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Engineering holography with stabilizer
graph codes
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The discovery of holographic codes established a surprising connection between quantum error
correction and the anti-de Sitter-conformal field theory correspondence. Recent technological
progress in artificial quantum systems renders the experimental realization of such holographic codes
now within reach. Formulating the hyperbolic pentagon code in terms of a stabilizer graph code, we
give gate sequences that are tailored to systemswith long-range interactions.We show how to obtain
encoding and decoding circuits for the hyperbolic pentagon code, before focusing on a small instance
of the holographic code on twelve qubits. Our approach allows to verify holographic properties by
partial decoding operations, recovering bulk degrees of freedom from their nearby boundary.

Holography emerged as a key concept in high-energy physics, gravity, and
quantum information. With the introduction of the anti-de Sitter-con-
formalfield theory (AdS-CFT) correspondence byMaldacena1, holographic
duality established a relation between two physical theories, one sitting in
the bulk and the other sitting at the boundary of a hyperbolic space2,3. In an
effort to understand this AdS-CFT correspondence further, geometrically
arranged tensor networks arose as a useful tool, displaying unique entan-
glement properties4–6 This link between geometry and quantum entangle-
ment led to recent efforts seeking an experimental realization of
holography7–10. However, an experimental realization of the proposed ten-
sor networks is challenging.

The hyperbolic pentagon code proposed by ref. 11, also known as
HaPPY code, is today’s premier toy model for understanding holo-
graphic duality. It is composed of a tensor-network with absolutely
maximally entangled states (also known as perfect tensors) as basic
building blocks. This model exhibits several desired features such as a
uniform bulk and an entanglement entropy constrained by the Ryu-
Takayanagi formula12.

Despite recent theoretical investigations into the error-correcting
capabilities of holographic codes13–17, experimental implementations have
yet to come forward18. In thisworkwe close the gap towards an experimental
implementation and bring the stabilizer approach to holography19 to its
logical conclusion by formulating it as a graph code. This opens up a path
towards investigating AdS-CFT like models experimentally, making their
unique partial recovery features accessible for current and upcoming
quantum technologies.

Our framework yields a graph state from which we derive the gates
necessary to encode, perform logical gates, anddecodequantum information.

Additionally, it exhibits the essential characteristic of holographic systems,
that is the ability to recover a bulk region from its nearby boundary.

While challenging, our toy model can already be implemented with as
few as 12 qubits, with experimental requirements that are within reach of
current neutral atom platforms20, superconducting qubits21 and trapped
ions experiments22.

Recent experimental efforts show thepossibility to engineer long-range
connectivity in neutral atom systems23,24, trapped ions25,26 and super-
conducting qubit platforms21. Depending on the platform the long-range
interaction between the qubits is realized by coherently transporting the
qubits or using a connecting bus.

In contrast to more common methods which require stabilizer mea-
surements to prepare the logical zero state27, our approach reduces this task
to a graph state preparation. For the trapped ions set up from28, the graph
state fidelity is estimated higher than the fidelity of the state prepared via
stabilizer measurements.

Results
Main contribution
We formulate the hyperbolic pentagon code introduced by Pastawski et al.11

in terms of its corresponding stabilizer graph code. This allows to derive the
encoding and decoding gates, as well as the partial recovery operations that
are required to demonstrate holography experimentally.

Our approach is based on three observations: first, by choosing stabi-
lizer states asbuildingblocks, thehyperbolic pentagoncode canbewritten in
stabilizer form19. Second, a stabilizer codewhich encodes k into n qubits can
be represented as a graph code29, that is, a graph state on k+ n systems.
Third, the number and range of interactions of this graph can be optimized
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through local Clifford operations, significantly reducing the experimental
requirements to prepare the code states.

This procedure allows us to represent the hyperbolic pentagon code as
a stabilizer graph code in a manner suitable for experimental imple-
mentation (c.f. Fig. 1). In addition, our method also provides the gates
necessary to recoverparts of the encoded bulk degreesof freedom from their
nearby boundary, thus demonstrating holographic features.

Following the method described above, we propose an experimental
implementation of a small instance of the hyperbolic pentagon code on
twelve qubits (c.f. Fig. 1). Through a stabilizer graph code representation, we
provide the gates required to encode anddecode four bulk qubits into twelve
boundary qubits. In addition, we show how to demonstrate holographic
features of the logical code states. We list the specific gates needed for a
partial decoding operation which recovers two bulk degrees of freedom
from their nearby five-qubit boundary.

This places the experimental implementation and certification of
holographic systems within reach of current experimental high-connectivity
platforms such as Rydberg atoms in optical tweezers, trapped ions, or cavity-
coupled qubits. Specifically by using trapped-ion setup from28, we estimate a
higher logical zero statefidelitywithourmethod thanwith currently available
ones27. We suggest as first step towards the implementation of the holo-
graphic pentagon code, the preparation of the logical zero state. It is note-
worthy that our proposal is of a scale that can be compared against numerical
simulations. The reader only interested in the experimental implementation
can directly jump to A holographic model on 12 qubits.

Holographic code
Aholographic code encodes k bulk qubits into n boundary qubits with n > k,
such that any bulk region can be recovered from its nearby boundary. The
bulk degrees of freedom live in the Hilbert spaceHB and host the message,
whereas the code space C is a subspace of the boundary space H∂B . The
encoding of the bulk into the boundary ismathematically defined by a norm-
preserving linear map TH : HB ! C � H∂B , i.e., an isometry. The norm-

preserving property of isometries can be written as Ty
HTH ¼ 1B . For our

purposes the corresponding Hilbert spaces are HB ¼ ðC2Þ�k
and H∂B ¼

ðC2Þ�n
but qudit Hilbert spaces are also possible. Then, the isometry can

explicitly be written as

TH ¼
X1

i1 ;...;ik¼0

∣Hi1 ...ik
i
∂Bhi1 . . . ik∣B ; ð1Þ

mapping each computational basis element ∣i1 . . . ik
�
in HB to its corre-

sponding logical state ∣Hi1...ik
i in C. Given the Pauli gatesXj,Yj, Zj acting on

the j-th qubit in B, the isometry TH can be used to find the logical gates,
which act on C in the same way as Pauli gates onHB .

By turning the bra vector acting onB into a ket, the isometry in Eq. (1)
can be represented by an unnormalized quantum state

∣Hi ¼
X1

i1;...;ik¼0

∣i1 . . . ik
�
B � ∣Hi1 ...ik

i
∂B ; ð2Þ

wherewe changed the order of the kets (bulk and boundary) for consistency
with later sections. Therefore, the holographic code can be described by a
state which we term holographic state. From Eq. (2) we see that ∣Hi is
maximally entangled with respect to the bipartition ∂B and B, which we
denote byBj∂B. In reverse, each state of the formgiven inEq. (2) induces an
isometry. Specifically, absolutely maximally entangled (AME) states, often
referred to as perfect tensors when the number of parties is even, are
maximally entangled with respect to any bipartition.

An interesting way to construct a holographic code is via a tensor
network that uses AME states as building blocks. Here we show how this
holographic code canbe understood as a graph code11,30. In a tensor network
the tensors are connected by lines which correspond to index contractions.
While contracting two AME states does not necessarily yield another AME
state, the contraction is still an isometry. This fact can be directly seen from
the tensor network representation of contracting two AME states. By
assembling and contracting the tensors properly, one can construct a state
that ismaximally entangled acrossBj∂B. Using such amaximally entangled
state one canmap bulk qubits to boundary qubits. Since we use AME states
as building blocks, the isometry is decomposed into further smaller iso-
metries. These smaller isometries allow us to recover bulk qubits from their
nearby boundary qubits, making the code holographic.

The geometry of the tensor network determines how the decomposi-
tion of the isometry is performed and, therefore, which information can be
recovered. In this article we consider the hyperbolic pentagon code that
contains six-qubit AME states as building blocks11. This AME state was
described first as GF(4)-hexacode in a seminal article by Calderbank et al.31

on the connection between classical and quantum stabilizer codes. The state
was numerically rediscovered in ref. 32 and brought to graph state form in
ref. 33.When the number of parties is even, such states are often referred to
as perfect tensors. Figure 2a illustrates the recovery for a specific boundary
region: given theboundaryqubits on thepartition∂E, it is possible to recover
the bulk qubits on E without using the qubits on ∂F.

An important characteristic of holographic codes is that the Ryu-
Takayanagi formula holds12. Roughly speaking, given a boundary biparti-
tion ∂E∣∂F and associated bulk regions E∣F, the Ryu-Takayanagi formula
states that the entropy of the reduced state on ∂E is proportional to the
length of the bulk geodesic that separates E and F, in addition to a bulk
entropy term. For the holographic code considered here the formula can be
stated as S(∂E)∝ ∣γ∣ for encoded product states, where ∣γ∣ is the number of
contracted indices in the tensor network that cross from the E to F
(see Fig. 2b). Linked to this is the ability to perform a partial bulk recon-
struction, recovering a part of the bulk from its nearby boundary, a property
which canbe tested experimentally andwill be addressed inPartial decoding
circuit.

The construction of holographic codes via tensor networks is well
suited to visualize the geometrical aspect of the code. On the other hand the
stabilizer formalism is highly efficient in determining encoding and
decoding strategies and to obtain the logical states and gates. Hence, we will
discuss in the following section the stabilizer formalism inorder to apply it to
the hyperbolic pentagon code.

Stabilizer states
An m-qubit stabilizer state is characterized by ℓ independent commuting
operators gi that form the stabilizer S = 〈g1,…, gℓ〉, with ℓ ≤m and �1 =2 S.

Fig. 1 | A holographic graph code. A small instance of the hyperbolic pentagon
(HaPPY) code11, represented as a graph state or graph code. This representation is
obtained from mapping the tensor network to a stabilizer state and then finding an
experimentally suitable local Clifford equivalent graph state. The entire construction
can be described as a holographic graph code.
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The gi are elements of the m-qubit Pauli group Pm, which is formed by
tensor products of Pauli matrices X,Y, Z and phases { ± 1, ± i}. Note how-
ever that the phases of the stabilizer elements are always real. A stabilizer
state34,Section 10.5.1 can be written as

ϱ ¼ 1

2‘
X
s2S

s ¼ 1

2‘
Y‘
i¼1

ð1þ giÞ : ð3Þ

The state ϱ is proportional to a projector which acts on a subspace of
dimension 2m−ℓ. When ℓ =m the state is pure.

A convenient way to represent a stabilizer state is through its check
matrix. This is an ℓ × 2mmatrix C = (A∣B) whose rows correspond to the ℓ
generators. ThematrixA accounts for theX-part andB for theZ-part of the
generators:Aij = 1 if gi contains anX at position j,Bij = 1 if gi contains anZ at
position j,Aij = Bij = 1 if there is aY, andAij = Bij = 0 if there is a1. Therefore,
the columns carry the information of how the generators act on individual
qubits. The generators of two checkmatrices C1 = (A1∣B1) and C2 = (A2∣B2)
commute if and only if

A1B
>
2 � B1A

>
2 ¼ 0 : ð4Þ

However, the parity checkmatrix does not carry all the information about S,
since the signs of the generators are not included in C. To keep track of the
signs,we add an extra columnω toC such thatC = (A∣B∣ω), whereωi = 0 if gi
is positive and ωi = 1 if negative.

We recall that elementary row operations modulo 2 on the check
matrix leave the stabilizer invariant: the multiplication of generators cor-
responds to the addition of the respective rows, and the multiplication and
relabeling of generators does not affect S. It is important to remark that the
multiplication of generators may change signs in ω, e.g., (X⊗X)(Z⊗
Z) =−Y⊗ Y.How the signsof the generators change is discussed inSection
I of the supplementary material.

Graph states constitute a particular case of pure stabilizer states. These
are definedby a graphofmvertices connectedby edges e 2 E.The generator
associated with the vertex i appearing in Eq. (3) is

gi ¼ Xi

O
j2NðiÞ

Zj ; ð5Þ

where the neighborhood N(i) is the set of vertices j connected to
vertex i by an edge. For a graph state, the check matrix reads ð1jΓÞ
where Γ is the adjacency matrix, representing the interaction between
the qubits, and the phase vector is trivial ω = 0. An equivalent way to
define a graph state is via controlled-Z gates CZuv = diag(1, 1, 1,− 1)

acting on qubits u and v as

∣Gi ¼
Y

ðu;vÞ2E
CZuv∣þi�n : ð6Þ

Cliffordoperations are theunitaries that keep thePauli group invariant under
conjugation.An important example is theone-qubitHadamardgateHwhich
acts as HXH† =Z, HZH† =X and HYH† =−Y. It is known that all qubit
stabilizer states are graph states up to localClifford operations (LC)35,36.Many
of the currently knownAMEstates are graph states up toLC,with the notable
exception of the recently discovered four-quhex AME state37.

Holographic graph state
Here we aim to find a suitable graph state ∣Gopt

�
for experimental purposes

which corresponds to the holographic state ∣Hi and to the tensor network in
Fig. 2a respectively.

An index contraction corresponds toprojecting the tensoronto theBell
state and performing a partial trace. This fact can be seen from Eq. (7) by
defining an arbitrary state on m qubits and a projector Pþ ¼ ∣ϕþihϕþ∣�
1�m�2 with ∣ϕþi ¼P1

r¼0∣rri the (unnormalized) Bell state,

Pþ∣ψi ¼ P1
r;s¼0

P1
i1 ;...;im¼0

∣rri � hssji1i2iψi1...im
∣i3 . . . imi

¼ ∣ψþi � P1
i3 ;...;im ;s¼0

ψssi3 ...im
∣i3 . . . imi

¼ ∣ψþi � ∣χi :

ð7Þ

Here, ∣χi is the state after the index contraction. Note that the Bell state is a
stabilizer state.Therefore, in caseof ∣ψi being a stabilizer state, sowill ∣χi (see
ref. 38,Section 2). That can be seen in more details in Section I of the
supplementary information where a method to obtain the generators of ∣χi
is found.

Our tensor network has the six-qubit AME state as a building block,
which can be expressed as a stabilizer state (see its graph representation in
Fig. 3). Using this fact the contraction of the hyperbolic pentagon code leads
to a stabilizer state ∣Hi.

The state ∣Hi can be transformed into a graph state ∣Gi through a local
Clifford operatorV that is composedof a layerof one-qubitHadamard gates
followed by a layer of Z gates,

∣Gi ¼ V ∣Hi : ð8Þ

This fact is shown in Section II of the supplementary information. The
Hadamard gates transform the checkmatrix of ∣Hi to ð1jΓjωÞ, which is, up

ba

Fig. 2 | Tensor network representation of the hyperbolic pentagon code. The k
bulk qubits (in red) are encoded into n boundary qubits (in gold). Each pentagon
represents a six-qubit perfect tensor, also known as absolutely maximally entangled
(AME) state. The geometry of the assembly makes the holographic state maximally

entangled acrossBj∂B. a shows a specific region of the bulkEwhich can be recovered
by reading only the region ∂E of the boundary, where the cut γ is of size ∣γ∣ = 3.
b shows a small instance of the code (red) which we propose to prepare
experimentally.
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to the phase vectorω, the checkmatrix of a graph state. The Z gates applied
set ω = 0. Note that, from the set of local Clifford operations, we only
requiredHadamardgates to transform ∣Hi to a graph state, up to the signsof
the generators. We emphasize that the contracted qubits are not part of the
holographic state but are only needed to construct the encoding.

For a given graph state, there exist many other local unitary equivalent
graphs. While not all local unitary equivalent graph states are local Clifford
equivalent39,40, it significantly reduces the complexity of the problem by
considering only the subset of local Clifford operations. To facilitate the
implementation where the boundary qubits are located according to their
position in the tensor network, we are interested in preparation protocols
that require few interactions of shortest range only. In principle, a graph
with suchproperties can be found by trying all possiblemappings to a graph
states, by applying local Clifford unitaries brute-force.

A more refined strategy relies on the algorithm from ref. 41: This
algorithm allows to generate the set of LC-equivalent graph states on a small
numberofqubits. The algorithmresults in graphs that arenonisomorphic to
eachother. Thus, exploring all LC-orbit requires to additionally permute the
associated vertices followed by checking whether the permuted graph is LC
equivalent to the original graph. In practice the following strategy appears
useful: one explores the LC-orbit, chooses a graph with a few number of
edges, and then further optimizes the range of interactions while making
sure of LC equivalence to the original graph. We note however that these
steps are computationally intensive: The number of permutations grow
super-exponentially. Furthermore, while the exact scaling of the LC algo-
rithm is unknown, the LC orbit might also become super-exponentially
large for n ≥ 1241.

For obtaining the graph ∣Gopt
�
(shown in Fig. 1) we have limited

ourselves to the following strategy: Exploring the LC-orbit for the graph in
Fig. 5b with n = 16 took our desktop computer a few seconds. Then we
permuted only the qubits which were part of the building blocks, and
checked LC equivalence to the original graph. Here both the LC orbit and
equivalence check were carried out with the library from ref. 41. Note that,
while the number of its edges is minimal in the LC orbit, the interaction
range of the resulting graphmay be not. The LC orbit of a n = 22 instance of
the holographic code corresponding to six pentagons can still be explored
orbit in around 10min.

However, larger instances seem to require a more heuristic strategy:
Instead of exploring the LC-orbit, we then apply heuristically Hadamard
gates to ∣Hi that result in graph states [see Eq. (8)]. Finally, Z gates can
always be applied to setω = 0. Thus theydonot play an important role in the
optimization. This last strategy seems to work better for symmetric
instances of the hyperbolic pentagon code. Surprisingly, it also leads to the
improved graph from Fig. 1. Section VIII from the supplementary infor-
mation shows a larger instance resulting from contracting eleven AME
states corresponding to n = 36 qubits.

Holographic graph code
Here we show how the holographic code can be understood as a graph
code29,42. From the graph code and its representation as graph state ∣Gi
[see Eq. (8)], we derive the logical basis states [see Eq. (2)]. We

emphasize that the results in this section applies for any graph code,
including ∣Gopt

�
.

We recall that the check matrix of a graph state is described by ð1jΓÞ.
Since the holographic graph state ∣Gi is maximally entangled across Bj∂B,
we can write its adjacency matrix as

ð9Þ

where rank(B) = k, as shown in ref. 43,Section II. The n first columns of the
X- andZ-part carry the informationhow the generators act on the boundary
qubits and the remaining k columns describe how the generators act on the
logical qubits.Here ΓB , Γ∂B andB represent the interactionswithin the bulk,
within the boundary, and between bulk and boundary qubits respectively.
The corresponding edge sets are EB , E∂B , E∂BjB .

Similarly to ∣Hi from Eq. (2), the graph state ∣Gi from Eq. (9) can be
written as

∣Gi ¼
X1

i1 ;...;ik¼0

∣i1 . . . ikiB � ∣Gi1...ik
i
∂B : ð10Þ

The basis elements of the code space ∣Gi1 ...ik
i with i1,…, ik∈ {0, 1} can be

defined as

∣Gi1 ...ik
i ¼ ð�1Þ

P
ðu;vÞ2EB

iv iu
Yk
r¼1

�Xir
r ∣G0...0i ; ð11Þ

where ∣G0...0

�
is the logical zero state and f�Xrgkr¼1 are the logical �X gates,

∣G0...0

� ¼ Y
ðu;vÞ2E∂B

CZuv∣þi�n ; �Xr ¼
On
s¼1

ZBrs : ð12Þ

Eqs. (11) and (12) are derived in Section III of the supplementary
information.

Now, we want to find the remaining logical gates f�Zrgkr¼1 and the
generators of the code space fgrgn�k

r¼1 . It is clear that the generators must
commute with the logical gates since their action leaves the code space
invariant. As they act on ∂B only, we consider the boundary qubits of the
check matrix Eq. (9) and write it as42,Section 4

ð13Þ

such that rank(B2) = k. Here B is decomposed into two matrices B1, B2 and
Γ∂B into three matrices Γ1, Γ2, Γ3.

Performing row operations on Eq. (13) leads to the generators of the
code subspace CG and the logical operators �Z and �X. The result is given by

ð14Þ

The proof of this result can be found in Section IV of the supplementary
information.

It is important to remark thatwith the rowoperations needed to obtain
Eq. (14), thephase vector can also change. Thiswill also introduce additional
signs [see Section IV of the supplementary information for details] to the
logical �Z gates and the generators of the code space associated to ∣Gi.

Fig. 3 | Building blocks of the tensor network. Each pentagon tensor with six
indices (left) represents a six-qubit AME state, also known as perfect tensor. For our
purposes we choose the graph state representation (right).
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Encoding
We now describe how an arbitrary state is encoded into the holographic
code. The layout of Fig. 2 contains k bulk and n boundary qubits. Given the
logical gates and the generators for the code subspace [c.f. Eq. (14)], we
provide a recipe to encode an arbitrary k-qubit bulk state into the boundary.
This recipe is amodification of the encodingmethod from ref. 42 and can be
found in more details in Section V from the supplementary information.

Define the controlled logical gates acting on bulk qubit j in B as

C�Xj ¼ ∣0i 0h ∣j � 1þ ∣1i 1h ∣j � �X ;

C�Zj ¼ ∣0i 0h ∣j � 1þ ∣1i 1h ∣j � �Z ;
ð15Þ

with 1, �X, and �Z acting on the boundary space ∂B.
A bulk state ∣ϕin

�
encodes into a boundary state ∣ϕenc

�
via

∣þi�k
B � ∣ϕenc

�
∂B ¼ UG ∣ϕin

�
B � ∣þi�n

∂B
� �

; ð16Þ

where UG =U3U2U1 with

U1 ¼ Q
ðu;vÞ2fEB ;E∂Bg

CZuv ; U2 ¼
Qk
j¼1

C�Xj ;

U3 ¼ Qk
j¼1

C�Zj H
�k
B � 1�n

∂B
� �

:

ð17Þ

After a successful encoding the bulk degrees of freedom are left in the
product state ∣þi�k, as illustrated in Fig. 4.

The unitary UG is decomposed into three unitaries. The gates in
U1 take into account the interactions among boundary qubits and
bulk qubits separately [Γ∂B and ΓB from Eq. (9)]. They prepare the
logical zero state and the phases of the logical states respectively. The
gates in U2 take into account the interactions between bulk and
boundary qubits [B from Eq. (9)], entangling the bulk computational
basis with the logical boundary states. Finally, U3 is responsible for
disentangling both systems with the information from the bulk
transmitted to the boundary. Note that the conditional gates C�Xj and
C�Zj act between the qubit j in B and the boundary ∂B, a gate CZuv acts
on two qubits u, v that are both in either B or ∂B only.

Since the logical gates are composed by a tensor product of Pauli gates,
we can decompose C�Xj and C�Zj into a product of CXuv and CZuv gates.We
can see that with an example. Define a controlled gate composed by Pauli
gates:

∣0i 0h ∣1 � 1�4
2345 þ ∣1i 1h ∣1 � X2Z3Y4Y5

� �
: ð18Þ

One can decompose it as

CZ14 CX12CX14CX15

� �
CZ13CZ15

� �
: ð19Þ

This decomposition is useful since CX and CZ gates are realizable in many
experimental platforms.

Partial decoding
The decoding abilities of the hyperbolic pentagon code are related to its
geometry, which is induced by how the AME states are arranged in the
tensor network. Their contraction yields the holographic state ∣Hi, which
represents an isometryTH that encodeskbulk qubits intonboundary qubits
through Eq. (1).

To see how a bulk region can be recovered from its nearby boundary,
we partition the bulk into two complementary regions E and F along a cut γ
with associated boundary regions ∂E and ∂F, shown in Fig. 2a. To each
tensor network leg crossed by the cut γ we associate a qubit. These qubits
form the Hilbert space Hγ ¼ ðC2Þ�jγj

. If there exists an isometry from
E∪ γ to ∂E, then the quantum information stored in E can be recovered
from ∂E. A way to check whether such isometry exists is through the
methodof tensor pushing11,Section5.3. Such apartial isometry can bewritten as,

Th ¼ P
i2ZjEj

2

P
j2Zjγj

2

∣hiji∂Ehi∣E � hj∣γ

¼ P
ℓ2Zj∂Ej

2

P
i2ZjEj

2

P
j2Zjγj

2

hℓij∣ℓi∂Ehi∣E � hj∣γ ;
ð20Þ

where ∣hiji∂E , forms an orthonormal basis of ∂E.
Given a bulk state that was encoded through the isometry TH, one can

apply then a partial isometry Ty
h on ∂E to recover the bulk region E. This

follows from the fact that TH can be decomposed in terms of the elements
hℓij from Th as,

TH ¼
X

ℓ2Zj∂Ej
2

X
i2ZjEj

2

X
j2Zjγj

2

hℓij∣ℓi∂E ih ∣E � Rj

� �
; ð21Þ

where Rj is a tensor mapping from F to ∂F. This decomposition emerges
fromthe tensornetwork illustrated inFig. 2a. The isometryTh is constructed
by the building blocks geometrically situated in E, which in turn are con-
tracted by ∣γ∣ indices to the rest of the building blocks situated in F.

One sees that TH followed by Ty
h acts as identity on E i.e.,

ðTy
h � 1∂FÞTH

¼ P
i;i02ZjEj

2

P
j;j02Zjγj

2

P
ℓ2Zj∂Ej

2

h�
ℓi0 j0hℓij

0@ 1A∣i0i ih ∣� ∣j0
�
γ
� Rj

¼ 1E �
P

j2Zjγj
2

∣j
�
γ
� Rj ;

ð22Þ

where we used that
P

ℓ2Zj∂Ej
2
h�
ℓi0j0hℓij ¼ δii0δjj0 because the elements ∣hiji

form an orthonormal basis. Hence, Th recovers the bulk information of E
from its nearby boundary ∂E.

The isometry Th can be represented as a quantum state
∣hi 2 HE �Hγ �H∂E . This state is constructed by contracting six-qubit
AME states from the regions E and ∂E only and it can be converted to a
graph state ∣gi via local Clifford operationsW, such that ∣gi ¼ W∣hi. Eqs.
(16) and (17) allow to obtain the encoding and decoding gates Ug corre-
sponding to ∣gi. As donewith the full code ∣Gi, it is practical to optimize this
”partial” graph code ∣gi with respect to the range and number of gates.

Recall that ∣Gi ¼ V ∣Hi and ∣gi ¼ W∣hi, whereW,V are composed of
local Clifford gates. Then, the decoding gate Ug has to be corrected with
corresponding local Clifford gates (see Section VI from the supplementary
information), eUy

h ¼ ðVy
EWE � 1γ∂EÞUy

g ð1Eγ �W∂EV
y
∂EÞ ; ð23Þ

whereVE,V∂E,WE,W∂E contain the local Clifford gates ofV andW having
support on E and ∂E respectively. Here, ~Uh is the unitary operator that
performs a partial decoding of a boundary state that was encoded via ∣Gi.

Fig. 4 | Encoding scheme.The state ∣ϕin
�
to be encoded is localized in the bulk, while

the boundary qubits are in the product state ∣þi�k . After performing the encoding
unitary UG the information is mapped to the boundary state ∣ϕenc

�
and with the bulk

in a product state ∣þi�k .
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Recall that the bulk decomposes as B ¼ E∪ F and the boundary as
∂B ¼ ∂E ∪ ∂F. Then a state ∣ϕenci that was encoded through ∣Gi,

∣þi�k
B � ∣ϕenc

�
∂B ¼ UG ∣ϕin

�
B � ∣þi�n

∂B
� �

; ð24Þ

can be partially decoded by ~U
y
h

∣ψdec

� ¼ ~U
y
h � 1∂F

� �
∣þi�ðjEjþjγjÞ

Eγ � ∣ϕenc
�
∂B

� �
: ð25Þ

In particular, one can check that for this partially decoded state

trF ∣ϕinihϕin∣
� � ¼ trγ∂B ∣ψdecihψdec∣

� �
ð26Þ

holds. Consequently, all quantum information contained in E can be
recovered from its nearby boundary ∂E, demonstrating holographic prop-
erties. Which other recovery regions are possible is studied in
ref. 11,Section 5.3.

A holographic model on 12 qubits
Here we consider a small instance of the holographic code on 12 qubits
that exhibits holographic properties and describe the experimental
preparation of its logical states, its encoding, as well as the decoding
procedures. We also show how to recover a bulk region from its nearby
boundary. The methodology relies on the formulation of the hyper-
bolic pentagon (HaPPY) code11 as a stabilizer graph code derived in the
previous sections.

This toy model consists of four connected pentagons, each repre-
senting a six-qubit absolutelymaximally entangled state (AME), also known
as perfect tensor, as illustrated in Fig. 5a. The toy model involves twelve
boundary qubits, labeledby1 to 12, and fourbulkdegrees of freedom labeled
by A, B, C, D, thus requiring 16 qubits in total.

The building block of the hyperbolic pentagon code is the six-
qubit AME state, for which a highly symmetric graph state repre-
sentation exists (c.f. Fig. 3)33. The contraction of four such states yields
the stabilizer state ∣Hi which carries both information about the code
subspace as well as about the encoding. The resulting ∣Hi can be
transformed to a graph state ∣Gi by the application of a single layer of
Hadamard gates and a subsequent layer of Z gates, as shown in Section
II from the supplementary information. As ∣Gi requires many long-
ranges CZ gates, it is useful to choose a local Clifford equivalent graph
state that requires gates of shortest possible range. Here we choose the
state ∣Gopt

�
that is shown in Fig. 1, which can be found by exploring the

local Clifford orbit Fig. 6. This graph has no edges that cross the center
and is rotational invariant.

From the graph representation of the state ∣Gopt
�
as illustrated in

Fig. 1, the logical zero state and the logical �X gates are extracted as
follows: remove the red vertices (the bulk qubits) and their incident
edges one obtain the logical state ∣Gopt

0000

�
, corresponding to Eq. (12).

This logical state is illustrated in Fig. 7. The logical �X gates, given
through Eq. (12), are determined by the red edges Brs that connect the
bulk with the boundary and read

ð27Þ

While the logical �X gates can be extracted directly from the graph in
Fig. 1, the logical �Z operator do not seem to have such simple

graphical interpretation. However, they can be found in Eq. (14) and
read

1 2 3 4 5 6 7 8 9 10 11 12
�ZA ¼ 1 Z Z Z X 1 Z Z Z 1 1 1 ;

�ZB ¼ 1 1 1 1 Z Z Z X 1 Z Z Z ;

�ZC ¼ Z Z Z 1 1 1 1 Z Z Z X 1 ;

�ZD ¼ Z X 1 Z Z Z 1 1 1 1 Z Z :

ð28Þ

Fig. 5 | Four pentagons. Contracting four perfect tensors as shown in (a) leads to a
small instance of the holographic code. The contraction is mapped to the graph state
from (b). This state can be thought of as an isometry that encodes the bulk qubits
(red) into the boundary qubits (golden). Optimizing the range and the number of
edges of the graph in Fig. 2b over local Clifford operations leads to the graph in Fig. 1.

Fig. 6 | Partial decoding scheme. The encoded state ∣ϕenc
�
is localized on the

boundary, and the bulk qubits on E and the qubits on the cut γ are in the product
states ∣þi�jEj and ∣þi�jγj respectively. The partial decoding unitary eUy

h transmits the
information from the boundary region ∂E to E.
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Note that the logical gates in Eqs. (27) and (28) preserve the same rotational
symmetry as the graph (Fig. 1) from which they are extracted.

The logical operators can be further simplified whenmultiplied by the
code subspace generators. However, we lose the graphical interpretation of
the logical �X gates. Similarly, the code subspace generators can be optimized
by multiplying each other. This can reduce the number of gates used in this
section even more (see Section VII from the supplementary information).

Preparing the logical states
We describe how the logical states can be prepared experimentally.
Throughoutwewill use the labeling fromFig. 5a.One starts bypreparing the
logical zero state ∣Gopt

0000

�
that is illustrated in Fig. 7 and whose formula is

given by Eq. (12). Prepare ∣þi�12 and apply controlled-Z gates between
qubits u; v 2 E∂B ,

∣Gopt
0000

� ¼ Y
ðu;vÞ2E∂B

CZuv∣þi�12 : ð29Þ

Here E∂B consists of the 28 boundary-to-boundary edges from Fig. 7,

E∂B ¼ ð2; 1Þ; ð2; 4Þ; ð2; 5Þ; ð2; 6Þ; ð3; 4Þ; ð3; 5Þ; ð3; 6Þ;�
ð5; 4Þ; ð5; 7Þ; ð5; 8Þ; ð5; 9Þ; ð6; 7Þ; ð6; 8Þ; ð6; 9Þ;
ð8; 7Þ; ð8; 10Þ; ð8; 11Þ; ð8; 12Þ;
ð9; 10Þ; ð9; 11Þ; ð9; 12Þ;
ð11; 10Þ; ð11; 1Þ; ð11; 2Þ; ð11; 3Þ;
ð12; 1Þ; ð12; 2Þ; ð12; 3Þ� :

ð30Þ

With the logical zero state prepared, one can now obtain the remaining
logical states by applying logical �X gates stated in Eq. (12).

Encoding circuit
In the following paragraphs we describe how to encode an arbitrary four-
qubit bulk state into twelve boundary qubits. Eqs. (16) and (17) describe the
associated encoding procedure for ∣Gopt

�
. This yields the encoding unitary

HG, which can be decomposed into three parts.
(1) UnitaryU1 prepares the logical zero state and introduces real phases to

the logical states as shown in Eq. (11).
(2) Unitary U2 entangles the logical states of the boundary with the

computational basis of the bulk.
(3) Unitary U3 decouples the bulk from the boundary, yielding the enco-

ded state on the boundary.

Eq. (17) shows the general formof theseunitaries, inparticular they can
be decomposed in terms of CX and CZ gates. For the graph in Fig. 1 they
simplify as follows:

U1 ¼
Y

ðu;vÞ2EB ;E∂B
CZuv ¼

Y
ðu;vÞ2E∂B

CZuv ; ð31Þ

because our graph does not have interaction between bulk qubits EB ¼ 0.
The set E∂B is given in Eq. (30).

Then, U2 can be written as

U2 ¼
Y

j2fA;B;C;Dg
C�Xj ¼

Y
ðu;vÞ2E∂BjB

CZuv ; ð32Þ

by decomposing the logical gates C�X into two-qubit CZ gates according to
Eq. (27). Here the set E∂BjB is given by

E∂BjB ¼ ðA; 1Þ; ðA; 3Þ; ðA; 4Þ; ðA; 5Þ; ðA ; 6Þ�
ðB; 4Þ; ðB; 6Þ; ðB; 7Þ; ðB; 8Þ; ðB ; 9Þ
ðC; 7Þ; ðC; 9Þ; ðC; 10Þ; ðC; 11Þ; ðC ; 12Þ
ðD; 10Þ; ðD; 12Þ; ðD; 1Þ; ðD; 2Þ; ðD ; 3Þ� :

ð33Þ

Finally, U3 reads

U3 ¼ Q
j2fA;B;C;Dg

C�Zj H
�4 � 112

� �
¼ Q

j2fA;B;C;Dg

Q
w2Wj

CXjw

Q
v2Vj

CZjv

 !
H�4 � 112

� �
;

ð34Þ

where the logical C�Z gates are decomposed intoCX andCZ gates according
to Eq. (28). Here the sets Vj andWj are given by

WA ¼ f5g ; VA ¼ f2; 3; 4; 7; 8; 9g ;
WB ¼ f8g ; VB ¼ f5; 6; 7; 10; 11; 12g ;
WC ¼ f11g ; VC ¼ f1; 2; 3; 8; 9; 10g ;
WD ¼ f2g ; VD ¼ f1; 4; 5; 6; 11; 12g :

ð35Þ

Given the three unitaries written as explicit quantum gates, we can proceed
to encode a bulk state. Expand a general bulk state as

∣ϕini ¼
X1

a;b;c;d¼0

cabcd ∣abcdi ; ð36Þ

andprepare the 12boundaryqubits in ∣þi�12. The applicationofU1 [c.f. Eq.
(31)] prepares the logical zero state ∣Gopt

0000

�
from Eq. (29) on the boundary,

U1 ∣ϕiniB � ∣þi�12
∂B

� � ¼ ∣ϕiniB � ∣Gopt
0000i∂B : ð37Þ

The subsequent application ofU2 [c.f. Eq. (32)] entangles the bulk with the
boundary,

∣ψi ¼ U2 ∣ϕiniB � ∣Gopt
0000i∂B

� �
¼ P1

a;b;c;d¼0
cabcd ∣abcdiB � ∣Gopt

abcdi∂B:
ð38Þ

Finally, the gate U3 [see Eq. (34)] decouples the bulk from the boundary,

U3∣ψ
� ¼ ∣þi�4

B �
X1

a;b;c;d¼0

cabcd∣G
opt
abcd

�
∂B: ð39Þ

Fig. 7 | Logical state. The logical state ∣Gopt
0000

�
of the 12 qubit hyperbolic pentagon

code as derived from the graph state in Fig. 1.
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The encoded state is then

∣ϕenc
� ¼ X1

a;b;c;d¼0

cabcd∣G
opt
abcd

�
; ð40Þ

with the computational basis ∣abcdi mapped to the logical basis ∣Gopt
abcd

�
.

Partial decoding circuit
The graph code (Fig. 1) gives information on how to perform the encoding.
However, it provides little intuition on realizing a partial decoding opera-
tion, i.e., recovering a part of the bulk from its nearby boundary. The
geometry of the tensor network indicateswhat partial recovery processes are
possible in general as discussed in ref. 11,Section 5.3.

For our toy model, Fig. 8 illustrates how to perform a partial
recovery operation for a specific choice of bulk and boundary regions.
Consider the specific cut γ from Fig. 8a which separates two regions:
∂E ∪ E and ∂F ∪ F, where E ∪ F are bulk qubits (red) and ∂E ∪ ∂F
boundary qubits (gold). Further, we define the black qubits labeled by I,
II and III as those associated to each tensor network leg crossed by the cut
γ. The cut is placed in such a way that the two contracted AME states in
Fig. 8b act as an isometry Th from E ∪ γ to ∂E. As shown in Eq. (22), one
can use Ty

h to recover the bulk qubits from E by only reading the
boundary ∂E.

The isometry Th can be represented as a quantum state ∣hi obtained
by a contraction of two AME states in Fig. 8b. This state ∣hi can also be
mapped to a graph state by applying local Clifford operations. Again, this
graph can be optimized with respect to the number of edges and locality
leading to the state ∣g

�
illustrated in Fig. 8c. Section VI from the supple-

mentary information shows how to correct the Uy
g for this local Clifford

optimized code.
The decoding procedure contains then the following steps:

1. Apply the corresponding local Clifford before Uy
g .

2. Apply the same procedure as described in Encoding circuit, but for the
graph ∣g

�
and in a reverse order since Uy

g ¼ Uy
3U

y
2U

y
1.

3. Apply the corresponding local Clifford after Uy
g .

For the graphs ∣Gopt
�
and ∣g

�
illustrated in Figs. 1 and 8c respec-

tively, the unitary gate Uy
g is modified and given by eUy

h ¼ ZBU
y
g (see the

end of Section VI from the supplementary information). First,Uy
3 can be

written as

Uy
3 ¼ H�5

Eγ � 1�12
∂B

� � Q
j2fA;B;I;II;III g

C�Zj

¼ H�5
Eγ � 1�12

∂B
� �
� Q
j2fA;B;I;II;III g

Q
ω2Ωj

CZjω

Q
w2Wj

CXjw

Q
v2Vj

CZjv

 !
;

ð41Þ

where the gates C�Z decompose into CX and CZ according to

1 2 3 4 5 1 2 3 4 5
�XI ¼ Z Z Z 1 1 ; �ZI ¼ Y Y X 1 1 ;

�XA ¼ Z 1 Z Z 1 ; �ZA ¼ Z X X 1 1 ;

�XIII ¼ 1 1 1 1 Z ; �ZIII ¼ � Z Y Y Y Y ;

�XII ¼ 1 Z Z 1 1 ; �ZII ¼ � Y X Z Y Z ;

�XB ¼ 1 Z Z Z Z ; �ZB ¼ � Z Y Y X Z :

ð42Þ
In Eq. (41), the setsΩj,Vj,Wj are given by

ΩI ¼ f2g ; WI ¼ f1; 2; 3g ; V I
z ¼ f1g ;

ΩA ¼ + ; WA ¼ f2; 3g ; VA ¼ f1g ;
ΩIII ¼ f2g ; WIII ¼ f2; 3; 4; 5g ; V III ¼ f1; 3; 4; 5g ;
ΩII ¼ + ; WII ¼ f1; 2; 4g ; V II ¼ f1; 3; 4; 5g ;
ΩB ¼ + ; WB ¼ f2; 3; 4g ; VA ¼ f1; 2; 3; 5g :

ð43Þ

Note that since the logical �Z gates shown in Eq. (42) have extra phases, we
need to introduce a new set of gates described by Vj

ω. After expressing the
logical �Z gates via X and Z and because ofY = iXZ, onlyZI and ZIII will have
extra phases.

Second, Uy
2 can be written as

Uy
2 ¼

Y
j2fA;B;I;II;IIIg

C�Zj ¼
Y

ðu;vÞ2E∂EjEγ
CZuv ; ð44Þ

Fig. 8 | Decoding scheme for 12 qubit hyperbolic pentagon code. aA cut for which
an isometry from the red qubits of E to the golden qubits of ∂E exist. This isometry is
illustrated in (b). After that and applying a set of Hadamards, we obtain the graph

code (c). This code can be used to recover partially the information of the original
encoding in (a).
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by decomposing C�X intoCZ gates according to Eq. (42). Here the set E∂E∣Eγ
is given by

E∂EjEγ ¼ fð I; 1Þ; ðI; 2Þ; ðI; 3Þ; ðA; 1Þ; ðA; 3Þ; ðA ; 4Þ;
ð III; 5Þ; ðII; 2Þ; ðII; 3Þ; ðB ; 2Þ;
ðB; 3Þ; ðB; 4Þ; ðB ; 5Þg :

ð45Þ

The last unitary Uy
1 is

Uy
1 ¼

Y
ðu;vÞ2E∂E ;EEγ

CZuv ; ð46Þ

with the sets EEγ and E∂E given by

EEγ ¼ fð II;AÞ; ðII; IIIÞ; ðB;AÞ; ðB; IIIÞ; ðB; II Þg ; ð47Þ

E∂E ¼ fð2; 1Þ; ð4; 2Þ; ð4; 3Þ; ð5; 4Þg : ð48Þ
Starting fromthe encoded state ∣ϕenc

�
we introducefive extra qubits, two red

from the bulk region E and three black from the cut (Fig. 8b), such that

∣ψ1i ¼ ∣þi�5
Eγ � ∣ϕenci∂B : ð49Þ

For our graphs ∣Gopt
�
and ∣g

�
, we need to apply local Clifford operations

after Uy
g and not before, since eUy

h ¼ ZBU
y
g . Therefore, apply Uy

g ¼
Uy

1U
y
2U

y
3 to obtain

∣ψ0

� ¼ Uy
1U

y
2U

y
3 � 1∂F

� �
∣ψ1

�
; ð50Þ

and apply ZB to obtain the decoded state,

∣ψdec

� ¼ ZB∣ψ0

�
: ð51Þ

The state ∣ψdec

�
has the same reduction onE as ∣ϕin

�
[see Eq. (26)]. Thus the

bulk informationonE canbe recovered fromthe state ∣ψdec

�
byonly reading

its nearby boundary ∂E. Thus the sequence of unitary gates Eqs. (49)–(50)
realizes partial decoding from the encoded state and hence can be used to
demonstrate holographic bulk reconstruction.

In summary, we need 12 qubits to prepare a code state, 16 qubits to
encode an arbitrary state and 17 qubits to perform partial recovery.

A circuit to perform encoding followed by partial decoding can also be
realizedwith 17 qubits, as shown in Fig. 9. The encoding needs 12 boundary
qubits and 4 bulk qubits initialized in a product state and ∣ϕin

�
, respectively.

The result of the encoding is a product state in the bulk and an encoded state
in the boundary ∣ϕenc

�
. The partial decoding needs 12 qubits from the

encoded state in the boundary, 2 qubits (A and B) from the bulk region E
that we aim to recover and 3 qubits (I, II and III) from the cut γ. The
remaining bulk qubits (C and D) can be recycled to act as qubits on the cut
for the partial decoding. Fig. 9 shows how the qubits C andD are reused as I
and II. Note that we still need an additional qubit III to perform the partial
decoding; we introduce such a qubit in the center.

Weemphasize that the experimental setup inFig. 9describes the caseof
performing apartial decodingwhenwehavepreviously performeda general
encoding. For performing a partial decoding given a 12-qubit boundary
state, we have to add 3 extra qubits as shown in Fig. 8b.

Experimental feasibility
For the implementation of the graph states presented in this work the ability
to entangle arbitrary qubits is essential. Inmany state-of-the-art approaches,
the interaction between qubits is local, which constrains the connectivity of
the artificial quantum system. Hence, the long-range entangling gates have
to be decomposed into local entangling gates which then increases the
number of gates necessary to realize an equivalent circuit. However, several
platforms are outstanding with their ability to generate non-local

connectivity between qubits and hence allow to prepare the entangled graph
states. Platforms which provide such connectivity are trapped ions44, Ryd-
berg arrays24, (artificial) atoms coupled to a cavity23,45. In the case of trapped
ions, the long-range interaction between two qubits can be achieved by
either using the phonon degrees of freedom in an ion crystal46 or a shuttling
approach47, i.e., moving the ions next to each other and then entangle them.
Similarly, recent experimental progress in Rydberg atom arrays allow for
entangling arbitrary pairs of atoms by shuttling the atoms, bringing two
atoms next to each other and then entangle them by using the Rydberg
blockade mechanism.

In the case of (artificial) atoms coupled to a cavity, the two typical
platforms are superconducting qubits coupled to a microwave cavity or
Rubidium atoms coupled to a cavity. In superconductor based platforms
Josephson junctions are used to form an artificial two level system.45,
whereas in the case of atomic systems one frequently uses internal states of
the atom23. The range of the interaction can be engineered by exploiting that
a photon can travel along a cavity, while the atoms are connected to the
cavity. Controlling the coupling between the (artificial) atom and the cavity
then allows to engineer long-range interactions.

In principle, all of these three systems trapped ions, Rydberg arrays or
(artificial) atoms coupled to a cavity are able to perform arbitrary local
unitary operations and one entangling operation between two arbitrary
qubits, which is sufficient to perform arbitrary unitary operations between
two qubits48. For example, Rydberg atom arrays recently demonstrated the
generation of 12-qubit cluster state and a seven-qubit Steane code with
related stabilizer measurements24. Similar results were achieved in ion trap
setups, where for example a 7 qubit color code49 or a 9-qubit Bacon Shore
code state50 were realized.

Reference 51 bench-marked a trapped-ion setup with single-qubit,
two-qubit gate and measurement fidelity of 0.99994(3), 0.9981(3) and
0.9972(5), respectively. Using such a setup, we make a simple estimation of
the state fidelity. The logical zero state is obtained with a fidelity of 0.947(8)
from the gate sequence described in Eq. (29). Other approaches to prepare
the logical zero state require non-destructive stabilizer measurements27 and
result in a fidelity of 0.88(2). The state fidelity shows a significant advantage
in preparing the logical zero state as a graph compared to stabilizer mea-
surements. This estimation is developed with more details in Section VII of
the supplementary information.

Related work
Reference 11,Section 5.7–8 already highlighted that the hyperbolic pen-
tagon can be formulated in the stabilizer formalism. The work of ref. 19

Fig. 9 | Experimental setup with 17 qubits. The bulk qubits A, B, C and D are
encoded into the boundary qubits 1,…, 12. After encoding, we reuse the qubits C
(now III) and D (now I) and add an extra qubit III to perform the partial decoding.
This procedure recovers the bulk degrees of freedom A and B from the boundary
given by the qubits 1 to 5.
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then exploredmore explicitly the stabilizer formulation, taking advantage
of index contractions formulated in terms of Bell state projections and
obtaining corrections to the Ryu Takanayagi formula for entangled input
states. The resulting codes are not yet optimized over local Clifford
operations to reduce experimental requirements. Reference52 introduced
the concatenation of quantum codes through their graph state repre-
sentation. This method of concatenation is not directly applicable to a
more general tensor network such as the hyperbolic pentagon code, as in
this case more general index contractions are required.

Discussion
In this work we provided a systematic method to represent the hyperbolic
pentagon (HaPPY) code as a stabilizer graph code. This allows to engineer as
of now theoretical models of holography in artificial quantum systems.
Interestingly, the formulation as a graph code applies to any code defined
through a tensor network with stabilizer states as building blocks. Further-
more, themethod isnot restricted toqubits, but,with suitable generalizations,
also applies to qudits in prime dimensions. This provides us with the tools to
engineer other codes in the same manner, e.g., the holographic state30,
holographic CSS codes53, and random stabilizer tensor networks5.

Regarding the scalability of our proposal, the local Clifford optimiza-
tion as performed here is a limiting factor to find experimentally suitable
formulations for larger instancesof the hyperbolic pentagon code.However,
an inspection of the building blocks graphs before the contraction can
provide intuition on how the final contracted graph code might look like.
Reducing the number of entangling gates and keeping them short range is
crucial for current noisy intermediate-scale quantum (NISQ) devices.

Several open questions of interest remain. It is unclear whether the
usage of symmetric building blocks always helps in reducing the local
Clifford gate complexity for optimizing the number and range of edges. It is
also an unknown whether there is an efficient iterative procedure to build a
larger holographic graph layer by layer. Finally, it would be interesting to
understand the advantages and disadvantages of experimentally imple-
menting the hyperbolic pentagon code in prime dimensions.

Code availability
The code that supports the findings is available in https://github.com/
ganglesmunne/Engineering_holography.
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