set by a pair of gate vol-
tages. They used this array to implement a classifier and an autoencoder. In
subsequentwork, based on the ref. 81, they recognized imageswith different
signal-to-noise ratios. Experimental results showed that, even with a signal-
to-noise ratio of 0.3, the array not only correctly interprets input signals but
also significantly improves the noise in the reconstructed images.

The dual-gate transistor effectively enhances the speed of the sensor,
but the application of voltage to the gate unavoidably increases power
consumption. Currently, gateless, self-powered, reconfigurable optoelec-
tronic sensors have emerged90.What’s evenmore exciting is that this sensor
can not only change the magnitude of the light response but also alter the
sign of the light response.

Furthermore, optoelectronic transistors canbe connected in serieswith
memristors to form a 1T1R structure58,71,91–95. The intrinsic voltage-current
characteristics of the transistor make training of memristive neural net-
works, especially synaptic weight updates, more controllable. By individu-
ally controlling the gate voltage of each transistor, parallel control of the
array can be achieved, thus improving training efficiency.

Illustrations of non-von Neumann architecture computations
Applications to second-generation ANNs. Before the concept of
memristors emerged, researchers often described circuit components
with neural-like computing capabilities as “electronic synapses.” The
focus of related workwas primarily on implementing non-vonNeumann
multiplication and accumulation operations using hardware. The limited
applicability of these approaches stemmed from the challenge of reliably
modifying the conductance states of the devices79. As a consequence,
early research endeavors primarily centered on specific circuit designs
and their real-world performance.

Sebastian et al.66 presented amethod for inference and training of deep
neural networks using circuits, alongwith experimental results using phase-
change memory (PCM) devices. The results demonstrated that PCM
technology can achieve higher-performance deep neural networks com-
pared to traditional methods. With the continuous improvement of PCM
devices in the future, they anticipate even further enhancements in per-
formance; Ambrogio et al.69 demonstrated a hardware-software co-design

approach for neural network implementation involving as many as
204,900 synapses. They combined long-term storage in phase-change
memories, near-linear updates in volatile capacitors, and weight data
transfer with “polarity inversion” to address inter-module communication
issues. They achieved generalized accuracy equivalent to software-based
training on various commonlyusedmachine learning test datasets (MNIST,
MNIST-background, CIFAR-10, and CIFAR-100). Their implementation
achieved a computational efficiency of 280.65 trillion operations per watt
and a unit area throughput of 3.6 trillion operations per square millimeter
per second, surpassing the performance of today’s graphics processing units
(GPU) by two orders of magnitude; S.R. Nandakumar et al.79 proposed a
mixed-precision architecture that combines computational storage units
with high-precision processing units. The core idea of this architecture is to
provide classification accuracy comparable to floating-point implementa-
tions while overcoming the challenges associated with the non-ideal weight
update characteristics of emerging resistive memories. Their experimental
results demonstrate that computational storage units implemented with
nonlinear stochastic models using phase-change memories achieved a test
accuracy of 97.40% in a two-layer neural network for the MNIST digit
classification problem.

The emergence of memristors has overcome the limitation of unreli-
able changes in conductivity states, enabling the development of large-scale
hardware circuits with in-sensor computing capabilities. Given the vast
amount of visual information data and the simplicity of optoelectronic
signal conversion, researchers easily conceived the idea of integrating
multiple modules within visual sensors to reduce redundant data and
improve data transmission speed. This aligns with the objectives of neu-
romorphic vision sensors.

Applications to third-generation ANNs. As mentioned earlier, the
human brain communicates and processes information through synap-
ses. During the transmission of physiological signals, pulses are the pri-
mary mode of conveyance. Hence, obtaining reliable impulse signals and
using spiking neural networks to simulate complex human brain beha-
viors has been a research hotspot in recent years96.

Currently, the majority of research on artificial synapses focuses on
simulating static plasticity, while a few controllable synapses based on
bipolar transistors (such as shown in Fig. 7a) can regulate the transistor
through opposing gate voltages, but still exhibit significant deficiencies in
terms of efficiency. The Su Research Group fabricated a p-type transistor
based on ferroelectrics-electret synergetic organic synaptic (FEOST), as
shown in Fig. 6a97. This device also exhibits pronounced memristive

Fig. 5 | Workflow for digital circuit implementation of non-von Neumann computing architecture based on FPGA. Reproduced with permission84. Copyright 2022,
John Wiley and Sons. Reproduced with permission83. Copyright 2023, Elsevier.
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characteristics (Fig. 7b). With the synergistic effect of ferroelectric polar-
ization switching and charge trapping, the device demonstrates two distinct
modes under single-gate pulse stimulation, effectively mimicking neural
synapse potentiation and inhibition behaviors (Fig. 7c). In their work, they
eventually applied this device to a temperature sensor to simulate human
temperature perception (Fig. 7d). In a previous study, they also utilized a
voltage-programmable ferroelectric transistor array to accomplish recog-
nition of 28 × 28 handwritten digit pixel images in the form of amemristive
neural network (Fig. 7e)98.

The SuResearchGrouphas conducted extensive research in thefield of
neuromorphic computing. In2022, they investigated the voltage-modulated
long-term plasticity of perovskite-basedmemristive synaptic devices. Using
a structure similar to Fig. 7e, their device exhibited 40 consecutive con-
ductance reduction states under positive voltage and 30 conductance
enhancement states under reverse voltage within 100 cycles(Fig. 7f)99.
Compared to previous works, it demonstrated a nonlinearity of <1 and a
highaccuracyof over96.7% in continuous resistance adjustment.This offers
a promising avenue for non-von Neumann hardware computation
in ANNs.

Retinal curvature structure simulation
Currently, significant progress in neuromorphic computing has led to rapid
development in the field of “storage and computation integration.” This is
helpful for enhancing theperformanceofmachine vision systems.However,
from a broader perspective, the retina not only serves the function of pre-
processing data but also has photodetection capabilities. Therefore, if
machine vision systems could integrate the photodetectionmodulewith the
processing module, similar to the retina—creating a unified module for
sensing, storage, and processing—it would bring tremendous improvement
to machine vision systems. To maximize the overall system performance,
the optical advantages of the curved structure of the retina also need to be
considered. Thus, this chapter will start with photodetectors, explaining
how to achieve the fabrication of curved “sensing-storage-computation
integrated” devices through materials and manufacturing methods.

Materials
Silicon itself has relatively brittle physical properties and is prone to
mechanical deformation over time when made into curved structures. At
the same time, The state-of-the-art image sensors using silicon

Fig. 6 | Optical neural networks. a Optical neural network with photo-tunable
synaptic properties based on specific materials. Reproduced with permission87.
Copyright 2019, Springer Nature. b Optical neural network based on a dual-gate

transistor array. Reproduced with permission89. Copyright 2020, Springer Nature.
c Optical neural network based on the polarization effect. Reproduced under the
terms of CC BY 4.0 license90. Copyright 2022, Springer Nature.
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Fig. 7 | Applications for third-generation artificial neural networks. a p-type
transistor based on ferroelectrics-electret synergetic organic synaptic (FEOST).
b The memristor characteristics of this device. c Different modes simulating neural
synapse potentiation and inhibition behaviors. d Temperature perception.

a–d Reproduced with permission97. Copyright 2023, Wiley-VCH. eNeural network
for digital pixel image recognition and highlighted weight layer map. Reproduced
with permission98. Copyright 2023, IOP Publishing. f Performance characterization.
Reproduced with permission99. Copyright 2023, AIP Publishing.
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complementary metal-oxide-semiconductor technology have a detection
range for light intensity (70 dB) far smaller than the range of natural light
intensity (240 dB), which hinders the improvement of machine vision
systemperformance21. In order to further simulate the humanvisual system,
it is necessary to consider using new materials as substitutes for silicon. In
order to accurately identify newmaterials, clear performance indicators are
necessary. In the following sections, we will introduce several important
parameters used to compare the performance of photodetectors100:
(1) Responsivity (R): defined as the ratio of photocurrent to incident light

intensity, indicating the response efficiency of the photodetector to
light signals;

(2) Detectivity (D*): it characterizes the weakest light level that the device
can detect, determined by the responsivity and noise of the
photodetector;

(3) Noise equivalent power (NEP): defined as the signal light power for
which the signal-to-noise ratio (SNR) is equal to 1, representing the
minimum incident light power that the photodetector can distinguish
from noise. A smaller NEP indicates that the device can detect weaker
light. It is equal to the reciprocal of Detectivity (D*);

(4) Linear dynamic range (LDR): it describes an illumination intensity
range within which the current response of the photodetector is line-
arly proportional to the light intensity;

(5) Response speed: characterized by its rise time (tr) and fall time (tf) in
response to light signals, defined as the time between 10% and 90% of
the maximum photocurrent.

In addition, there are requirements for the stretchability of materials
whenproducing curved sensor arrays.Typically,weuseYoung’smodulus to
measure the degree of deformation in materials during tension or com-
pression processes. The unit of Young’s modulus is usually Pascal (Pa) or
Megapascal (MPa). It reflects the elastic properties of the material when
subjected to force, indicating whether the material can return to its original
shape after the external force is removed. A higher Young’s modulus indi-
cates a stiffer material with less deformation ability under external forces;
conversely, a lowerYoung’smodulus implies that thematerial ismoreprone
to elastic deformation.

These metrics easily bring graphene to mind, and indeed, the reality
alignswith this association. In the realm of photodetectors, XuetaoGan and
colleagues created a graphene photodetector doped with metal, exhibiting
high responsivity, speed, and broad spectral bandwidth simultaneously101.
The detector’s photoresponsivity exceeds 0.1 AW−1. Notably, the detector
shows a nearly uniform response in the 1450–1590 nm wavelength range.
XiaWan and others proposed a self-powered, high-performance graphene-
enhanced ultraviolet silicon Schottky photodetector102. Leveraging gra-
phene’s unique ultraviolet absorption characteristics, they elevated the
internal quantum efficiency of the sensor to over 100%. In the near-
ultraviolet and mid-ultraviolet spectral regions, the designed ultraviolet
photodetector demonstrated high photoresponsivity (0.2 AW−1), fast time

response (5 ns), and a high detectivity (1.6 × 1013 Jones) under zero bias
(self-powered) mode, maintaining stable operation two years after fabri-
cation. In the realm of flexible electronics, graphene finds widespread
application in flexible logic devices103, flexible tactile sensors104, and bionic
devices105.

Despite exhibiting excellent performance in many aspects, graphene
still has some drawbacks. Firstly, graphene is a zero-bandgap material,
implying that there is no noticeable bandgap in its energy band structure. In
photodetectors,materials typicallyneed tohave a certainbandgap to achieve
controllable photoresponse. Other two-dimensional materials, such as
transition metal dichalcogenides (TMDCs), often have tunable bandgaps,
making them more suitable for use in optoelectronic devices. Secondly,
graphene’s absorptionof visible light isweaker than someothermaterials. In
certain application scenarios, especially in optoelectronic devices that
require a broader spectrum of light absorption, other materials may have
advantages.

Researchers quickly turned their attention to other two-dimensional
materials similar to graphene. They were able to achieve the performance
metrics mentioned earlier, making it possible to scale the proportion of
electronic circuits106. They also hold immense potential for integration with
silicon-based read-out/control electronic devices107. In addition to graphene,
typical two-dimensionalmaterials include transitionmetal compounds and
perovskites. This article focuses on introducing fourmaterials:WSe2,MoS2,
CsPbBr3, and CsPbI3. We briefly summarized the work of some photo-
detectors based on the above-mentioned two-dimensional materials in
Table 3 for reference 102,108–116 Additionally, ferroelectric materials have also
received significant attention from researchers due to their unique physical
properties. In this article, ferroelectric materials will be introduced in two
forms: solely using their own properties and in combination with other
materials. The citation order below corresponds to the order in Fig. 8.

Photosensitive materials
WSe2. Photodetectors based on WSe2 exhibit a high light-to-dark current
ratio of up to 106. These photodetectors have short response times and
demonstrate long-term stability and reproducibility. The selective laser
doping method used in their fabrication shows promising prospects for
future electronic applications117. Wang et al.118 designed an image sensor
based on a WSe2/h-BN/Al2O3 heterostructure, as shown in Fig. 8. By
applying different voltages to the gate, theywere able tomimic the biological
functionality of retinal cells (Fig. 9a). They fabricated an array of on-
photodetectors (Top-left corner of Fig. 9a) and off-photodetectors (Bottom-
left corner of Fig. 9a), resulting in an analog receptive field (RF, Top-right
cornerof Fig. 9a). RFof bipolar cells plays a crucial role in early processing of
visual information by extracting key features to accelerate visual perception
in the brain. This indicates that the visual sensor itself can serve as aCNNfor
image recognition. As a demonstration, they used the letter “N” as the
original image (Bottom-right corner of Fig. 9a) and mapped the Difference
of Gaussians (DoG) kernel onto the visual sensor while recording the

Table 3 | Performance comparison of photodetectors fabricated with different materials

Type Band gap (eV) Young’s modulus (GPa) Photoresponsivity (A/W) Detectivity (Jones) Response time References

Graphene 0 1000 0.2 1.6 × 1013 5 ns 102

WSe2 1.7 240 7 1014 10μs 108

WSe2 1.7 240 0.08 1011 16μs 109

WSe2 1.7 240 0.1 - 50μs 110

MoS2 1.8 270 0.21 1013 3μs 111

MoS2 1.8 270 2200 - - 112

MoS2 1.8 270 880 - 4 s/9 s 113

CsPbBr3 2.3 - 0.18 6.1 × 1010 1.0ms/1.8ms 114

CsPbBr3 2.3 - 2.7 - 0.35ms/1.26ms 115

CsPbI3 1.7–1.8 - 1.84 × 103 9.99 × 1013 - 116
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variance of Ioutput in the array and reconstructing the current variance data,
resulting in the experimental and simulated letter “N”. It can be observed
that the experimental results align well with the simulated results.

Seo et al.119 integrated synaptic devices with optical sensor devices to
create anOptic-Neural Synaptic (ONS)device.They furtherdemonstrated a
WSe2-based consistent structureOpticalNeuralNetwork (ONN). TheONS

device exhibits different synaptic dynamics based on light conditions (red,
green, blue) to simulate the color mixing pattern recognition function in
human vision. Figure 8 shows the synaptic device based on h-BN/WSe2
integrated with a photodetector, as well as a simplified circuit and a com-
parison with the human visual system. Figure 9b displays the long-term
potentiation and inhibition curves under dark conditions and illumination

Fig. 8 | Frontier materials different from silicon. Reproduced under the terms of
CCBY-NC4.0 license118. Copyright 2020, AAAS. Reproduced under the terms of CC
BY 4.0 license119. Copyright 2018, Springer Nature. Reproduced with permission89.
Copyright 2020, Springer Nature. Reproduced according to CC BY-NC 4.0 license
terms122. Copyright 2020, Springer Nature. Reproduced according to CC BY-NC 4.0
license terms123. Copyright 2020, Springer Nature. Reproduced with permission21.

Copyright 2022, Springer Nature. Reproduced according to CC BY-NC 4.0 license
terms11. Copyright 2021, Springer Nature. Reproduced with permission126. Copy-
right 2016, Wiley-VCH. Reproduced according to CC BY-NC 4.0 license terms127.
Copyright 2023, Springer Nature. Reproduced with permission128. Copyright 2019,
Wiley-VCH. Reproduced with permission132. Copyright 2021, Wiley-VCH.
Reproduced with permission133. Copyright 2018, Wiley-VCH.
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with red, green, and blue lights. This feature enables the development of
color image recognition algorithms. Testing showed that theONNachieved
approximately 60%higher recognition rate formixed-color digits compared
to the conventional Neural Network (NN).

Mennel and colleagues developed a sensor array containing an ANN
using photodiodes89. The array consists of N pixels, with each pixel com-
prising M sub-pixels, where each sub-pixel corresponds to a photodiode.

The photodiodes operate under short-circuit conditions, and various types
ofANNs for imageprocessing canbe realizedbydesigningdifferentweights.
This network can perceive and process optical images in near real-time. A
schematic diagram of an individual photodiode is shown in Fig. 8, and the
integrated configuration is depicted in Fig. 9c. This type of visual sensor
device holds the potential for large-scale integration and offers a variety of
algorithms for ultra-fast computer vision applications. As mentioned

Fig. 9 | Non-von Neumann neuromorphic vision sensor based on WSe2. a The
emulation of the biological functions of retinal cells by the device, the circuitry based
on this for simulating receptive fields, and the image recognition results. Reproduced
under the terms of CC BY-NC 4.0 license118. Copyright 2020, AAAS. b The pho-
tocurrents of the device under different lighting conditions, along with the colour

image recognition algorithmbased on this and the experimental results. Reproduced
under the terms of CC BY 4.0 license119. Copyright 2018, Springer Nature. c The
sensor array and its encoding-decoding functionality implementation. Reproduced
with permission89. Copyright 2020, Springer Nature.
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earlier, they demonstrated both a classifier (similar to the one on the left in
Fig. 4c) and an encoding-decoding unit.

MoS2. MoS2, as a soft two-dimensional nanomaterial, is considered one
of the candidates for future optoelectronic devices. Unlike graphene,
which lacks a bandgap, monolayer MoS2 has a direct bandgap of 1.8 eV
and exhibits a high on/off current ratio (ION/IOFF > 10

8)120. Compared to
WSe2, MoS2 also has a higher on/off current ratio by two orders of
magnitude. Furthermore, its excellent flexibility and ultrathin thickness
contribute to the fabrication of flexible optoelectronic devices121.

In 2017, Changsoon Choi developed a flexible optoelectronic device
usingMoS2 andgraphene (Fig. 8)

122. The device exhibited infraredblindness
and successfully captured pixelated optical signals. The effectiveness of the
proposed soft material and ultrathin device design was validated through

theoreticalmodeling andfinite element analysis. They further implanted the
device, called a soft retinal implant, onto the retina of mice, and after
9 weeks, the soft retinal implant array maintained its excellent mechanical
strain and light response capabilities.

Based on this foundation, in 2020, using the delayed response char-
acteristics of MoS2’s light sensitivity and drawing inspiration from human
memory functions, Changsoon Choi developed a curved neuromorphic
image sensor array that mimics the simultaneous perception and pre-
processing of the retinal surface structure and edge sensing123. After
receiving a single pulse of light stimulation, the array’s output current
undergoes a mutation and gradually decreases. If subjected to continuous
light pulse stimulation, the output current will increase in a suddenmanner.
When the light stimulation is stopped, the array’s output current slowly
returns to its initial state. During the recovery process, if the array continues

Fig. 10 | Non-von Neumann neuromorphic vision sensor based on MoS2. a The
light response of an individual transistor, device fabrication methods, and the
response and recovery processes at different positions of the device to stimuli.
Reproduced according to CC BY-NC 4.0 license terms123. Copyright 2020, Springer
Nature. b Schematic diagram of the device for image acquisition and preprocessing

of neuromorphic data, along with normalized photocurrent measurements at each
pixel. Reproduced according to CC BY-NC 4.0 license terms123. Copyright 2020,
Springer Nature. c Dark adaptation and light adaptation of the human retina.
Weber’s law is used to describe this process and the emulation of this process by
MoS2. Reproduced with permission21. Copyright 2022, Springer Nature.
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to receive light stimulation, the output current will increase again based on
the magnitude of the remaining photocurrent from the previous cycle (Fig.
10a). This characteristic closely resembles the human process of memory
and forgetting. If we analogize the pulse light signals and the array’s output
current to the process of human visual perception and sensation, this array
simulates the visual andmemory characteristics of humans. In other words,
the larger the intensity of the light pulse (deeper visual impression) and the
higher the frequency of the light pulse (more visual occurrences), the greater
the output current of the array (deeper memory). Figure 10b illustrates the
concept of image acquisition and neuromorphic preprocessing using the
transistor array. A series of continuous noise optical inputs induceweighted
photocurrents in each pixel, and the preprocessed image can be obtained by
simple mapping of the final photocurrents.

In 2022, FuyouLiao reported the adaptability ofmolybdenumdisulfide
to changes in light intensity21. As described in Chapter 2, the human visual
system uses two different systems in bright and dark environments, and
when transitioning between bright and dark scenes, the visual system
switches between them (Fig. 10c). Weber’s law can be used to describe this
characteristic. The similarity between the photocurrent changes in molyb-
denum disulfide during the transition between bright and dark scenes, and
Weber’s law further demonstrates the feasibility of using molybdenum
disulfide as amaterial to mimic the human visual system and develop novel
neuromorphic vision sensors.

CsPbBr3. Perovskite is a class of compounds with a distinctive structure,
characterizedby the chemical formulaABX3. In this formula, “A” represents
a larger cation, “B” denotes a medium-sized cation, and “X” signifies a
smaller anion. Perovskite quantum dots, composed of perovskite materials,
typically exhibit different optical and electrical properties from traditional
perovskites due to their nano-sized dimensions124,125. This article will use
these two materials as examples to explore the applications of perovskite-
like materials in non-von Neumann neuromorphic vision sensors.

Zhu et al.11 developed a foldable and highly sensitive optoelectronic
sensor array for neural-morphic visual systems by incorporating perovskite
quantumdots into carbonnanotubes.The array consistedof 1024pixels and
exhibited high integration density, ultra-sensitive detection of visible light,
and capabilities for image sensing and biological information processing.
The structure of an individual sensor is shown inFig. 8. The device exploited
the energy band difference at the CNT/CsPbBr3-QD interface (Fig. 11a). Its
light responsivity is illustrated in Fig. 9f. In their work, the optoelectronic
sensor served as an artificial photoreceptor and a biological synapse, directly
responding to optical stimulation and performing preprocessing functions
with light-tunable synaptic plasticity. Moreover, the device’s response to
stimuli of different frequencies and intensities mimicked the process of the
human visual system and memory functions in transitioning from unfa-
miliar to familiar objects.

CsPbBr3 can also be assembled into large-area, crack-free, high-quality
thin films through simple solution processes (such as inkjet printing or roll-
to-roll methods), which is beneficial for the realization of flexible and
ultrathin optoelectronic devices. Leveraging this feature, devices prepared
using CsPbBr3 not only exhibit excellent optoelectronic performance when
bent but also maintain stable responses even after multiple cyclic tests (Fig.
11b)126.

CsPbI3. Zhenghao Long and colleagues used CsPbI3 to fabricate a hemi-
spherical nanowire array retina with neuromorphic and processing
capabilities127. They achieved a novel adaptive optical biomimetic eye by
integrating it with an artificial crystal lens and a liquid crystal-based elec-
tronic iris (Fig. 11c). Due to its hybrid nanostructure, the device exhibits
color-dependent bidirectional synaptic light response, addressing the pre-
vious limitations in color discrimination ability in research. They used the
device for noise filtering and image reconstruction of images withGaussian
noise (SNR of 60%) and pattern recognition through the same CNN.
Experimental results showed that after processingwith this device, theCNN
recognition accuracy improved by ~880% (Fig. 11d).

Computational materials. Ferroelectric materials can undergo polar-
ization under the influence of an applied electric field, and this polarized
state can bemaintained until stimulated by a reverse electric field or other
external conditions. This property indicates that ferroelectric materials
have the capability to be used in non-volatile memory devices. Ferro-
electric materials typically do not have a single chemical formula since
they are a collection ofmaterials with various chemical compositions and
crystal structures.

Ferroelectric optoelectronic sensors utilize polarization to adjust their
light response, enabling the creation of gateless, self-powered, and recon-
figurable optoelectronic sensors, as mentioned earlier. What’s even more
exciting is that polarization switching can not only adjust the magnitude of
the light response but also reverse the sign of the light response90. This
reduces the hardware cost of non-von Neumann computing architectures
and enhances the overall device integration.

Neuromorphiccomputing. Jiankun Li fabricated a reproducible ultra-
thin ferroelectric domain switch, using ferroelectric tunnel junctions
(FJTs), for high-performance neuromorphic computing128. The FJTs
device features a metal/ferroelectric/semiconductor structure, capable of
exhibiting both short-term and long-term plasticity simultaneously (Fig.
8). To demonstrate this, they created a 5 × 5 artificial synaptic array to
memorize the letters “I”, “O”, and “P”(Fig. 12a). The array exhibited STM
for letters “I” and “P” and LTM for the letter “O.” From the experimental
results, it is evident that the letter “I” is quickly forgotten after memor-
ization, while the letter “O” can maintain its memorized state for an
extended period. Furthermore, during LTM tasks, the array could still
perform STM tasks, and the forgetting of STM did not affect LTM.

Multimaterial synergy. As mentioned earlier, artificial synapses based
on FTJs can simultaneously exhibit excellent long-term and STM char-
acteristics. Additionally, there is experimental evidence showing that
synapse arrays based on FTJs possess predictable autonomous learning
and recognition patterns, contributing to the realization of unsupervised
learning in SNNs (Spiking Neural Networks)129. However, the complex
fabrication process hinders further development of these arrays130,131.
Therefore, ferroelectric materials often appear as gate electrodes in
transistors, working in conjunction with other materials to achieve high-
performance sensor arrays.

Mengge Yan, inspired by associative memory in the brain, has pro-
posed a ferroelectric synaptic transistor network132. It can recall an entire set
of information based on partial data. The device utilizes MoS2 for the
channel and ferroelectric materials for the gate dielectric. By establishing
new connections between neurons, it can replicate the associative
mechanisms of the brain (Fig. 12b). Through circuit design, it can associate
items with the places they should appear. What’s more, with a more com-
plex neural network, this device can also perform associations from
incomplete pixels to complete ones.

BoboTian alsousingMoS2 as the channel, havedevelopeda low-power
organic triple-layer memristor based on a ferroelectric polymer gate
insulator133. This memristor exhibits >1000 intermediate states in its con-
ductivity,with amaximumswitching ratio of up to 104.This providesample
conditions for the precise updating of neural network weights.

Figure 12c reflects the channel conductivity obtained partially through
different gate pulses. The device’s stability performance characterization is
also presented in the figure. Although the article does not involve work
related to visual stimuli, the presence of MoS2 suggests that it is possible to
fabricate this device into a neuromorphic visual sensor.

Fabrication of curved sensor arrays
Traditional machine vision imaging systems are generally composed of
planar sensor arrays. However, achieving a breakthrough from a two-
dimensional plane to a three-dimensional space involves upgrading the
planar array to a curved retina-like array,whichhelps reduce the complexity
of theoptical lensmodule andenables the entiredevice tohave a smaller size.
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Fig. 11 | Non-von Neumann Neuromorphic vision sensor based on perovskite.
a Band diagrams of the device in the off state (top) and on state (bottom). Memory
characteristics under conditions of constant light intensity with varying pulse
numbers and constant pulse numbers with varying light intensity. Reproduced
according to CC BY-NC 4.0 license terms11. Copyright 2021, Springer Nature.

b Stability of the device under different bending conditions and multiple bending
cycles. Reproduced with permission126. Copyright 2016, Wiley-VCH. c Conceptual
diagram of the device and its response to red, green, and blue colors. d Filtering
function of the device and validation of its effectiveness. Reproduced according to
CC BY-NC 4.0 license terms127. Copyright 2023, Springer Nature.
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In the early stages, the curved structure was typically made by pre-
fabricating the array on a plane and then bending it. This could lead to
collisions and compressions of individual photodetectors on the substrate,
potentially damaging the overall circuit structure. To address this drawback,
Young Min Song et al.134 employed finite element analysis. They simulated
the convex planar compound eyes of arthropods to create a curved vision
sensor (Fig. 13a). However, it also has some notable disadvantages: in terms
of imaging performance alone, the system’s resolution is determined by the
number of small eyes, making its overall imaging level only comparable to
that of mammals. Moreover, the device is still based on silicon and thus has
limitations in terms of stability.

The development of electronic skin holds promising prospects for
overcoming the challenges faced by vision sensor arrays. Electronic skin is a
device inspired by human skin, capable of emulating the stretchability and
self-healing properties of human skin135–139. Additionally, due to its ability to
interactwith humans in various scenarios, the biocompatibility of electronic
skin is also crucial140–142. Now, electronic skin has been widely applied in
various aspects such as simulating tactile perception, proximity sensing,
pain perception, temperature sensing, and so on143–148. In terms of signal
processing, the field of electronic skin also involves neuromorphic com-
puting based on artificial synapses to facilitate extensive data interaction in
robotics and prosthetic technologies149–153. For novel neuromorphic vision
sensors, in order to achieve device sensitivity, selectivity, stability, and
scalability (4 S)154, the fabrication approach of electronic skin holds sig-
nificant relevance and valuable insights. It should also be noted that MoS2
has applications in both optoelectronic conversion and neuromorphic
computing using artificial synapses, indicating a wide range of prospects for
the application of MoS2.

In the process of electronic skin fabrication, two common approa-
ches are employed to ensure device stability: geometric pattern design
and the use of inherently stretchable materials. Geometric pattern design
involves creating wire or electrode structures in shapes that facilitate
stretchability, such as serpentine structures155–157, to prevent damage to
the device during stretching. On the other hand, using inherently
stretchable materials involves embedding sensors into a flexible sub-
strate. When the sensor array is subsequently stretched or folded, the
flexible substrate demonstrates superior performance compared to rigid
substrates158–160. In 2013, Chaoyi Yan developed a fully embedded
stretchable optoelectronic detector array using PDMS as the substrate161.
The fabrication process of this array is straightforward, as nanowires are
transferred to PDMS by vacuum suction (Fig. 13b). The optoelectronic
response current curves of the sensor array exhibit nearly identical trends
across strains ranging from 0% to 100%. It is worth noting that in the
mentioned study, individual photodetectors were made of silver nano-
wires and zinc oxide. This highlights the early efforts of researchers to
overcome the limitations of silicon by exploring new materials that are
both stretchable and exhibit good optoelectronic properties.

Subsequently, other researchers have conducted studies on enhancing
light responsivity during stretching. Traditional flexible processing techni-
ques can be classified into two types: the first type involves using an elas-
tomeric substrate, which is compatible but typically has a rough surface, is
hydrophobic, and is susceptible to organic solvents. The second type
involves transferring themixed systemonto an elastomeric substrate using a
carrier material (PMMA). However, the removal of the carrier material still
inevitably requires the use of organic solvents. Additionally, surface
adsorbates are often removed, thus compromising the established interface
functionality. In the process of PMMA-supported transfer, cracks and
wrinkles are unavoidably introduced. Shuyan Qi et al.162 discovered that for
MoS2, its poor light responsivity on stretchable substrates is attributed to the
inherent low charge carrier density and numerous scattering centers on the
substrate. To address this issue, it is necessary to use doping agents with
strong air stability on MoS2 while also improving the surface roughness,
hydrophobicity, and sensitivity to organic solvents of the polymer. They
combined n-type dopant N-DMBI with MoS2, resulting in a stretchable,
stable, and highly light-responsive optoelectronic detector. Experimental

results demonstrated that through SEBS encapsulation, there was a ten-
dency for electrons to transfer from N-DMBI to MoS2, even after exposure
to air for 20 days. Consequently, the charge carrier density significantly
increased, enhancing the efficiency of photo-generated electron-hole
separation and significantly improving the light responsivity of the MoS2-
based optoelectronic detector. Moreover, the sensor maintained high per-
formance even after being stretched 100 times within the stretching limit,
exhibiting good stretch durability (Fig. 14a).

However, thismethod still has limitations. The improvementmethods
they used can only guarantee effectiveness for the material MoS2. For other
materials, itmay be necessary to seek newdoping agents. In order to address
this issue more effectively, Weichen Wang et al.163 made structural
improvements by adding an Elastiff layer between the substrate and the
transistor (Fig. 14b). Essentially, this is an elastic layer with the same
composition as the substrate but with a different content. By changing the
cross-linking density of the elastomer, this method enhances the stiffness of
the local region, thereby reducing strain in the active region of the device.
Experimental data indicate that when stretched to 100% strain, the per-
formance of the transistor does not change by more than 5%. A significant
improvement in performance can be observed compared to flexible devices
without the Elastiff layer.

Integrated applications
A complete bionic eye system is one of the ultimate goals of neuromorphic
vision sensors. The performance of a bionic eye system can also intuitively
assess the performance of neuromorphic vision sensors. Figure 15 shows
two existing bionic eye systems19,164. In terms of material selection, both of
them utilized perovskite nanowires and MoS2 for photodetection. They
both chose indium coordination to enhance electron migration by
exploiting the difference in the Fermi energy level of materials, thereby
achieving higher photocurrents. As for the curved surface fabrication step,
their methods are quite similar, with only a difference in sequence: Yunxia
Hu synthesized MoS2 on a hemispherical quartz substrate using the CVD
method, followed by the deposition of indium (In) onto theMoS2filmusing
aPDMSmask toobtain the curved surface. LeileiGu, on theother hand,first
fabricatedahemispherical porous aluminumoxidemembrane (PAM), then
employed the CVD method to grow a high-density perovskite nanowire
array within the PAM, and subsequently evaporated on the backside of the
PAM. Both of these biomimetic phototransductionmodules can respond to
light in a curved form, as demonstrated in the specific experimental results
shown in Fig. 15.

Challenges and perspective
Currently, neuromorphic vision sensors are rapidly advancing, and various
research achievements continue to emerge.However, on the otherhand, the
abundance of research outcomes also signifies disorder, as the field of
sensor-integrated, storage-capable, and computationally-enabled neural-
inspired vision sensors is still in its early stages, lacking a comprehensive
visual system framework and standards. Therefore, given the current cir-
cumstances, machine vision systems still face numerous challenges to
achieve or surpass human visual systems.

Research challenges
Presently, research related to novel neuromorphic vision sensors faces three
main challenges:

Research in neuroscience. To further develop novel neuromorphic
vision sensors, breakthroughs in neuroscience and neuromorphic
research are crucial. This involves understanding and mimicking the
perceptual and processing mechanisms of the human visual system. The
human retinal ganglion cells, numbering at least 30, encode different
attributes within the same visual scene. However, a complete under-
standing of all ganglion cells is still lacking. Many algorithms are derived
from human physiological mechanisms; therefore, a deeper under-
standing of the human visual system is advantageous for more advanced
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algorithmic innovations. Additionally, the integration of sensing and
preprocessing modules, along with the concept of “storage-computation
integration,” is based on the imitation of the human visual system. With
progress in neuroscience and neuromorphic research, it becomes pos-
sible to unleash the full potential of neuromorphic vision sensors, paving
the way for more advanced and intelligent visual perception systems.

Research in materials science. From Table 3, it can be seen that there
is a significant variation in the performance of devices made from the
same material. This is because the fabrication process of devices often

involves doping with other elements or impurities to alter thematerial’s
conductivity. The structure of the device can also have a certain impact
on its optical performance. Improving one aspect of performance may
lead to a decrease in other aspects. Therefore, based on existing
materials, it is necessary to make trade-offs for different scenarios and
requirements.

In this review, we introduced two-dimensional materials because
transistor arrays made from these materials can meet the requirements in
both optical and mechanical performance. Whether there are other mate-
rials that are more excellent than two-dimensional materials in these two

Fig. 12 | Computational materials for neuromorphic vision sensors. a Long and
short-term memory characteristics of ferroelectric synapse devices. Letters “I” and
“P” represent short-term memory, while letter “O” represents long-term memory.
Reproduced with permission128. Copyright 2019, Wiley-VCH. b Associative

memory characteristics of ferroelectric synapse devices. Reproduced with
permission132. Copyright 2021, Wiley-VCH. c Partial channel conductance of fer-
roelectric memristor devices; device stability before and after full polarization
switching. Reproduced with permission133. Copyright 2018, Wiley-VCH.
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aspects is still a question worth exploring. This can help us pursue higher
performance inmachinevision systems.At the same time, achieving tunable
bandgaps in functional optoelectronic devices for existing two-dimensional
materials is a challenging issue that needs urgent resolution. Additionally,
the overall performance of the device is also influenced by other factors such
as structure, integration processes, and packaging processes. Most of the
photodetectors introduced in this paper were measured in relatively stable
laboratory environments, and some even require the use of a vacuum
environment. Such conditions are impractical in complex real-world
situations. Therefore, it is a significant challenge to ensure that the arrays
mentioned in this paper maintain excellent photoelectric response in actual
environments, including more adverse conditions.

Research in biological science. After achieving high-performance
visual sensors, expanding their applications is also crucial. The flexibility
of sensors, allowing them to bend, reduces shear forces at the machine-
cell interface, making them promising for wearable devices. In this
context, the biocompatibility of the devices becomes paramount. For
external wearable devices, it is essential to ensure long-termwear without
causing skin redness, inflammation, and other issues due to irritation.
This is closely related to the substrate, electrodes, Photonic Materials,
packaging processes, and other aspects of visual sensors. For implantable
devices, a more comprehensive set of factors needs to be considered. It is
not only essential to take into account issues related to cell compatibility
(avoiding necrosis of surrounding cells or tissues), immune compatibility

(preventing excessive activation of the immune system), and biode-
gradability (some devices may need to be absorbed after a certain period
or removed due to decreased performance, following the “minimally
invasive principle”), but also mechanical stability (implantable devices
should have sufficient mechanical strength and stability to withstand
physiological pressures and movements), performance stability (long-
term stable operation), detectability (some implantable devicesmay need
monitoring functions for real-time physiological parametermonitoring),
and other practical performance requirements arising from differences
between the internal and external environments of the human body.

Research related to SNNs. Research on SNNs has gained significant
attention as the third generation of neural networks, relies on the
transmission of neural spikes for information processing. SNNs bear a
closer resemblance to biological neural networks compared to the second
generation of neural networks. Hardware acceleration of SNNs, parti-
cularly using FPGAs, can achieve speeds hundreds of times faster than
software-based acceleration methods. Consequently, FPGA-based SNN
circuit designs have garnered increasing interest in recent years. How-
ever, SNNs still face notable shortcomings in various aspects, including
neural models, training algorithms, programming frameworks, and
datasets. Overcoming these limitations and making progress in these
areas would contribute to the development of research on complex
computing systems that emulate the human brain. This, in turn, would
enhance the overall performance of machine vision systems based on

Fig. 13 | Early Curved visual sensor arrays and flexible electronics. a Insect-
inspired convex planar compound eye. Limitations in imaging performance and
device stability. Reproduced with permission134. Copyright 2013, Springer Nature.

b Simple fabrication methods for flexible electronics and characterization of
stretchable, foldable, and stability properties. Reproduced with permission161.
Copyright 2013, Wiley-VCH.
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Fig. 14 | Exploration of flexible electronics technology. a Improved doping agent-
based fabrication of stretchable, stable, and highly responsive photodetectors using
MoS2. Reproduced with permission162. Copyright 2022, Springer Nature. b Elastiff

layer and its stretching state. Performance comparison of flexible electronics with
and without the Elastiff layer. Reproduced with permission163. Copyright 2021,
Springer Nature.
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Fig. 15 | Two electronic biomimetic eye systems. a Schematic illustrating the
emulation of the human visual system and the Fermi level diagram of the materials
used in the two vision systems. b Fabrication process and light response of System 1

(left in Fig. 15a). Reproduced with permission164. Copyright 2021, Wiley-VCH.
c Fabrication process of System 2 (right in Fig. 15a) and image recognition tech-
nology. Reproduced with permission19. Copyright 2020, Springer Nature.
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neuromorphic vision sensors. By advancing SNN research in the afore-
mentioned aspects, we can pave the way for the development of
sophisticated computational systems that simulate the human brain,
ultimately improving the performance of machine vision systems based
on neuromorphic vision sensors.

Establishment of new industrial processes and evaluation system.
In the present era, we have reached the limitations ofMoore’s Law, and
traditional semiconductormaterial, silicon, faces constraints due to its
inherent physical properties. It has limitations in terms of flexibility,
optical sensitivity, and spectral range, which hinder the further
development of machine vision systems. While there have been
numerous research efforts showcasing promising alternative optoe-
lectronic semiconductor materials to replace silicon, there still exists a
significant gap in terms of overall fabrication processes compared to
silicon. Therefore, establishing a comprehensive industrial process
and evaluation system is crucial. By addressing these aspects and
establishing a comprehensive industrial process and evaluation sys-
tem, the development and adoption of new optoelectronic semi-
conductor materials can be accelerated, fostering the advancement of
machine vision systems and overcoming the limitations posed by
traditional silicon-based technology.

Future directions
Higher-performance “sense-memory-compute integrated” chips.
Computational neuroscience with neural morphology computation
exhibits significant advantages in terms of computational efficiency and
speed. Therefore, it is well-suited for processing visual data characterized
by large data volumes and diverse data types. In fields that require high
real-time performance, accuracy, and robustness, such as autonomous
driving and UAV visual navigation, the concept of “sense-memory-
compute integrated” chips can fully leverage its strengths. It holds the
potential to provide a superior visual information processing approach
compared to traditional machine vision systems.

Retinal prosthesis. The existing retinal prostheses are also based on
silicon-based optoelectronic applications. Therefore, they face chal-
lenges related to the limited light sensitivity range, brittleness, and high
hardness of silicon. When applied to retinal prostheses, there are issues
such as a limited color perception range, susceptibility to mechanical
deformation during long-term use, and the inability to implant larger
areas of the retina prosthesis due to technological limitations. The
concept of neuromorphic vision sensors, which aims to mimic the
biological retina, along with the use of new materials with a broader
light sensitivity range and flexible sensor arrays that can be folded and
implanted into the eye, holds the potential to replace silicon-based
retinal prostheses and significantly improve postoperative visual
experience for patients. In fact, the feasibility of this development
direction has been preliminarily demonstrated in the experiment
mentioned in Ref. 122.

Integrated storage and computing in multi-system. The information
preprocessed by the human retina not only provides input signals to the
visual cortex but also serves as input signals for other parts. For
example, under different light intensities, the collaborative action
between the retina and the autonomic nervous system can cause the
pupils to dilate or constrict. This implies that the same set of infor-
mation can be used by different systems, adapting collectively to the
external environment with the coordination of multiple systems.
Moreover, the human body is a complex system. In addition to visual
perception, external information is received through various sensory
modalities such as touch, smell, and hearing. Achieving a higher sen-
sitivity to perceive the external world requires the collective interaction
of multiple modalities. Multimodal fusion not only enhances the
robustness of the system but also improves its ability to distinguish

similar stimuli. For humanoid robots, especially in the context of
human-machine interaction,multimodal perception has greater vitality
than unimodal perception. However, facing such a vast amount of data,
the challenges mentioned in the article regarding traditional computer
systems become more apparent. “Storage-Compute Integration” is an
excellent solution to address this challenge.

Data availability
All the data are available within the article or available from the authors
upon reasonable request.
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