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Reliable connections of electrical components embody a crucial topic in the microelectronics and
power semiconductor industry. This study utilises 3D non-destructive X-ray tomography and
specifically developed machine learning (ML-) algorithms to statistically investigate crack initiation
and propagation in SAC305-Bi solder balls upon thermal cycling on board (TCoB). We quantitatively
segment fatigue cracks and flux pores from 3D X-ray tomography data utilising a multi-level ML-
workflow incorporating a 3D U-Net model. The data reveals that intergranular fatigue cracking is the
predominant failure mechanism during TCoB and that dynamic recrystallisation precedes crack
initiation. Moreover, we find that fatigue cracks are initiated at surface notches, flux pores and printed
circuit board-metallisation intrusions. The work provides important insights regarding the underlying
microstructural and mechanical mechanisms for recrystallisation and cracking, uniting the aspects of
big-data analysis with ML-algorithms and in-depth understanding about the underlying materials
science.

The reliable connection of electrical components embodies a crucial topic in
microelectronics and the power semiconductor industry. Hence, the
intactness of a solder ball is crucial for the lifetime of the device and its
functionality. The fundamental understanding of degradationmechanisms,
in particular formore sustainablePb-free solders remains a vital challenge in
the field of materials science1–5. Solder balls serve as both electrical and
thermal connections between the chip- and printed circuit board (PCB-)
metallisations. Tin (Sn-) based solder alloys have largely replaced lead-based
alloys in power- and microelectronics due to growing health and environ-
mental concerns6. Sn – 3.0 wt.% Ag – 0.5 wt.% Cu (SAC305) is one of the
most promising Sn-based solder alloys. However, conventional SAC solder
balls can already exhibit microstructural degradation in the as-reflowed
condition7–9. Flux pores may be formed during reflow due to outgassing of
flux residues. These gasses can remain trapped within the solder after
solidification and form spherical pores8,9.Moreover, the solder ballmay also
experience thermomechanical fatigue during service10,11. In operation, the
current flow leads to resistive heating and further to multiple thermal
loading when the device is repeatedly turned on and off. Mechanical stress
emerges in the component due to the underlying coefficient of thermal
expansion (CTE-)mismatches, originating from themultiplematerialswith
various CTEs present in the device11–13. The SAC305 solder ball represents a

mechanical weak spot within the device. Here, most of the generated
deformation occurs due the low hardness of the β-Sn matrix of approxi-
mately 0.1 GPa14. The plastic strain thereby introduced into the solder
material may lead to recovery, polygonization and recrystallisation15.
Consequently, the initially single- or few-grained solder balls15–17 undergo
grain-refinement in highly strained areas. These highly strained areas are
located in the proximity of the interfaces to the chip- and PCB-substrates,
whereat shear strain is the predominant type of strain induced11. The new
grain boundaries that are formed during recrystallisation in those high-
strain areas serve as preferred crack propagation sites10,11,15,18. As a result,
these intergranular fatigue cracks increase the thermal as well as the elec-
trical solder resistivity and thereby impair the device’s functionality and its
lifetime11,12.

The use of Bismuth (Bi) as an alloying element shows high potential to
improve the thermo-mechanical stability of the SAC solder. The solubility
limit of Bi in the β-Sn matrix of SAC-alloys is assumed to be around
2.5 wt.%19. Accordingly, when less than 2 wt.% Bi is added, it acts as solid
solution strengthener in the β-Sn matrix17,20. As a solid solution strength-
ener, Bi elevates the yield stress of the solder14,17,20 and thereby retards
dynamic recrystallisation and the formation of new grain boundaries, i.e.
reducing crack propagation sites. The utilisation of SAC305-Bi-alloys
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represents a very promising approach to diminish microstructural degra-
dation and prolong the long-term fatigue stability of solder balls. A crucial
component for the assessment of the relation between microstructural
degradation and functionality is the need for characterisation of each solder
ball volume on the ball grid array (BGA) in a statistical manner. Assessing
entire solder ball volumes on BGAs produces large amounts of data which
should be in keeping with the FAIR data principle21.

Nevertheless, the failure assessment of a specific solder ball in complex
BGA-geometries is often tedious, because daisy-chain measurements of
electrical resistivity usually provide only information about the cumulative
resistivity of all, or many, balls on the BGA. Such an approach does not
reveal which particular ball has failed11. Light optical or electronmicroscopy
techniques16,22,23, on the other hand, require sample preparation for each and
every ball and are therefore time-consuming and destructive. Furthermore,
these techniques only give 2D-information of one particular cross-section,
which may not be representative for the fatigue crack propagation in the
solder ball volume. X-ray tomography eliminates these downsides as it
allows non-destructive inspection of entire BGAs and delivers full 3D-
information. Subsequent efficient image analysis is important to retrieve
statistical information from the reconstructed 3D image data.

Image analysis incorporating supervised machine learning (ML) has
proven to be significantly more efficient and accurate than manual feature
segmentation24,25. In addition to the ability of ML-algorithms to process
large amounts of image data, such as the ones produced with X-ray
tomography, efficiently, algorithms are not subjected to volatile data eva-
luation noise as manual evaluation by human beings. Even data inter-
pretation by the same person, and even the same expert, may underlie
significant variability due to a number of day-dependent psychological
factors26. This variability in human judgement may lead to inaccuracies in
data evaluation, which are eliminated when mathematical algorithms are
applied, not to mention the benefit of the possibility for automation. The
development ofML-algorithms for image analysis has been rapidly evolving
in recent years24. Convolutional neural networks (CNNs) have proven
advantageous over manual image analysis, as they are able to build high-
level features from low-level ones, providing accurate and efficient image
recognition, object detection and image segmentation24,25. CNNs have been
increasingly applied to medical and biological image analysis25,27 and more
recently, their use for image segmentation in materials science has been on
the rise28–36. In microelectronics failure and reliability analysis, some work
has been previously done on X-ray tomography data37,38. However, to our
knowledge, the algorithms developed in these previous studies focus on the
detection of flux pores. Although the CNN developed in37 is trained on 3D
data, its output is limited on a binary classification of solder balls with and
without flux pores that are classified as “good” and “bad”. On the contrary,
the models developed in38 perform the pore segmentation in two con-
secutive binary 2D segmentation steps: first, object detection of solders is
carried out and subsequently, the pores are detected using the same binary
approach. None of these previous studies apply a full three-dimensional
segmentation to the X-ray tomography image data e.g. by a 3D U-Net
architecture39. Moreover, the previous studies are constrained to image
segmentation usingCNNswithout considering the underlyingmechanisms
for defect-formation and correlations withmicrostructural andmechanical
phenomena in the material. Conversely, the implications for fatigue crack
initiation by the segmented flux pores have not yet been considered. In
short, the connection betweenML-based image segmentation andmaterials
science has not yet been made.

Therefore, our study intends to unite the aspects of statistical fatigue
analysis and the underlying microstructural and stress-related mechanisms
of fatigue crack initiation and propagation in SAC305-Bi solder balls, uti-
lising 3D imaging with 3D ML-based image analysis. We quantitatively
segment fatigue cracks and flux pores from 3D X-ray tomography data
using a multi-level ML-workflow incorporating a 3D U-Net model.
Moreover, we correlate the X-ray tomography data with microstructural
features in the solder balls utilising high resolution field emission scanning
electronmicroscopy (FESEM) and electron backscatter diffraction (EBSD).

Further, we investigate the stress distribution within a solder ball during
thermal cycling on board (TCoB) with finite element method (FEM)
modelling.We draw connections between the simulated stress distribution,
microstructural fatigue in the solder balls, i.e. recrystallisation and fatigue
cracking, and statistical fatigue crack analyses from the ML-workflow. By
bridging the gap between microstructural fatigue and its impact on statis-
tically significant fatigue crack correlations, we elaborate on the importance
of various small-scale mechanisms at play during TCoB. Whereat, we dis-
cuss that the rigorous understanding of the underlying small-scale
mechanisms is crucial to avoid macroscopic failure within the electronic
device. Based on the developed characterisation workflowwe conclude that
intergranular fatigue cracking is the predominant failuremechanismduring
TCoB and that dynamic recrystallisation precedes fatigue cracking. More-
over, we find that fatigue cracks are initiated at three kinds of notches, i.e.
surfacenotches,flux pores andPCB-metallisation intrusions, and that crack
propagation occurs along recrystallised grain boundaries which indicate
copper enrichment.

Results
Visualisation of the BGA using correlated X-ray tomography
and EBSD
The BGA package under investigation consists of solder balls sandwiched
between the chip and PCB. Three SAC305-Bi solder alloys with different
wt.% Bi (0, 1.1, 1.9) are subjected to prolonged thermal cycling in ambient
atmosphere, seemethod section for further details. Here, thermal cycling on
board (TCoB) is chosen to study the effect of mechanical stress on solder
fatigue induced by CTE-mismatch, dynamic recrystallisation and Bi-con-
tent, regardless of electrical current. For each Bi-content, three BGAs with
152 balls each are investigated. After TCoB, the whole BGAs are non-
destructively imaged in three-dimensions utilising X-ray tomography to
gain sufficient statistical yield, see method section. An exemplary 3D
reconstruction from the rawdata of an investigated BGA is shown inFig. 1a.
The voxel size is 5.33 × 5.33 × 5.33 µm3 and volume of interest shows the
entire BGA (yellow), including the chip (blue) and PCB (brown), for all
scans. The convention for the coordinate system used throughout the study
is depicted in Fig. 1. Figure 1b shows the correlated x-y-, x-z- and y-z-views
of the reconstructed3D image fromFig. 1a.Thebird-viewof theBGA layout
is visualised in the x-y-plane, whereas the two cross-sectional views are
shown in the x-z-and y-z-plane indicating the elevation of the solder balls in
z-direction. The locations of the individual intersections are illustrated in
Fig. 1b by dashed lines. Degradation features of the solder balls such as the
flux pores, fatigue cracks as well as the solder ball itself can be qualitatively
identified due to different material densities present. Figure 1c shows an
exemplary cross-sectional image in the x-z-plane for the 0, 1.1, 1.9 wt.% Bi-
contents, alongside correlated FESEM EBSD overlays, see methods and
Supplementary Note 6. The crystallographic information from the EBSD-
maps allows the identification of crack propagation sites. The EBSD-maps
depict the initial single- and few-grained crystal orientations of the indivi-
dual solder balls, as well as the recrystallised areas which are induced by
TCoB. The recrystallised areas aremainly concentrated in the vicinity of the
substrate. Figure 1c qualitatively illustrates that the cracked proportion of
the ball decreases with increasing Bi-content.

ML-based localisation and 3D segmentation of the BGA
For the thorough investigation of the degradation mechanisms present
within the BGA-package, the statistical representativeness is a crucial and
vital factor. Via the X-ray tomography characterisation, a large amount of
volumetric data is generated, as further described in methods. The tomo-
graphic results can image,with a selected volume of interest, the entire BGA
arraywith 152 solder balls in a non-destructivemanner.Manual localisation
and segmentation of each solder ball within the reconstructed three-
dimensional image is of course highly labour-intensive, especially if the
number of BGAs ismore than one. Automation is the keyhere, however not
trivial. Contrast- and brightness-gradients throughout the solder material,
similar grey-values of cracks, pores and background as well as cracks
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propagating through pores and X-ray scattering artefacts at the solder
surfacemake it difficult, if not impossible, to segment the features of interest
merely via grey-value thresholding. To overcome this obstacle, an image
processing workflow is developed utilising ML-algorithms capable of pro-
viding enhanced accuracy and efficiency. Figure 2a illustrates themulti-level
image processing workflow, which consists of a localisation as well as a
segmentation step. First, the localisation of solder balls in the X-ray tomo-
graphy data is performed. A schematic of the model architecture is pre-
sented in Supplementary Fig. 1. Solder ball localisation is done in one x-y-
slice with a sliding window-based binary CNN. The CNN generates
boundingboxes for each solder ball as an output.An exemplary output from
the localisation model is shown in Fig. 2a. The localisation model is trained
onmanually labelled 2D-data, which consists of 100 × 100 pixels2 x-y-plane
clips, either depicting a solder ball or not. Hence, the localisation model
utilises a binary ansatz, which is trained onpositive and negative image data,
see methods for further details. The final training and validation accuracies
for the localisationmodel are summarised inTable 1 and reach 100.00%and
99.25%, respectively. Further details about training, performance and vali-
dation of the ML-localisation model are presented in methods, Supple-
mentary Note 1 and Supplementary Fig. 1, respectively.

After the localisation step, the segmentation of the solder balls is per-
formed. The segmentation process consists of two deep learning 2D and 3D
U-Net architectures. The 2D U-Net model is trained at first utilising the
extracted bounding boxes from the localisation model, see methods and
Supplementary Note 3. The architecture of the 2D U-Net is presented in
Supplementary Fig. 1. A representative 2D U-Net segmentation result is
shown in Fig. 2a for each Bi-content. Since the 2D U-Net performs the

segmentation on one x-z-slice at a time, the outputted x-z-slices need to be
re-assembled into the 3D ball volume for each ball. For the same reason,
without consideration of previous or subsequent x-z-slices, the 2D U-Net
may misclassify or over-segment cracks and pores or under-segment the
Cu-metallisations, see also the evaluated model precision in Table 1 in this
context. Hence, manual label refinement is further performed on the re-
assembled segmentations from the 2D U-Net which are then utilised for
training of the developed 3D U-Net. In order to ensure diversity in the
training data, exemplary balls from each Bi-content are included in the
training. Further details about the training, performance and validation of
the 3D U-Net model are described in methods, Supplementary Fig. 1 and
Supplementary Note 2, respectively.

Figure 2b exemplarily illustrates segmentation results obtained from
the 3D U-Net model for each Bi-content as well as the normalised image
data. The final step concerns the 3D reconstruction of the full BGA, shown
in Fig. 2a, wherein each segmented ball is re-assigned its position according
to the localisation outputs. We highlight the accuracy of the developed 3D
segmentation method in Fig. 2b by comparing the segmentation results for
representative solder balls utilising the 2D and 3D U-Net models. As illu-
strated, an accurate distinction between cracks and pores is not achieved by
the 2DU-Net in non-trivial cases. The superiority of the 3DU-Netmodel is
further highlighted by its ability for a fully automatic segmentation based on
the voxel information, eliminating the need for the re-assembly of 2D
segmentations, as well as its prediction precision on training-set indepen-
dent data. Therein, the 2D U-Net segmentation model achieves a precision
of 76.20%, whereas the 3D U-Net model reaches a precision of 91.90%, see
Table 1. The 3DU-Net segmentation result provides enhanced possibilities

Fig. 1 | Correlated X-ray tomography and EBSD. a Rendered X-ray tomography
image of the entire BGA with the chip (blue), the PCB (brown) and the solder balls
(yellow). b X-ray tomography slice image of the BGA from the reconstructed three-
dimensional raw data, for the x-y- (bird view), x-z- (cross-section 1) and y-z- (cross-
section 2) planes. The locations of the cross-sections 1 and 2 are indicated by view
A-A (red dashed line) and view B-B (green dashed line), respectively. For the

location of the bird view a blue dashed line (0-0) is shown in cross-section (viewA-A
and view B-B). c Correlated cross-sectional X-ray tomography and FESEM EBSD
maps for SAC305 with 0 wt.% Bi, 1.1 wt.% Bi and 1.9 wt.% Bi, respectively are
presented. Grain orientation data from the FESEM EBSD characterisation is pro-
jected on the X-ray tomography data. The illustrated X-ray tomography cross-
sections correspond to the view A-A.
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for further statistical analysis of the degraded solder balls in terms of the
quantification of flux pore and fatigue crack volume, as well as the sites of
fatigue crack initiation.

Crack initiation sites and visualisation of crack propagation
Here, the segmentedmorphological features in each ball, i.e. metallisations,
cracks and flux pores, which are generated by the 3D U-Net model, are
further utilised to gain a comprehensive insight into fatigue crack initiation
andcrackpropagationafter prolonged thermal cyclingonboard (TCoB).To
that end, the segmented crack and pore labels are summed up and projected
into the x-z- and x-y-plane, respectively. Whereby the resulting projections
are performed for the chip- and PCB-side, separately, see Supplementary
Note 4. Representative projections for each Bi-content after TCoB are

illustrated in Fig. 3a, alongside with the 3D segmentations of the corre-
sponding solder ball. The higher the intensity of the pixel value in the

Fig. 2 | ML-based localisation and segmentation workflow. aML-based seg-
mentation workflow, illustrating both training (grey) and analysis (purple). Input is
provided from the X-ray tomography data. First, a 2D localisation ML-model is
trained to extract the positions of the solder balls in the x-y-plane. Second, the balls
are extracted from the X-ray tomography using the generated bounding boxes from
the ML-localisation model. For the training of the 2D U-Net segmentation model,
tomography slices from the x-z-plane are manually labelled. Label refinement is
performed on re-assembled x-z-slices obtained from the 2D U-Net segmentation
model. The refined 2D-labels are further used as training data for the 3D U-Net

segmentationmodel. In the final analysis workflow, raw 3D tomography data is used
as an input, the 2D localisation performed, the individual solder balls are extracted
based on the localisation, the 3D-segmentation is performed and the segmented balls
are placed into the BGA-layout based on the localisation outputs. b Comparison of
2D U-Net and 3D U-Net segmentation results for representative solder balls with a
Bi-content of 0, 1.1 and 1.9 wt.%, overlaid on the normalised raw tomography data.
The segmentation colour code is the same as in a. Scale barwith 100 µm is valid for all
images.

Table 1 | Validation and training accuracies as well as model
precisions for the utilised ML-based localisation and seg-
mentation models

Model Training Accuracy Validation Accuracy Model Precision

Localisation 100.00% 99.25% 100.00%

2D U-Net 99.60% 99.10% 76.20%

3D U-Net 99.40% 99.40% 91.90%

Training and validation accuracy as well as model precision.
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projections, the larger is the separation distance of the solder–to–solder
surfaces. For a better evaluation of the fatigue crack initiation sites, the
corresponding outlines of the solders as well as the metallisations are also
illustrated in the x-z-projections. The outlines of the solder bulk near the
interfaces are overlaid on the x-y-projections. The overlays of the respective
outlines visualise the progression of the fatigue cracks with regards to the
solder. Zero intensity (black) within these outlines represents fully con-
nected solder material, whereas zero-values outside of the outlines corre-
spond to the background.Twomechanisms canbe identifiedwith respect to
crack initiation and propagation from the obtained data. It becomes
apparent from the generated x-z-projections, that cracks on the chip-side
start from a notch-like geometry feature at the solder surface and propagate
inward, as can be seen in the x-y-projections. Furthermore, the x-y-
projections indicate that cracks can also be initiated at flux pores, i.e. from
internally formed notches, as illustrated in the x-y-projections of the
1.1 wt.% Bi balls.

For the quantification of the crack propagation on the entire BGA, we
calculate the percentages of the crack volume (CV) in relation to the solder
ball volume for each ball. The crack volume is extracted from the segmented
voxels associated with the crack. In Fig.3b, BGA-heatmaps of the CV, cal-
culated from the segmentedX-ray tomographydata are shown for the entire
ball, the chip- as well as for the PCB-side, for different Bi-contents. With
these heatmaps, the crack volume of the individual solder balls can be
evaluated on BGA level based on the colour shading. This approach pro-
vides a measure of the crack propagation within each individual ball after
TCoB. This illustration can be easily interpreted by humans and can be
incorporated into quality and reliability control for a fast identification of
badly fatigued solder balls. Based on the heatmaps and quantified crack
volumepercentage, solder balls canbe selectedand furtherprepared forhigh

resolution characterisation, e.g. cross-sectional SEManalysis. The heatmaps
in Fig. 3b of the 0 wt.% Bi solder reveal that the fatigue crack distribution is
rather homogeneous on the chip-side, compared to amore inhomogeneous
distribution for the crack volume in the PCB-side. For the 1.9 wt.% Bi balls,
the crack volume is rather low for the entire BGA, as illustrated by the
shading in the heatmap of Fig. 3b. The approach for the construction of the
presented heatmaps is further described in Supplementary Note 4.

Statistical analysis of the evaluated morphological and geo-
metric features
To find the primary causes for the solder fatigue, we further statistically
analyse the segmentedmorphological features, i.e.metallisations, cracks and
flux pores, to find correlations for the fatigue of solder balls. In Fig.4a, we
investigate for different Bi-contents the relationship between the crack
volume (CV) and the flux pore volume (PV) not only for the entire ball, but
also separately for the chip- and PCB-side.Moreover, Spearman correlation
coefficients (r) are calculated for each Bi-content. The statisticaly relevant
CV correlations are summarised in Table 2. Overall, the balls with 0wt.%Bi
exhibit a higher CV than the solder balls with 1.1 and 1.9 wt.%, as also
illustrated in Fig. 3b. We argue, according to the observations, that crack
initiation may originate from notches induced by the geometry of the
package, aswell as by thefluxporeswithin the solder ball. The scatter plots in
Fig. 4a show theCV–PV relationships. It can be seen that overall,fluxpores
on the PCB-side are larger than pores on the chip-side.However, theCVs in
the entire ball show sign-related inconsistencies in their r-values when they
are correlated with PV. Therefore, we split the statistical analyses into chip-
and PCB-sides for a more thorough investigation. Further details can be
extracted from the Spearman correlation coefficients. The correlation
coefficients in Fig. 4a and Table 2 show aweak positive correlation for pores

Fig. 3 | Separation distance and visualisation of the crack volume distribution on
the entire BGA. a From left to right: Representative 3D segmentations, accumulated
crack- and pore-projections in x-z and x-y (chip- and PCB-sides) planes for each Bi
content with the respective outlines of the solder bulk. The brighter the pixel in the
respective projection, the larger the separation distance between the adjacent solder-

surfaces along the projection axis in the given position. Scale bar with 100 μm is valid
for all images. bHeatmaps of the crack volumes of the entire BGAs for the different
Bi-contents of 0 (first row), 1.1 (second row) and 1.9 (third row) wt.%, respectively.
Each square represents a single solder ball on the BGA. The darker the square, the
larger the crack volume in the corresponding ball.
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on the same side as the crack. Therefore, it is assumed thatflux pores impact
fatigue crack initiation in solder balls by acting as internal notches. Con-
versely, the correlations are negative for pores on the opposite side of the
crack which indicates a decreased probability for crack initiation on the
opposing side of a pore.

Considering the BGA-layout and under the assumption of isotropic
thermal expansion of the multi-material substrates, solder balls located
farther from the BGA-centre experience higher stresses during TCoB.
Hence, fatigue of solder balls may have progressed faster for balls further
away from the centre, since they experience larger stresses during TCoB
compared to balls close to the centre. Therefore, we plot the Euclidean
distance of the ball centre from the BGA-centre (d) vs. CV and the PCB-
geometry-factor (fgPCB) vs. CV. The correlations of the crack volume with
the Euclidean distance of the ball centre from theBGA-centre (d) are shown
in Fig. 4b. The overall crack volume correlates positively with increasing
distance. However, the correlations of cracks on the chip-side with d show
sign-related inconsistencies between the Bi-contents. The cracks on the
PCB-side, on the other hand, correlate positively with increasing distance d.
Since the PCB-copper (Cu)metallisations intrude into the solder ball, as can
be seen in the segmentations in Fig. 2 and Fig. 3, and sinceCu ismuch stiffer
than the solder ball, the PCB-routes may act as additional notches in the
solder. Therefore, the number of PCB-routes leading away from each ball
are incorporated in the analysis, in addition to the BGA-centre distance.
This relationship is described by the PCB-geometry-factor, calculated as

f gPCB ¼ 1þ nPCBroutes
� � � d, where nPCB-routes denotes the number of PCB-

routes leading to the ball. CVchip correlates negatively with fgPCB, whereas
CVPCB correlates positively, see Table 2. Hence, it is assumed that the
combined effect of PCB-intrusions and centre-distance plays a significant
role in the fatigue crack initiation and propagation in solder balls on the
PCB-side.

Lastly, Fig. 4c shows that all 0 wt.% Bi balls are cracked to some extent,
whereas some balls with 1.1 wt.% and 1.9 wt.% are still fully intact after
TCoB. The maximum CVchip decreases parabolically with increasing Bi-
content,while themaximumCVPCBdoesnot significantly decrease between
the 1.1 wt.% and 1.9 wt.% Bi balls, see Fig. 4c. The Spearman correlation
coefficients for the CV of the entire ball –, CVchip– and CVPCB – property
relationships are presented in SupplementaryTables 1, 2 and 3, respectively.

Stress distribution, recrystallisation and intergranular cracking
We simulate the stress-distribution within the solder ball during TCoB by
using ANSYSMAPDL 2022R2.Here, we utilise the geometry data obtained
from theX-ray tomography, seeSupplementaryNote5 andmethod section.
Since the stiffness of the Cu-metallisations is much higher than that of the
solder, the metallisations are represented as fixed nodes at the top and
bottom of the ball. The metallisation intrusion from the PCB is imple-
mentedwith the properties of Cu. The 3D and 2Dgeometries used for FEM
are shown in Fig. 5a. The plane of the 2D-geometry is shown in grey in the
3D-geometry. Simulation results for the β-Sn matrix are shown, during
exposure to aTCoB-cyclewith a temperature increase from -40 °C to 125 °C
and a subsequent cooling to−40 °C. Both ramp- and dwell-times are set to
15minutes, respectively. The parameters of the simulated thermal cycle
correspond to the ones from the real TCoB-testing conditions. The simu-
lation results for one exemplary TCoB-cycle are shown in Supplementary
Fig. 2. The highest stress in the solder is present near the interfaces to the
substrates, since the effects of CTE-mismatch are most pronounced here.
More specifically, the stresses are concentrated at the surface notches on the
chip-side and the notches created by the intrusion of the PCB-metallisation
into the solder. It can also be seen that the ball-shape of the solder causes an
hourglass-shaped stress distribution over the solder cross-section.

Table 2 | Spearman correlation coefficients for the crack
volume – property relationships

Bi-
content

r (CVchip –

PVchip)
r (CVchip

– PVPCB)
r (CVPCB –

PVchip)
r (CVPCB

– PVPCB)
r (CVPCB

– fgPCB)

0 wt.% 0.188 -0.151 -0.132 0.342 0.502

1.1 wt.% 0.253 -0.053 -0.070 0.414 0.293

1.9 wt.% 0.209 -0.043 -0.071 0.247 0.458

Here, the statistically significant correlations between crack volume (CV) and solder properties are
listed. CVchip – PVchip, CVPCB – PVPCB and CVPCB – fgPCB exhibit positive correlation coefficients,
whereas CVchip – PVPCB and CVPCB – PVchip correlate negatively.

Fig. 4 | Statistical analysis of the morphological and geometric features for the
entire solder ball, chip- and PCB-side. Statistical analysis of the crack volume
(CV) and its correlation with various solder ball properties for the various Bi-
contents with 0 wt.% (pink), 1.1 wt.% (blue) and 1.9 wt.% (green). The Spearman
correlation coefficients (r) are calculated for each Bi-content. All properties are
correlated for the CV in the entire ball, as well as for the chip- and PCB-side
separately. a Correlation for different Bi-contents between the CV of the entire

ball, chip-side (CVchip) and PCB-side (CVPCB) with the: flux pore volumes on the
chip-side (PVChip) and flux pore volumes on the PCB-side (PVPCB), from left to
right. b Correlation for different Bi-contents between CV of the entire ball,
CVchip and CVPCB with the: Eucledian distance of the ball centre from the BGA
centre (d) and PCB-geometry-factor (f gPCB), from left to right. c Correlation
between the CV of the entire ball, CVchip and CVPCB with: different Bi-contents
(0, 1.1 and 1.9 wt.%).
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Fig. 5 | Microstructure characterisation and FEM. FEM geometry, FEM stress
distribution during TCoB, cross-sectional FESEM EBSDs, IPFs, grain size dis-
tributions and correlation of EBSD-maps with ML-based 3D-segmentation. a FEM
geometry (3D and 2D) and stress distribution in the solder ball cross-section during
one exemplary TCoB-cycle. The plane of the 2D-geometry is shown in grey in the
3D-geometry. Simulated stress distributions for 125 and -40 °C are exemplarily
demonstrated for the 2D cross-section. Colour bar is scaled from -160MPa (blue) to

90MPa (red). Scale barwith 100 µm for all images.bCross-sectional EBSD-maps for
representative solder balls, one for each Bi-content. Scale bar with 200 µm for all
images. cKAM-maps for 0 wt.%, 1.1 wt.% and 1.9 wt.% Bi. Scale bar with 200 µm for
all images. d IPFs and grain size distributions for the EBSD-maps illustrated in b.
e The EBSD-maps are correlated with the respective 3D segmentations. Scale bar
with 100 µm for all images.
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As fatigue crackpropagation impairs the remaining functionality of the
solder during TCoB, the propagation paths of those cracks are of interest. In
order to visualise these crack propagation paths within the solder micro-
structure, cross-sectional FESEM EBSD scans are performed for repre-
sentative solder balls with different Bi-contents. Hourglass-shaped
recrystallisation fronts in the initially single- or few-grained balls are visible
in the EBSD-maps, see Fig. 5b. This is in keeping with the simulated stress
distribution shown in Fig. 5a, as recrystallisation will occur in the highly
stressed (strained) areas first. Moreover, the EBSD-maps in Fig. 5b show
that recrystallisation starts at the surface-notches on the chip-side and the
metallisation intrusion on the PCB-side, which matches the stress con-
centrations in those areas seen in the FEM modelling results. In the
recrystallised areas near the interfaces, intergranular cracks can be seen in
the 0 wt.% Bi sample. The same is true for the 1.1 wt.% Bi sample, although
the intergranular crack seen there is less gaping than in the 0wt.%Bi sample.
The 1.9 wt.% Bi sample only exhibits a small crack at the chip-interface, but
it does also show thehourglass-shaped recrystallisation front, albeit inmuch
earlier stages than the 0 wt.% Bi and the 1.1 wt.% Bi samples. In order to
understand the effect of Bi-additions in the solder microstructure after
TCoB, FESEM EDX analysis is done for exemplary regions for each Bi-
content, see Supplementary Note 7 and Supplementary Fig. 4. No primary
Bi-precipitates can be seen for either alloy.

Figure 5c depicts the kernel average misorientation (KAM-) maps for
the respective EBSD-maps in Fig. 5b. From the KAM-maps, high-strain
areas in the solder cross-sections canbe qualitatively deduced.Recrystallised
areas appear less strained than single-crystalline regions. In Fig. 5d we
present the inverse pole figures (IPFs) for the y-direction and the grain size
distributions for each cross-section. The IPFs appear smeared out, indi-
cating distorted orientations around the initial crystal orientation(s) of the
balls. In order to correlate the fatigue cracks from the 3D segmentationwith
their propagation paths in the solder microstructure, exemplary EBSD-
maps are overlaid with corresponding X-ray tomography segmentations in
Fig. 5e. The correlated overlays clearly reveal that the cracks visible in the
segmented X-ray tomography data are indeed intergranular fatigue cracks.
Hence, the 3DML-analysis based on X-ray tomography data uncovers the
intergranular fatigue crack propagation in the solder balls.Not only does the
developed ML-segmentation workflow allow a fully automated, non-
destructive 3D failure analysis of entire BGAs, but the underlying micro-
structural and mechanical mechanisms for fatigue crack initiation and
propagation are also correlatively established.

Discussion
The functionality of a solder ball in terms of its ability to conduct both
electrical and thermal current from the chip to the PCB is vastly impaired
when thematerial is interrupted by gas-filled volumes such asfluxpores and
fatigue cracks11. Hence, the non-destructive, statistically significant failure
analysis of fatigue crack initiation andpropagation in solder balls is essential.
Furthermore, an in-depth understanding of the underlyingmechanisms for
solder fatigue on the microstructural scale is crucial for the design of
materials science-informed engineering solutions to prolong the fatigue
lifetime of lead-free solder balls.

We statistically identify the solder properties that impact fatigue in
solder balls from3Ddata by conducting non-destructiveX-ray tomography
and applying sophisticated ML-based image analysis methods. The statis-
tical results show a significant prolongation of solder ball lifetime by the
addition of Bi to the SAC305 alloy. In order to understand the underlying
mechanisms of solder fatigue, we discuss (1) the impact of the periodical
stress and strain on the solder during TCoB, (2) the crack propagation
through the solders and (3) the influence of Bi on the fatigue and micro-
structural properties of SAC305 solder balls.

Due to the CTE-mismatches in the multi-component device,
mechanical stress and deformation are induced in the solder during
TCoB15,40. Since stress and deformation occur periodically duringTCoB, the
predominantmechanismsof solder degradation are considered tobe fatigue
and the propagation of fatigue cracks into the solder balls. Figure 3a and

Fig. 5b support this assumptionand illustrate the initiationof cracks either at
surface notches or at internal notches, i.e. metallisation intrusions and flux
pores, and their propagation into the solder bulk, a typical characteristic of
fatigue cracks41. As the mechanical stress in the solder during TCoB stems
from CTE-mismatches between the various components of the multi-layer
device, stress and strain aremost pronounced near the interfaces to the chip
and the PCB.The emerging inhomogeneous stress distribution is evenmore
enhanced by the presence of surface-notches and the intrusion of the PCB-
metallisation into the ball. The accompanied FEM simulation illustrates
how the ball-shape of the solder translates the shear stress at the interfaces
into an hourglass-shaped stress gradient within the ball, see Fig. 5a. This
stress gradient induces a proportional strain gradient in the solder, con-
sisting of both plastic and elastic strain. Accordingly, the dislocation density
is higher near the interfaces and notches, causing the solder to dynamically
recover and recrystallise there earlier compared to the rest of the solder. This
hourglass-shaped recrystallisation behaviour is observed in the EBSD-maps
in Fig. 5b. Further, the EBSD-maps show that the solidification structures of
the balls are initially built of either single crystals or a few large grains. These
observations are consistent with the findings in15,20,22. The IPFs in Fig. 5d
show that the orientations of the newly formed grains are smeared out
around the initial crystal orientation. Hence, the solder balls in this study do
not undergo primary recrystallisation, where statistically oriented grains
would nucleate in a highly deformed crystal41. Rather, continuous recovery
and polygonization take place in the investigated solder balls, as re-
arrangement of dislocations generates small-angle grain boundaries and
new grains that are slightly misoriented towards the initial crystal orienta-
tion. Furthermore,highly strained regions in the initial single crystals, visible
in the KAM-maps in Fig. 5c, are likely to undergo recrystallisation with
continued cycling. The KAM-distributions are also in agreement with the
FEM simulations in Fig. 5a. Additional EBSD- and KAM-maps, as well as
IPFs are shown in Supplementary Fig. 3 to support the provided argu-
mentation. Since the Cu PCB-metallisation is much stiffer than the solder,
its intrusion into the ball acts as an additional internal notch and crack
initiation site. The notch effect of the PCB-intrusion is confirmed by the
FEM-simulations in Fig. 5a as well as by the EBSD-maps in Fig. 5b, where
polygonization can be seen to start in the vicinity of the PCB-intrusions.
This can be seen particularly clearly in the EBSD-map of the 1.9 wt.% Bi
sample.

The correlation of the EBSD-maps with the corresponding 3D seg-
mented image data in Fig. 5e confirms that the cracks visualised with X-ray
tomography and analysed with the ML-assisted workflow are indeed
intergranular fatigue cracks. Since the cracks propagate along recrystallised
grain boundaries, those are of particular interest for the understanding of
fatigue crack propagation. EDX analyses of exemplary grain boundaries for
each Bi-content are shown in Supplementary Fig. 4. The EDX-maps show
Cu-enrichment along recrystallised grain boundaries. This enrichmentmay
promote intergranular fatigue cracking. Since grain boundaries are first
formed in the high-strain areas near the solder interfaces, intergranular
crack initiation andpropagation are also expected to start there. Theonset of
dynamic recrystallisation, and therefore the formation of grain boundaries,
requires a critical dislocation density. For Bi-concentrations below the
solubility limit in the β-Sn matrix of about 2.5 wt.%19, Bi is expected to be
soluble in the matrix. Once the solubility limit is exceeded, primary Bi-
precipitateswould formduring solidification fromthemelt during reflow, as
observed in previous studies17,20,42,43. With Bi-precipitates present in the
matrix, the microstructural and mechanical properties of the alloy would
change entirely. To ensure that there are no primary Bi-precipitates present
in the matrix, high-magnification EDX-maps are acquired, see Supple-
mentary Fig. 4. As no primary Bi-precipitates are present, it is assumed that
Bi is solved in the β-Sn matrix, acting as a solid solution strengthener and
increasing the Sn-matrix’ yield strength. Since the primary fatigue symptom
is intergranular crack propagation, as illustrated in Fig. 5b, Bi is therefore
expected todelayboth recrystallisationand subsequent intergranular fatigue
cracking. This can be seen in Fig. 1c and Fig. 5e, where cross-sectional
overviewofEBSD-mapsof exemplaryballs for 0wt.%, 1.1wt.%and1.9wt.%
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Bi samples are correlated with the X-ray tomography slices and 3D seg-
mentations, respectively. This relationship is also shown in the scatter plots
in Fig. 4. Moreover, the IPFs in Fig. 5d and Supplementary Fig. 3 are more
localised around the initial crystal orientation(s) in the 1.9 wt.% Bi balls
compared to the 0 wt.% Bi balls which indicates that dynamic recrystalli-
sation is further advanced in 0 wt.% Bi balls. Furthermore, fatigue cracking
has progressed further in balls with decreasing Bi-content, which is also in
keeping with the results from the statistical analyses shown in Fig. 4. As
already mentioned, the solid solution strengthening effect of Bi delays
polygonization, grain boundary formation and subsequent intergranular
fatigue cracking in Bi-containing solder balls. Nonetheless, the 1.1 wt.% and
1.9 wt.% Bi samples are also recrystallised to various extents. However,
intergranular cracks have not propagated to the same proportion as in the
0 wt.% Bi samples, as can be seen in Fig. 1c and Fig. 5b, despite the grain
boundaries also being enrichedwithCu, illustrated in Supplementary Fig. 4.
Therefore, it is assumed that Bi-additionsmay also influence the structure of
grain boundaries in SAC305, leading to strengthening of the recrystallised
grainboundaries.The studyof structure and elemental compositionof grain
boundaries in Bi-free and Bi-containing solder balls is not part of this work
but will be the subject of a future study. Conversely, cracks, once initiated in
a ball, dampen the stress from the substrates so it cannot be efficiently
transmitted to the opposing side of the crack. Accordingly, no more, or
fewer, dislocations are produced in the ball and dynamic recrystallisation
stops, or slows down, once a crack is initiated, since the dislocation density
and rearrangement of dislocations into an energetically more favourable
configuration is its driving force. Hence, recrystallisation in the 0 wt.% Bi
ball in Fig. 5b is less progressed than in the 1.1 wt.% Bi sample, as the cracks
in the 0wt.%Bi ball inhibit further recrystallisation after crack initiation and
the strain energy from further cycling is invested in propagating the cracks.
Apparently, however the recrystallised grains in the 0 wt.% Bi sample have
undergone coarsening during the high-temperature periods of TCoB after
cracking. This results in larger grains compared to the 1.1wt.% and 1.9wt.%
Bi samples, as shown in the grain size distributions in Fig. 5d.Moreover, the
KAM-maps in Fig. 5c show that strain is less pronounced in polygonised
areas of the cross-section, compared to the initial grain. Therefore, it is
assumed that recrystallisation provides stress relief in the solder. This
thoroughmicrostructural analysis, in combinationwith the FEMmodelling
results, elaborates the underlying mechanisms for fatigue cracking. More-
over, the correlations of the EBSD-maps with X-ray tomography data and
their segmentations prove the validity of our statistical analysis of solder
fatigue.

Several conclusions can be drawn from our study on solder fatigue, its
statistical correlations with solder ball properties and the underlying
microstructural and mechanical mechanisms. Firstly, intergranular cracks
propagating along recrystallised grain boundaries of solder balls constitute
the predominant fatigue mechanism during thermal cycling of BGAs. The
grain boundaries indicate Cu-enrichment. Secondly, recrystallisation and
grain boundary formation in high-strain areas near the chip- and PCB-
interfaces of the solder balls precedes crack initiation. The stress distribution
in the solder ball during TCoB is simulated with FEM and it is in keeping
with the shape of the recrystallisation fronts in EBSD-maps. Thirdly, fatigue
cracks initiate either at notches at the solder ball surface, Cu-metallisation
intrusions or at internal defects, i.e. flux pores, and propagate along
recrystallised grain boundaries into the surrounding solder ball matrix.
These aspects could be considered in the design of BGAs to engineer the
notch-effects on solder fatigue. Lastly, alloying Bi to SAC305 markedly
delays recrystallisation, fatigue crack initiation and propagation, thereby
prolonging the lifetimeof solder balls. EDX-maps show that the investigated
Bi-concentrations act as solid solution strengthener in β-Sn rather than
forming primary precipitates, thereby increasing the solder ball’s yield
strength.

In summary, this study proves non-equivocally that intergranular
fatigue cracks and flux pores in SAC305+ x Bi (x = 0, 1.1, 1.9 wt.%) solder
balls can be visualised with 3D X-ray tomography and statistically analysed
with the ML-algorithms developed for this purpose. The ML-based

segmentation workflow developed in this study can be used to efficiently
and non-destructively inspect solder balls on BGA-level with high statistical
yield. The developed workflow provides the possibility for efficient and
advanced failure analysis. The gained data reveals the crack initiation at
surface notches and at internal notches, i.e. flux pores and PCB-
metallisation intrusions, a typical feature of fatigue cracks. Further, inter-
granular propagationpaths of the fatigue cracks represent amajor issue. The
work provides important insights regarding the underlyingmechanisms for
recrystallisation and crack propagation, as well as the effects of Bi on the
microstructural fatigue in the solder alloys. The analysis of microstructural
features and the simulationof the stress distribution is utilised to understand
the statistically evaluated solder fatigue, thereby uniting the aspects of big-
data analysis with ML-algorithms and in-depth understanding about the
underlying materials science.

Methods
The experimental and methodological approaches of this study are descri-
bed in the following.More details can be found in the SupplementaryNotes.

Sample Production and TCoB
Three solder materials are investigated: Sn – 3.0 wt.% Ag – 0.5 wt.% Cu
(SAC305), SAC305+ 1.1 wt.% Bi and SAC305+ 1.9 wt.% Bi. Bi acts as a
solid-solution strengthener in β-Sn. No primary precipitation of Bi is
expected for this content17,20. The investigated solder balls are produced by
droplet spraying in an inert N2 atmosphere and subsequently soldered
between the Cu-metallisations of the chip and the PCB. Reflow is done at a
peak temperature of 240 °C and with a mean heating rate of 44 °C/min in
inert N2 atmosphere, followed by rapid air cooling to 90 °C with a mean
cooling rate of 107 °C/min and ambient air cooling to room temperature.
The 3DBGA layout is shown in Fig. 1a, alongsidewith its coordinate system
for the subsequent analysis. Figure 1b shows the x-y-layout of the BGA.
Thermal cycling is conducted between −40 and 125 °C with ramp- and
dwell-times of 15mins, respectively. Hot and cold air is alternately injected
into a furnace in order to obtain heating rates as linear as possible. The
furnace temperature during thermal cycling is homogenised by air circu-
lation. The 0wt.%Bi sample is thermally cycled for 1764 cycles, the 1.1wt.%
Bi samples and the 1.9 wt.% Bi samples for 2914 and 2570 cycles, respec-
tively. The BGAswith Bi-content underwent larger numbers of cycles, since
the amount of Bi-additions provide solid solution strengthening effects of
the β-Sn matrix and hence delay recrystallisation and subsequent inter-
granular cracking.

Non-destructive 3D X-ray tomography scans
Non-destructive X-ray tomography has the capability to scan entire
BGAs in less than an hour. Hence, this method is suitable for the
generation of the large amount of image data that is necessary for ML
and statistical statements regarding solder fatigue. The X-ray tomo-
graphy scans are done with a GE Phoenix Nanotom M (research
edition) using a cone beam configuration. By using a cone beam, the
achievable magnification is limited by the lateral size of the BGA
(~10 × 7 mm2). The achievable voxel-size results to 5.33 × 5.33 ×
5.33 µm3 for scanning entire BGAs. The interaction of an X-ray beam
with matter is described by the Beer-Lambert-law:

I
I0
¼ expð� μ

ρ
ρ dÞ; ð1Þ

where I denotes the transmitted X-ray intensity, I0 the incident X-ray
intensity, μ

ρ the attenuation coefficient, ρ the material density and d
the penetrated sample thickness. Due to the dependency of X-ray
attenuation on the density, more specifically the atomic number, of
the penetrated material, air-filled defects, i.e. cracks and pores,
appear darker in the X-ray tomography scans than β-Sn and Cu-
metallisations. This allows the distinction of pores and cracks based
on their grey-values.
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FESEM EBSD
FESEMoverviewEBSDmaps are used to verify X-ray tomography imaging,
i.e. to assess whether its resolution is sufficient for the investigation of solder
fatigue. Moreover, EBSDmaps provide crystallographic information about
the solder balls. The final solder ball cross-sections for EBSD are prepared
with a Hitachi IM4000+ ion-slicer, which yields deformation-free surfaces.
The accelerating voltage for ion-slicing is set to 6 kV and the swing angle to
30° with 3 swings per minute. Overview EBSD-maps are acquired with a
Zeiss 450 Gemini FESEM. An accelerating voltage of 10 kV, a step size of
400 nm and an Oxford Symmetry detector are used for EBSD-mapping.
Oxford InstrumentAZtecCrystal 5.1 is used for the evaluationofEBSDdata.
IPFs are used to extract information about the polygonization behaviour of
the solder balls and grain size distributions are plotted in order to determine
their recrystallisation stage. Neighbouring grains with misorientations >10°
are considered in the grain size distributions. Since the polygonised grains
are quasi-circular, their equivalent circle diameter is used as sizemetric. The
grain size distribution is plotted as the area-weighted fraction of grains with
a particular diameter in proportion to the entire solder cross-section. More
details can be found in Supplementary Note 6.

Data generation and pre-processing
Due to the large amount of 3D-image data produced by X-ray tomography,
supervisedML-algorithms are used for the quantitative image analysis. The
reconstructed 3D dataset of each solder ball consists of 96 × 96 × 96 voxels3

in x, y and z direction. Overall, 1368 datasets were generated and further
analysed.Within the pre-processing step from X-ray tomography, the raw-
files of the collected 2D projections are extracted with the VG Studio MAX
software. The X-ray tomography data is aligned in the 3D space before the
raw-files are exported. In order to overcome contrast variances between the
various scans, the raw image data is normalised within the pre-processing
step utilising the Python OpenCV 4.0.1 package, before it is inputted in the
ML-workflow. The subsequent ML-analysis is done in two steps: x-y-
localisation followed by 3D feature segmentation.

ML-based localisation
The localisation algorithm is based on a binary, sequential, feed-forward
sliding-window convolutional neural network (CNN) adapted from30. The
model is trained onmanually labelled 2D-data, which consists of 100 × 100
pixels2 x-y-plane clips. In total, 1208 (628 positive + 580 negative) images
are used for the training. The localisationmodel is trained for 40 epochswith
a learning rate of 10-3 using Python 3.8.13, tensorflow 2.9.1, keras 2.9.0,
Adam optimiser and a binary cross-entropy loss function on an Intel Core
i5-8265U CPU with 16 GB RAM. Its schematic architecture is shown in
Supplementary Fig. 11 and described in detail in Supplementary Note 1,
alongside with exemplary training images, the model’s accuracy and loss
histories as well as its testing accuracy.

ML- based segmentation
The 3D segmentation model is based on a U-Net CNN. The 3D segmen-
tationmodel is built from the Python library segmentationmodels 3D2. It is
trained with keras 2.8.0, tensorflow 2.8.2, Python 3.9.16, and scikit-learn
1.2.1 for 300 epochs, using softmax activation functions, categorical cross
entropy loss functions and theAdamoptimiserwith learning rate of 10−4 on
a NVIDIA A40 GPU with 48GB RAM. 3D volumes from the raw µ-XCT
data areutilized,which contain the entire solder ball. For the trainingdata 61
manually refined 96 × 96 × 96 voxels3 re-assembled outputs from the 2D
segmentation model are used as training data, whereby the test size is 5%.
Further details about the architecture, training and validation accuracy and
loss histories are depicted in detail in Supplementary Fig. 1 and Supple-
mentary Note 2. In order to efficiently generate a large amount of training
data for the 3D segmentation model, a 2D segmentation U-Net model is
used. The 2D U-Net model is trained on 4992 manually labelled 96 × 96
pixels2 slices (x-z-plane), with a test size of 20% utilising the extracted
boundingboxes fromthe localisationmodel, see also SupplementaryNote3.
The training data for the 2D segmentationmodel is manually labelled using

ilastik 7.1.044. Here, the model is trained for 200 epochs on a NVIDIA A40
GPU with 48GB RAM. Further details with respect to the architecture,
training and validation accuracy and loss histories of the 2D segmentation
model are provided in Supplementary Fig. 1 and SupplementaryNote 3. For
the visualisation of the segmented image data we utilise Avizo.

Calculation of separation distance and crack distribution on
the BGA
In order to visualise the crack initiation sites in the solder balls, the seg-
mented cracks and pores obtained from the 3D U-Net are projected into
2D-planes, i.e. x-z- and x-y-projections. The respective voxels, associated
with either cracks or pores, are summed up along the y-axis for the x-z-
projections and along the z-axis for the x-y-projections. Additionally, the
outlines of the solder ball and metallisations are thresholded and overlaid
onto the projections.

The visualisation of the crack volumedistribution on the BGAutilising
heatmaps allows fast identification of particularly badly fatigued solder balls
based on the quantified crack volume percentage. To that end, the crack
volumes gained from the 3D segmentation are put into relation with the
solder volume to obtain the volume percentage of cracks in the respective
balls. These crack volume proportions are then schematically plotted into
heatmaps which exhibit the BGA-layout. This is done by utilising the
localisation outputs.

FEM simulation
During TCoB, mechanical stresses are introduced into the solder balls.
These mechanical stresses stem from misfits in CTE between the various
components in the multi-material device. In order to visualise the stress
distribution in the solder ball, 3D FEM simulations were done with Ansys
MAPDL 2022R2 for one exemplary heating and cooling cycle, considering
the 2D plane in the centre of the 3D geometry, see Supplementary Note 5.
The 3D geometry is extracted from an .stl file from X-ray tomography
imaging. The geometry and the results of the FEM simulation are shown in
Fig. 5a and in Supplementary Fig. 2. The simulated heating cycle is imple-
mented with the same parameters as the TCoB cycling done in this study:
Heating from −40 °C to 125 °C, followed by cooling to −40 °C. Both the
ramp times and dwell times are set to 15minutes, respectively. A thermal
transient analysis is carried out based on the heating cycle. The temperature
profile of the FEM simulation is shown in Supplementary Fig. 2, alongside
cross-sectional in plane stress distributions for a selection of timesteps. The
elastic tensor ofβ-Sn and the thermal expansion coefficient are taken from45.
Boundary conditions for the FEManalysis are implemented considering the
following. Firstly, the surface notches on the chip-side are represented by
fixed nodes, which account for the attachment of the ball to the chip-
metallisation. The PCB-metallisation intrusion is implemented with the
mechanical and thermal expansion values ofCu from46. Lastly, like the chip-
side, the bottom nodes of the metallisation are rigidly fixed. More details
about the FEM simulation are given in Supplementary Note 5.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
All code that support the findings of this study are available from the
corresponding author upon reasonable request.
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